1
|
Benoit M, Jenike KM, Satterlee JW, Ramakrishnan S, Gentile I, Hendelman A, Passalacqua MJ, Suresh H, Shohat H, Robitaille GM, Fitzgerald B, Alonge M, Wang X, Santos R, He J, Ou S, Golan H, Green Y, Swartwood K, Karavolias NG, Sierra GP, Orejuela A, Roda F, Goodwin S, McCombie WR, Kizito EB, Gagnon E, Knapp S, Särkinen TE, Frary A, Gillis J, Van Eck J, Schatz MC, Lippman ZB. Solanum pan-genetics reveals paralogues as contingencies in crop engineering. Nature 2025; 640:135-145. [PMID: 40044854 PMCID: PMC11964936 DOI: 10.1038/s41586-025-08619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/09/2025] [Indexed: 03/30/2025]
Abstract
Pan-genomics and genome-editing technologies are revolutionizing breeding of global crops1,2. A transformative opportunity lies in exchanging genotype-to-phenotype knowledge between major crops (that is, those cultivated globally) and indigenous crops (that is, those locally cultivated within a circumscribed area)3-5 to enhance our food system. However, species-specific genetic variants and their interactions with desirable natural or engineered mutations pose barriers to achieving predictable phenotypic effects, even between related crops6,7. Here, by establishing a pan-genome of the crop-rich genus Solanum8 and integrating functional genomics and pan-genetics, we show that gene duplication and subsequent paralogue diversification are major obstacles to genotype-to-phenotype predictability. Despite broad conservation of gene macrosynteny among chromosome-scale references for 22 species, including 13 indigenous crops, thousands of gene duplications, particularly within key domestication gene families, exhibited dynamic trajectories in sequence, expression and function. By augmenting our pan-genome with African eggplant cultivars9 and applying quantitative genetics and genome editing, we dissected an intricate history of paralogue evolution affecting fruit size. The loss of a redundant paralogue of the classical fruit size regulator CLAVATA3 (CLV3)10,11 was compensated by a lineage-specific tandem duplication. Subsequent pseudogenization of the derived copy, followed by a large cultivar-specific deletion, created a single fused CLV3 allele that modulates fruit organ number alongside an enzymatic gene controlling the same trait. Our findings demonstrate that paralogue diversifications over short timescales are underexplored contingencies in trait evolvability. Exposing and navigating these contingencies is crucial for translating genotype-to-phenotype relationships across species.
Collapse
Affiliation(s)
- Matthias Benoit
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - James W Satterlee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael J Passalacqua
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hamsini Suresh
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hagai Shohat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina M Robitaille
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Blaine Fitzgerald
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Ohalo Genetics, Aptos, CA, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Ohalo Genetics, Aptos, CA, USA
| | - Ryan Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Verve Therapeutics, Boston, MA, USA
| | - Jia He
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Yumi Green
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Nicholas G Karavolias
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina P Sierra
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres Orejuela
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Elizabeth B Kizito
- Faculty of Agricultural Sciences, Uganda Christian University, Mukono, Uganda
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Michael C Schatz
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Zachary B Lippman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
2
|
Martí-Gómez C, Zhou J, Chen WC, Kinney JB, McCandlish DM. Inference and visualization of complex genotype-phenotype maps with gpmap-tools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642267. [PMID: 40161830 PMCID: PMC11952336 DOI: 10.1101/2025.03.09.642267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Multiplex assays of variant effect (MAVEs) allow the functional characterization of an unprecedented number of sequence variants in both gene regulatory regions and protein coding sequences. This has enabled the study of nearly complete combinatorial libraries of mutational variants and revealed the widespread influence of higher-order genetic interactions that arise when multiple mutations are combined. However, the lack of appropriate tools for exploratory analysis of this high-dimensional data limits our overall understanding of the main qualitative properties of complex genotype-phenotype maps. To fill this gap, we have developed gpmap-tools (https://github.com/cmarti/gpmap-tools), a python library that integrates Gaussian process models for inference, phenotypic imputation, and error estimation from incomplete and noisy MAVE data and collections of natural sequences, together with methods for summarizing patterns of higher-order epistasis and non-linear dimensionality reduction techniques that allow visualization of genotype-phenotype maps containing up to millions of genotypes. Here, we used gpmap-tools to study the genotype-phenotype map of the Shine-Dalgarno sequence, a motif that modulates binding of the 16S rRNA to the 5' untranslated region (UTR) of mRNAs through base pair complementarity during translation initiation in prokaryotes. We inferred full combinatorial landscapes containing 262,144 different sequences from the sequences of 5,311 5'UTRs in the E. coli genome and from experimental MAVE data. Visualizations of the inferred landscapes were largely consistent with each other, and unveiled a simple molecular mechanism underlying the highly epistatic genotype-phenotype map of the Shine-Dalgarno sequence.
