1
|
Chu J, Newman J, Cho J. Molecular Mimicry of Transposable Elements in Plants. PLANT & CELL PHYSIOLOGY 2025; 66:490-495. [PMID: 38808931 PMCID: PMC12085086 DOI: 10.1093/pcp/pcae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Transposable elements (TEs) are mobile DNA elements that are particularly abundant in the plant genomes. They have long been considered as junk DNA; however, a growing body of evidence suggests that TE insertions promote genetic diversity that is essential for the adaptive evolution of a species. Thus far, studies have mainly investigated the cis-acting regulatory roles of TEs generated by their insertions nearby or within the host genes. However, the trans-acting effects of TE-derived RNA and DNA remained obscure to date. TEs contain various regulatory elements within their sequences that can accommodate the binding of specific RNAs and proteins. Recently, it was suggested that some of these cellular regulators are shared between TEs and the host genes, and the competition for the common host factors underlies the fine-tuned developmental reprogramming. In this review, we will highlight and discuss the latest discoveries on the biological functions of plant TEs, with a particular focus on their competitive binding with specific developmental regulators.
Collapse
Affiliation(s)
- Jie Chu
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, Beijing 200032, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Josephine Newman
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
2
|
Panthi A, Lynch KW. RNA processing in innate immunity: regulation by RNA-binding proteins. Trends Biochem Sci 2025:S0968-0004(25)00101-X. [PMID: 40379525 DOI: 10.1016/j.tibs.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
RNA processing is an important but often overlooked process in determining protein expression. Alternative polyadenylation and regulated mRNA stability control the amount and duration of protein expression, while alternative splicing also controls protein identity and function. Much work in innate immunity has focused on the activation of transcription factors and the downstream consequences in gene expression. However, there is increasing evidence indicating that regulation of RNA processing by RNA-binding proteins (RBPs) contributes significantly to tuning the innate immune response. Herein we review work highlighting the impact of RNA processing in innate immunity and describe the RBPs and mechanisms driving this regulation. We conclude with a discussion of unanswered questions to motivate continued research in this important and understudied field.
Collapse
Affiliation(s)
- Asmita Panthi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Pappas A, Mooney M, Kohnen K, Owens JW, Zhang W, Hopkin RJ, Shillington A. The phenotypic spectrum of the Cornelia de Lange-like "Alazami-Yuan syndrome": A case report of the 7th diagnosed individual and review of the literature. Clin Case Rep 2025; 13:e9208. [PMID: 40321225 PMCID: PMC12048704 DOI: 10.1002/ccr3.9208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 05/08/2025] Open
Abstract
We present a 17-year-old female with a childhood clinical diagnosis of Cornelia de Lange Syndrome (CdLS), however later genetic testing identified compound heterozygous variants in TAF6, consistent with AYS. This case report adds to the phenotypic spectrum observed in AYS, and draws connections to transcriptional pathways between CdLS and AYS.
Collapse
Affiliation(s)
- Annie Pappas
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Mary Mooney
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Katherine Kohnen
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Joshua W. Owens
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Wenying Zhang
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Robert J. Hopkin
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Amelle Shillington
- Division of Human GeneticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
4
|
Hegedüs B, Sahu N, Bálint B, Haridas S, Bense V, Merényi Z, Virágh M, Wu H, Liu XB, Riley R, Lipzen A, Koriabine M, Savage E, Guo J, Barry K, Ng V, Urbán P, Gyenesei A, Freitag M, Grigoriev IV, Nagy LG. Morphogenesis, starvation, and light responses in a mushroom-forming fungus revealed by long-read sequencing and extensive expression profiling. CELL GENOMICS 2025:100853. [PMID: 40262612 DOI: 10.1016/j.xgen.2025.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Mushroom-forming fungi (Agaricomycetes) are emerging as pivotal players in several fields of science and industry. Genomic data for Agaricomycetes are accumulating rapidly; however, this is not paralleled by improvements of gene annotations, which leave gene function notoriously poorly understood. We set out to improve our functional understanding of the model mushroom Coprinopsis cinerea by integrating a new, chromosome-level assembly, high-quality gene predictions, and functional information derived from broad gene-expression profiling data. The new annotation includes 5' and 3' untranslated regions (UTRs), polyadenylation sites (PASs), upstream open reading frames (uORFs), splicing isoforms, and microexons, as well as core gene sets corresponding to carbon starvation, light response, and hyphal differentiation. As a result, the genome of C. cinerea has now become the most comprehensively annotated genome among mushroom-forming fungi, which will contribute to multiple rapidly expanding fields, including research on their life history, light and stress responses, as well as multicellular development.