Collapse
Affiliation(s)
- Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| | - Juannan Zhou
- Department of Biology, University of Florida, Gainesville, FL, 32611
| | - Wei-Chia Chen
- Department of Physics, National Chung Cheng University, Chiayi 62102, Taiwan, Republic of China
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| |
Collapse
|
3
|
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature 2024; 636:585-593. [PMID: 39313530 PMCID: PMC7616746 DOI: 10.1038/s41586-024-07713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2024] [Indexed: 09/25/2024]
Abstract
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
4
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
6
|
Jia J, Zhao G, Li D, Wang K, Kong C, Deng P, Yan X, Zhang X, Lu Z, Xu S, Jiao Y, Chong K, Liu X, Cui D, Li G, Zhang Y, Du C, Wu L, Li T, Yan D, Zhan K, Chen F, Wang Z, Zhang L, Kong X, Ru Z, Wang D, Gao L. Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement. MOLECULAR PLANT 2023; 16:1893-1910. [PMID: 37897037 DOI: 10.1016/j.molp.2023.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.
Collapse
Affiliation(s)
- Jizeng Jia
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Wang
- Xi'An Shansheng Biosciences Co., Ltd., Xi'an 710000, China
| | - Chuizheng Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 612100, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shujuan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Chong
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Guangwei Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunguang Du
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan 562000, China
| | - Tianbao Li
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China; State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Yan
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kehui Zhan
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Feng Chen
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Zhiyong Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhengang Ru
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Daowen Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Lee ES, Heo J, Bang WY, Chougule KM, Waminal NE, Hong NT, Kim MJ, Beak HK, Kim YJ, Priatama RA, Jang JI, Cha KI, Son SH, Rajendran S, Choo Y, Bae JH, Kim CM, Lee YK, Bae S, Jones JDG, Sohn KH, Lee J, Kim HH, Hong JC, Ware D, Kim K, Park SJ. Engineering homoeologs provide a fine scale for quantitative traits in polyploid. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2458-2472. [PMID: 37530518 PMCID: PMC10651150 DOI: 10.1111/pbi.14141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.
Collapse
Affiliation(s)
- Eun Song Lee
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jung Heo
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment DivisionNational Institute of Biological ResourcesIncheonKorea
| | | | - Nomar Espinosa Waminal
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Nguyen Thi Hong
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Min Ji Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Hong Kwan Beak
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Yong Jun Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Ryza A. Priatama
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Ji In Jang
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Kang Il Cha
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Seung Han Son
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | | | - Young‐Kug Choo
- Division of Biological SciencesWonkwang UniversityIksanKorea
| | - Jong Hyang Bae
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Chul Min Kim
- Division of Horticulture IndustryWonkwang UniversityIksanKorea
| | - Young Koung Lee
- Institute of Plasma TechnologyKorea Institute of Fusion EnergyGunsan‐siKorea
| | - Sangsu Bae
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Kee Hoon Sohn
- Department of Agricultural Biotechnology, Plant Immunity Research Center, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupKorea
| | - Hyun Hee Kim
- BioScience Institute, Department of Chemistry & Life ScienceSahmyook UniversitySeoulKorea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Doreen Ware
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- U.S. Department of Agriculture‐Agricultural Research ServiceNEA Robert W. Holley Center for Agriculture and HealthIthacaNYUSA
| | - Keunhwa Kim
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| | - Soon Ju Park
- Division of Biological SciencesWonkwang UniversityIksanKorea
- Division of Applied Life Science (BK21 four) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC)Gyeongsang National UniversityJinjuKorea
| |
Collapse
|
8
|
Hong J, Su S, Wang L, Bai S, Xu J, Li Z, Betts N, Liang W, Wang W, Shi J, Zhang D. Combined genome-wide association study and epistasis analysis reveal multifaceted genetic architectures of plant height in Asian cultivated rice. PLANT, CELL & ENVIRONMENT 2023; 46:1295-1311. [PMID: 36734269 DOI: 10.1111/pce.14557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Plant height (PH) in rice (Oryza sativa) is an important trait for its adaptation and agricultural performance. Discovery of the semi-dwarf1 (SD1) mutation initiated the Green Revolution, boosting rice yield and fitness, but the underlying genetic regulation of PH in rice remains largely unknown. Here, we performed genome-wide association study (GWAS) and identified 12 non-repetitive QTL/genes regulating PH variation in 619 Asian cultivated rice accessions. One of these was an SD1 structural variant, not normally detected in standard GWAS analyses. Given the strong effect of SD1 on PH, we also divided 619 accessions into subgroups harbouring distinct SD1 haplotypes, and found a further 85 QTL/genes for PH, revealing genetic heterogeneity that may be missed by analysing a broad, diverse population. Moreover, we uncovered two epistatic interaction networks of PH-associated QTL/genes in the japonica (Geng)-dominant SD1NIP subgroup. In one of them, the hub QTL/gene qphSN1.4/GAMYB interacted with qphSN3.1/OsINO80, qphSN3.4/HD16/EL1, qphSN6.2/LOC_Os06g11130, and qphSN10.2/MADS56. Sequence variations in GAMYB and MADS56 were associated with their expression levels and PH variations, and MADS56 was shown to physically interact with MADS57 to coregulate expression of gibberellin (GA) metabolic genes OsGA2ox3 and Elongated Uppermost Internode1 (EUI1). Our study uncovered the multifaceted genetic architectures of rice PH, and provided novel and abundant genetic resources for breeding semi-dwarf rice and new candidates for further mechanistic studies on regulation of PH in rice.
Collapse
Affiliation(s)
- Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
9
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
10
|
Ectopic Expression of Arabidopsis thaliana zDof1.3 in Tomato ( Solanum lycopersicum L.) Is Associated with Improved Greenhouse Productivity and Enhanced Carbon and Nitrogen Use. Int J Mol Sci 2022; 23:ijms231911229. [PMID: 36232530 PMCID: PMC9570051 DOI: 10.3390/ijms231911229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
A large collection of transgenic tomato lines, each ectopically expressing a different Arabidopsis thaliana transcription factor, was screened for variants with alterations in leaf starch. Such lines may be affected in carbon partitioning, and in allocation to the sinks. We focused on ‘L4080’, which harbored an A. thaliana zDof (DNA-binding one zinc finger) isoform 1.3 (AtzDof1.3) gene, and which had a 2−4-fold higher starch-to-sucrose ratio in source leaves over the diel (p < 0.05). Our aim was to determine whether there were associated effects on productivity. L4080 plants were altered in nitrogen (N) and carbon (C) metabolism. The N-to-C ratio was higher in six-week-old L4080, and when treated with 1/10 N, L4080 growth was less inhibited compared to the wild-type and this was accompanied by faster root elongation (p < 0.05). The six-week-old L4080 acquired 42% more dry matter at 720 ppm CO2, compared to ambient CO2 (p < 0.05), while the wild-type (WT) remained unchanged. GC-MS-TOF data showed that L4080 source leaves were enriched in amino acids compared to the WT, and at 49 DPA, fruit had 25% greater mass, higher sucrose, and increased yield (25%; p < 0.05) compared to the WT. An Affymetrix cDNA array analysis suggested that only 0.39% of the 9000 cDNAs were altered by 1.5-fold (p < 0.01) in L4080 source leaves. 14C-labeling of fruit disks identified potential differences in 14-DPA fruit metabolism suggesting that post-transcriptional regulation was important. We conclude that AtzDof1.3 and the germplasm derived therefrom, should be investigated for their ‘climate-change adaptive’ potential.