Collapse
Affiliation(s)
- Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Viktória Bense
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maxim Koriabine
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jie Guo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Péter Urbán
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Attila Gyenesei
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary.
| |
Collapse
|
5
|
Jame-Chenarboo F, Reyes JN, Arachchige TU, Mahal LK. Profiling the regulatory landscape of sialylation through miRNA targeting of CMP- sialic acid synthetase. J Biol Chem 2025; 301:108340. [PMID: 40010608 PMCID: PMC11982980 DOI: 10.1016/j.jbc.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Cell surface sialic acid is an important glycan modification that contributes to both normal and pathological physiology. The enzyme cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) biosynthesizes the activated sugar donor cytidine monophosphate (CMP) sialic acid, which is required for all sialylation. CMAS levels impact sialylation with corresponding biological effects. The mechanisms that regulate CMAS are relatively uncharacterized. Herein, we use a high throughput genetically encoded fluorescence assay (miRFluR) to comprehensively profile the posttranscriptional regulation of CMAS by miRNA. These small non-coding RNAs have been found to impact glycosylation. Mapping the interactions of the human miRNAome with the 3'-untranslated region of CMAS, we identified miRNA whose impact on CMAS expression was either downregulatory or upregulatory. This follows previous work from our laboratory and others showing that miRNA regulation is bidirectional. Validation of the high-throughput results confirmed our findings. We also identified the direct binding sites for two upregulatory and two downregulatory miRNAs. Functional enrichment analysis for miRNAs upregulating CMAS revealed associations with pancreatic cancer, where sialic acid metabolism and the α-2,6-sialyltransferase ST6GAL1 have been found to be important. We found that miRNA associated with the enriched signature enhanced pancreatic cell-surface α-2,6-sialylation via CMAS expression in the absence of effects on ST6GAL1. We also find overlap between the miRNA regulation of CMAS and that of previously analyzed sialyltransferases. Overall, our work points to the importance of miRNA in regulating sialylation levels in disease and add further evidence to the bidirectional nature of miRNA regulation.
Collapse
Affiliation(s)
| | - Joseph N Reyes
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Grzejda D, Hess A, Rezansoff A, Gorey S, Carrasco J, Alfonso-Gonzalez C, Tsagkris S, Neuhaus L, Shi M, Ozbulut HC, Vögtle FN, Vlachos A, Hilgers V. Pumilio differentially binds to mRNA 3' UTR isoforms to regulate localization of synaptic proteins. EMBO Rep 2025; 26:1792-1815. [PMID: 39984683 PMCID: PMC11976915 DOI: 10.1038/s44319-025-00401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
In neuronal cells, the regulation of RNA is crucial for the spatiotemporal control of gene expression, but how the correct localization, levels, and function of synaptic proteins are achieved is not well understood. In this study, we globally investigate the role of alternative 3' UTRs in regulating RNA localization in the synaptic regions of the Drosophila brain. We identify direct mRNA targets of the translational repressor Pumilio, finding that mRNAs bound by Pumilio encode proteins enriched in synaptosomes. Pumilio differentially binds to RNA isoforms of the same gene, favoring long, neuronal 3' UTRs. These longer 3' UTRs tend to remain in the neuronal soma, whereas shorter UTR isoforms localize to the synapse. In cultured pumilio mutant neurons, axon outgrowth defects are accompanied by mRNA isoform mislocalization, and proteins encoded by these Pumilio target mRNAs display excessive abundance at synaptic boutons. Our study identifies an important mechanism for the spatiotemporal regulation of protein function in neurons.
Collapse
Affiliation(s)
- Dominika Grzejda
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Anton Hess
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Andrew Rezansoff
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Sakshi Gorey
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Judit Carrasco
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CB2 0AA, Cambridge, UK
| | - Carlos Alfonso-Gonzalez
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Stylianos Tsagkris
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Lena Neuhaus
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
| | - Mengjin Shi
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
| | - Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, 79104, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Friederike-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
- Aging Research, Heidelberg University, 69120, Heidelberg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Signalling Research Centre CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Xu Q, Cheng X, Li Q, Yu P, Zhou X, Chen Y, Lin L, Ni T, Zhao Z. 3' untranslated region somatic variants connect alternative polyadenylation dysregulation in human cancers. J Genet Genomics 2025:S1673-8527(25)00079-7. [PMID: 40107412 DOI: 10.1016/j.jgg.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Somatic variants in the cancer genome influence gene expression through diverse mechanisms depending on their specific locations. However, a systematic evaluation of the effects of somatic variants located in 3' untranslated regions (3' UTRs) on alternative polyadenylation (APA) of mRNA remains lacking. In this study, we analyze 10,199 tumor samples across 32 cancer types and identify 1,333 somatic single nucleotide variants (SNVs) associated with abnormal 3' UTR APA. Mechanistically, these 3' UTR SNVs can alter cis-regulatory elements, such as the poly(A) signal and UGUA motif, leading to changes in APA. Minigene assays confirm that 3' UTR SNVs in multiple genes, including RPS23 and CHTOP, induce aberrant APA. Among affected genes, 62 exhibit differential stability between tandem 3' UTR isoforms, including HSPA4 and UCK2, validated by experimental assays. Finally, we establish that SNV-related abnormal APA usage serves as an additional layer of expression regulation for tumor-suppressor gene HMGN2 in breast cancer. Collectively, this study reveals 3' UTR APA as a critical mechanism mediating the functional impact of somatic noncoding variants in human cancers.