Collapse
|
11
|
Debnath S, Mohanta D, Perveen K, Husain FM, Kesari KK, Ashraf MS, Mukerjee N, Rahin SA. Structural and Functional Characterization at the Molecular Level of the MATE Gene Family in Wheat in Silico. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9289007. [PMID: 39281829 PMCID: PMC11401716 DOI: 10.1155/2022/9289007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 09/18/2024]
Abstract
A series of multidrug extransporters known as the multidrug and potentially toxic extrusion (MATE) genes are found in all living things and are crucial for the removal of heavy metal ions, metalloids, exogenous xenobiotics, endogenous secondary metabolites, and other toxic substances from the cells. However, there has only been a small amount of them in silico analysis of the MATE family of genes in plant species. In the current study, the MATE gene family was characterized in silico where two families and seven subfamilies based on their evolutionary relationships were proposed. Plant breeders may use TraesCS1D02G030400, TraesCS4B02G244400, and TraesCS1A02G029900 genes for marker-assisted or transgenic breeding to develop novel cultivars since these genes have been hypothesized from protein-protein interaction study to play a critical role in the transport of toxic chemicals across cells. The exon number varies from 01 to 14. One exon has TraesCS1A02G188100, TraesCS5B02G562500, TraesCS6A02G256400, and TraesCS6D02G384300 genes, while 14 exons have only two genes that are TraesCS6A02G418800 and TraesCS6D02G407900. Biological stress (infestations of disease) affects the expression of most of the MATE genes, with the gene TraesCS5D02G355500 having the highest expression level in the wheat expression browser tool. Using the Grain interpretation search engine tool, it is found that the vast bulk of MATE genes are voiced throughout biotic environmental stresses caused by disease pests, with the genotype TraesCS5B02G326600.1 from family 1 exhibiting the greatest level of expression throughout Fusarium head blight infection by Fusarium graminearum after 4 days of infection. The researchers constructed 39 ternary plots, each with a distinct degree of expression under biotic and abiotic stress settings, and observed that 44% of the triplets have imbalanced outputs (extreme values) due to their higher tissue specificity and increased intensity.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, West Bengal, India
| | - Deepika Mohanta
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, West Bengal, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh-11495, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11421, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 11000 (Otakaari 1B), Espoo, Finland
| | - Mohd Shaikhul Ashraf
- Department of Botany, HKM Govt. Degree College Bandipora, Bandipora, Kashmir 193505, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata 700118, India
| | | |
Collapse
|
12
|
Kang MS, Kim YJ, Heo J, Rajendran S, Wang X, Bae JH, Lippman Z, Park SJ. Newly Discovered Alleles of the Tomato Antiflorigen Gene SELF PRUNING Provide a Range of Plant Compactness and Yield. Int J Mol Sci 2022; 23:ijms23137149. [PMID: 35806155 PMCID: PMC9266710 DOI: 10.3390/ijms23137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In tomato cultivation, a rare natural mutation in the flowering repressor antiflorigen gene SELF-PRUNING (sp-classic) induces precocious shoot termination and is the foundation in determinate tomato breeding for open field production. Heterozygous single flower truss (sft) mutants in the florigen SFT gene in the background of sp-classic provide a heterosis-like effect by delaying shoot termination, suggesting the subtle suppression of determinacy by genetic modification of the florigen–antiflorigen balance could improve yield. Here, we isolated three new sp alleles from the tomato germplasm that show modified determinate growth compared to sp-classic, including one allele that mimics the effect of sft heterozygosity. Two deletion alleles eliminated functional transcripts and showed similar shoot termination, determinate growth, and yields as sp-classic. In contrast, amino acid substitution allele sp-5732 showed semi-determinate growth with more leaves and sympodial shoots on all shoots. This translated to greater yield compared to the other stronger alleles by up to 42%. Transcriptome profiling of axillary (sympodial) shoot meristems (SYM) from sp-classic and wild type plants revealed six mis-regulated genes related to the floral transition, which were used as biomarkers to show that the maturation of SYMs in the weaker sp-5732 genotype is delayed compared to sp-classic, consistent with delayed shoot termination and semi-determinate growth. Assessing sp allele frequencies from over 500 accessions indicated that one of the strong sp alleles (sp-2798) arose in early breeding cultivars but was not selected. The newly discovered sp alleles are potentially valuable resources to quantitatively manipulate shoot growth and yield in determinate breeding programs, with sp-5732 providing an opportunity to develop semi-determinate field varieties with higher yields.
Collapse
Affiliation(s)
- Min-Sung Kang
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (Y.J.K.); (J.H.); (S.R.)
| | - Yong Jun Kim
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (Y.J.K.); (J.H.); (S.R.)
| | - Jung Heo
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (Y.J.K.); (J.H.); (S.R.)
| | - Sujeevan Rajendran
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (Y.J.K.); (J.H.); (S.R.)
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (X.W.); (Z.L.)
| | - Jong Hyang Bae
- Department of Horticulture Industry, Wonkwang University, Iksan 54538, Korea;
| | - Zachary Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (X.W.); (Z.L.)
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Soon Ju Park
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (Y.J.K.); (J.H.); (S.R.)
- Correspondence:
| |
Collapse
|
13
|
Thomson MJ, Biswas S, Tsakirpaloglou N, Septiningsih EM. Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. Int J Mol Sci 2022; 23:ijms23126565. [PMID: 35743007 PMCID: PMC9223900 DOI: 10.3390/ijms23126565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in molecular technologies over the past few decades, such as high-throughput DNA marker genotyping, have provided more powerful plant breeding approaches, including marker-assisted selection and genomic selection. At the same time, massive investments in plant genetics and genomics, led by whole genome sequencing, have led to greater knowledge of genes and genetic pathways across plant genomes. However, there remains a gap between approaches focused on forward genetics, which start with a phenotype to map a mutant locus or QTL with the goal of cloning the causal gene, and approaches using reverse genetics, which start with large-scale sequence data and work back to the gene function. The recent establishment of efficient CRISPR-Cas-based gene editing promises to bridge this gap and provide a rapid method to functionally validate genes and alleles identified through studies of natural variation. CRISPR-Cas techniques can be used to knock out single or multiple genes, precisely modify genes through base and prime editing, and replace alleles. Moreover, technologies such as protoplast isolation, in planta transformation, and the use of developmental regulatory genes promise to enable high-throughput gene editing to accelerate crop improvement.