Collapse
Affiliation(s)
- Qiushi Xu
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China; Center for Reproductive Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaomeng Cheng
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qianru Li
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Peng Yu
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolan Zhou
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu Chen
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Limin Lin
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China; MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
de Queiroz BR, Laghrissi H, Rajeev S, Blot L, De Graeve F, Dehecq M, Hallegger M, Dag U, Dunoyer de Segonzac M, Ramialison M, Cazevieille C, Keleman K, Ule J, Hubstenberger A, Besse F. Axonal RNA localization is essential for long-term memory. Nat Commun 2025; 16:2560. [PMID: 40089499 PMCID: PMC11910521 DOI: 10.1038/s41467-025-57651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Localization of mRNAs to neuronal terminals, coupled to local translation, has emerged as a prevalent mechanism controlling the synaptic proteome. However, the physiological regulation and function of this process in the context of mature in vivo memory circuits has remained unclear. Here, we combined synaptosome RNA profiling with whole brain high-resolution imaging to uncover mRNAs with different localization patterns in the axons of Drosophila Mushroom Body memory neurons, some exhibiting regionalized, input-dependent, recruitment along axons. By integrating transcriptome-wide binding approaches and functional assays, we show that the conserved Imp RNA binding protein controls the transport of mRNAs to Mushroom Body axons and characterize a mutant in which this transport is selectively impaired. Using this unique mutant, we demonstrate that axonal mRNA localization is required for long-term, but not short-term, behavioral memory. This work uncovers circuit-dependent mRNA targeting in vivo and demonstrates the importance of local RNA regulation in memory consolidation.
Collapse
Affiliation(s)
- Bruna R de Queiroz
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Hiba Laghrissi
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Seetha Rajeev
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Lauren Blot
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Fabienne De Graeve
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Marine Dehecq
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Martina Hallegger
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ugur Dag
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | | | - Mirana Ramialison
- Murdoch Children's Research Institute, Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | | | - Krystyna Keleman
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Arnaud Hubstenberger
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France.
| |
Collapse
|
9
|
Pizzey A, Sutcliffe C, Love JC, Akabuogu E, Rattray M, Ashe MP, Ashe HL. Exploiting the SunTag system to study the developmental regulation of mRNA translation. J Cell Sci 2025; 138:jcs263457. [PMID: 39989130 DOI: 10.1242/jcs.263457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The ability to quantitatively study mRNA translation using SunTag imaging is transforming our understanding of the translation process. Here, we expand the SunTag method to study new aspects of translation regulation in Drosophila. Repression of the maternal hunchback (hb) mRNA in the posterior of the Drosophila embryo is a textbook example of translational control. Using SunTag imaging to quantify translation of maternal SunTag-hb mRNAs, we show that repression in the posterior is leaky, as ∼5% of SunTag-hb mRNAs are translated. In the anterior of the embryo, the maternal and zygotic SunTag-hb mRNAs show similar translation efficiency despite having different untranslated regions (UTRs). We demonstrate that the SunTag-hb mRNA can be used as a reporter to study ribosome pausing at single-mRNA resolution, by exploiting the conserved xbp1 mRNA and A60 pausing sequences. Finally, we adapt the detector component of the SunTag system to visualise and quantify translation of the short gastrulation (sog) mRNA, encoding an essential secreted extracellular BMP regulator, at the endoplasmic reticulum in fixed and live embryos. Together, these tools will facilitate the future dissection of translation regulatory mechanisms during development.