Collapse
|
14
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
15
|
Li A, Hao C, Wang Z, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X, Zhang X, Mao L. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. MOLECULAR PLANT 2022; 15:504-519. [PMID: 35026438 DOI: 10.1016/j.molp.2022.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 05/10/2023]
Abstract
Diversity surveys of crop germplasm are important for gaining insights into the genomic basis for plant architecture and grain yield improvement, which is still poorly understood in wheat. In this study, we exome sequenced 287 wheat accessions that were collected in the past 100 years. Population genetics analysis identified that 6.7% of the wheat genome falls within the selective sweeps between landraces and cultivars, which harbors the genes known for yield improvement. These regions were asymmetrically distributed on the A and B subgenomes with regulatory genes being favorably selected. Genome-wide association study (GWAS) identified genomic loci associated with traits for yield potential, and two underlying genes, TaARF12 encoding an auxin response factor and TaDEP1 encoding the G-protein γ-subunit, were located and characterized to pleiotropically regulate both plant height and grain weight. Elite single-nucleotide haplotypes with increased allele frequency in cultivars relative to the landraces were identified and found to have accumulated over the course of breeding. Interestingly, we found that TaARF12 and TaDEP1 function in epistasis with the classical plant height Rht-1 locus, leading to propose a "Green Revolution"-based working model for historical wheat breeding. Collectively, our study identifies selection signatures that fine-tune the gibberellin pathway during modern wheat breeding and provides a wealth of genomic diversity resources for the wheat research community.
Collapse
Affiliation(s)
- Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chenyang Hao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingjie Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Jiao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yun Zhou
- Collaborative Innovation Center of Crop Stress Biology & Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng 475004, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton. Commun Biol 2022; 5:60. [PMID: 35039628 PMCID: PMC8764025 DOI: 10.1038/s42003-022-03022-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Cotton (Gossypium hirsutum L.) fiber is the most important resource of natural and renewable fiber for the textile industry. However, the understanding of genetic components and their genome-wide interactions controlling fiber quality remains fragmentary. Here, we sequenced a multiple-parent advanced-generation inter-cross (MAGIC) population, consisting of 550 individuals created by inter-crossing 11 founders, and established a mosaic genome map through tracing the origin of haplotypes that share identity-by-descent (IBD). We performed two complementary GWAS methods—SNP-based GWAS (sGWAS) and IBD-based haplotype GWAS (hGWAS). A total of 25 sQTLs and 14 hQTLs related to cotton fiber quality were identified, of which 26 were novel QTLs. Two major QTLs detected by both GWAS methods were responsible for fiber strength and length. The gene Ghir_D11G020400 (GhZF14) encoding the MATE efflux family protein was identified as a novel candidate gene for fiber length. Beyond the additive QTLs, we detected prevalent epistatic interactions that contributed to the genetics of fiber quality, pinpointing another layer for trait variance. This study provides new targets for future molecular design breeding of superior fiber quality. Wang and colleagues use a complementary GWAS approach to identify genetic loci associated with cotton fiber quality. Using a multiparent advanced-generation inter-cross population, 26 new QTLs related to cotton fiber quality were found.
Collapse
|
17
|
Messina FJ, Lish AM, Gompert Z. Disparate genetic variants associated with distinct components of cowpea resistance to the seed beetle Callosobruchus maculatus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2749-2766. [PMID: 34117909 DOI: 10.1007/s00122-021-03856-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Polygenic genome-wide association mapping identified two regions of the cowpea genome associated with different components of resistance to its major post-harvest pest, the seed beetle Callosobruchus maculatus. Cowpea (Vigna unguiculata) is an important grain and fodder crop in arid and semi-arid regions of Africa, Asia, and South America, where the cowpea seed beetle, Callosobruchus maculatus, is a serious post-harvest pest. Development of cultivars resistant to C. maculatus population growth in storage could increase grain yield and quality and reduce reliance on insecticides. Here, we use a MAGIC (multi-parent, advanced-generation intercross) population of cowpea consisting of 305 recombinant inbred lines (RILs) to identify genetic variants associated with resistance to seed beetles. Because inferences regarding the genetic basis of resistance may depend on the source of the pest or the assay protocol, we used two divergent geographic populations of C. maculatus and two complementary assays to measure several aspects of resistance. Using polygenic genome-wide association mapping models, we found that the cowpea RILs harbor substantial additive-genetic variation for most resistance measures. Variation in several components of resistance, including larval development time and survival, was largely explained by one or several linked loci on chromosome 5. A second region on chromosome 8 explained increased seed resistance via the induction of early-exiting larvae. Neither of these regions contained genes previously associated with resistance to insects that infest grain legumes. We found some evidence of gene-gene interactions affecting resistance, but epistasis did not contribute substantially to resistance variation in this mapping population. The combination of mostly high heritabilities and a relatively consistent and simple genetic architecture increases the feasibility of breeding for enhanced resistance to C. maculatus.
Collapse
Affiliation(s)
- Frank J Messina
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Alexandra M Lish
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
18
|
Fortuny AP, Bueno RA, Pereira da Costa JH, Zanor MI, Rodríguez GR. Tomato fruit quality traits and metabolite content are affected by reciprocal crosses and heterosis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5407-5425. [PMID: 34013312 DOI: 10.1093/jxb/erab222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Heterosis occurs when the F1s outperform their parental lines for a trait. Reciprocal hybrids are obtained by changing the cross direction of parental genotypes. Both biological phenomena could affect the external and internal attributes of fleshy fruits. This work aimed to detect reciprocal effects and heterosis in tomato (Solanum lycopersicum) fruit quality traits and metabolite content. Twelve agronomic traits and 28 metabolites identified and estimated by 1H-NMR were evaluated in five cultivars grown in two environments. Given that the genotype component was more important than the phenotype, the traits were evaluated following a full diallel mating design among those cultivars, in a greenhouse. Hybrids showed a higher phenotypic diversity than parental lines. Interestingly, the metabolites, mainly amino acids, displayed more reciprocal effects and heterosis. Agronomic traits were more influenced by general combining ability (GCA) and metabolites by specific combining ability (SCA). Furthermore, the genetic distance between parental lines was not causally related to the occurrence of reciprocal effects or heterosis. Hybrids with heterosis and a high content of metabolites linked to tomato flavour and nutritious components were obtained. Our results highlight the impact of selecting a cultivar as male or female in a cross to enhance the variability of fruit attributes through hybrids as well as the possibility to exploit heterosis for fruit composition.
Collapse
Affiliation(s)
- Agustina P Fortuny
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
| | - Rodrigo A Bueno
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario, Argentina
| | - Javier H Pereira da Costa
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Inés Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
19
|
Čermák T. Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Res 2021; 30:353-379. [PMID: 34086167 DOI: 10.1007/s11248-021-00253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.
Collapse
|
20
|
Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, Lippman ZB. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. NATURE PLANTS 2021; 7:419-427. [PMID: 33846596 DOI: 10.1038/s41477-021-00898-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 05/22/2023]
Abstract
Cis-regulatory mutations underlie important crop domestication and improvement traits1,2. However, limited allelic diversity has hindered functional dissection of the large number of cis-regulatory elements and their potential interactions, thereby precluding a deeper understanding of how cis-regulatory variation impacts traits quantitatively. Here, we engineered over 60 promoter alleles in two tomato fruit size genes3,4 to characterize cis-regulatory sequences and study their functional relationships. We found that targeted mutations in conserved promoter sequences of SlCLV3, a repressor of stem cell proliferation5,6, have a weak impact on fruit locule number. Pairwise combinations of these mutations mildly enhance this phenotype, revealing additive and synergistic relationships between conserved regions and further suggesting even higher-order cis-regulatory interactions within the SlCLV3 promoter. In contrast, SlWUS, a positive regulator of stem cell proliferation repressed by SlCLV3 (refs. 5,6), is more tolerant to promoter perturbations. Our results show that complex interplay among cis-regulatory variants can shape quantitative variation, and suggest that empirical dissections of this hidden complexity can guide promoter engineering to predictably modify crop traits.
Collapse
Affiliation(s)
- Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Lyndsey Aguirre
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniel Rodríguez-Leal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Inari Agriculture, Cambridge, MA, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
21
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|