Collapse
Affiliation(s)
- Alastair Pizzey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer C Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emmanuel Akabuogu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Klostermann M, Will R, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. Nat Commun 2025; 16:2325. [PMID: 40057470 PMCID: PMC11890761 DOI: 10.1038/s41467-025-57671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins, which modulate the fate of RNA. Inversely, RNA riboregulates the interactions and functions of the associated proteins. Dysregulation of ribonucleoprotein functions is linked to diseases such as cancer and neurological disorders. In dividing cells, RNA and RNA-binding proteins are present in mitotic structures, but their impact on cell division remains unclear. By applying the proteome-wide R-DeeP strategy to cells synchronized in mitosis versus interphase integrated with the RBP2GO knowledge, we provided an atlas of RNA-dependent proteins in cell division, accessible at R-DeeP3.dkfz.de. We uncovered AURKA, KIFC1 and TPX2 as unconventional RNA-binding proteins. KIFC1 was identified as a new substrate of AURKA, and new TPX2-interacting protein. Their pair-wise interactions were RNA dependent. In addition, RNA stimulated AURKA kinase activity and stabilized its conformation. In this work, we highlighted riboregulation of major mitotic factors as an additional complexity level of cell division.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Zhang S, Zhang Y, Chen T, Hu HY, Lu C. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Cells 2025; 14:383. [PMID: 40072111 PMCID: PMC11898529 DOI: 10.3390/cells14050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Ataxin-2 (Atx2), an RNA-binding protein, plays a pivotal role in the regulation of RNA, intracellular metabolism, and translation within the cellular environment. Although both the Sm-like (LSm) and LSm-associated (LSmAD) domains are considered to associated with RNA binding, there is still a lack of experimental evidence supporting their functions. To address this, we designed and constructed several recombinants containing the RNA-binding domain (RBD) of Atx2. By employing biophysical and biochemical techniques, such as EMSA and SHAPE chemical detection, we identified that LSm is responsible for RNA binding, whereas LSmAD alone does not bind RNA. NMR and small-angle X-ray scattering (SAXS) analyses have revealed that the LSmAD domain exhibits limited structural integrity and poor folding capability. The EMSA data confirmed that both LSm and LSm-LSmAD bind RNA, whereas LSmAD alone cannot, suggesting that LSmAD may serve as an auxiliary role to the LSm domain. SHAPE chemical probing further demonstrates that LSm binds to the AU-rich, GU-rich, or CU-rich sequence, but not to the CA-rich sequence. These findings indicate that Atx2 can interact with the U-rich sequences in the 3'-UTR, implicating its role in poly(A) tailing and the regulation of mRNA translation and degradation.
Collapse
Affiliation(s)
- Shengping Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| |
Collapse
|
12
|
Dos Santos TCF, Silva EN, Frezarim GB, Salatta BM, Baldi F, Fonseca LFS, Albuquerque LGD, Muniz MMM, Silva DBDS. Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. Mamm Genome 2025; 36:106-117. [PMID: 39825903 DOI: 10.1007/s00335-024-10100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.
Collapse
Affiliation(s)
- Thaís Cristina Ferreira Dos Santos
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.
| | - Evandro Neves Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil
| | | | - Bruna Maria Salatta
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | | | - Lucia Galvão De Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brasil
| | - Maria Malane Magalhães Muniz
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- University of Guelph, UOGELPH, Guelph, Canada
| | - Danielly Beraldo Dos Santos Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil.
| |
Collapse
|
13
|
Gao Y, Hou J, Wei S, Wu C, Yan S, Sheng J, Zhang J, Chen Z, Gao X. Transcriptome-wide mapping of N3-methylcytidine modification at single-base resolution. Nucleic Acids Res 2025; 53:gkaf153. [PMID: 40071931 PMCID: PMC11897884 DOI: 10.1093/nar/gkaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
3-Methylcytidine (m3C), a prevalent modification of transfer RNAs (tRNAs), was recently identified in eukaryotic messenger RNAs (mRNAs). However, its precise distribution and formation mechanisms in mRNAs remain elusive. Here, we develop a novel approach, m3C immunoprecipitation and sequencing (m3C-IP-seq), utilizing antibody enrichment to profile the m3C methylome at single-nucleotide resolution. m3C-IP-seq captures 12 cytoplasmic tRNA isoacceptors and 2 mitochondrial tRNA isoacceptors containing m3C modifications. Moreover, m3C-IP-seq permits the comprehensive profiling of m3C sites in mRNAs and long noncoding RNAs, with their presence reliant on a nuclear isoform of METTL8. A significant proportion of m3C sites is concentrated in the 3' untranslated region (3' UTR) of mRNAs and is associated with mRNA degradation. Additionally, m3C methylation is dynamic and responds to hypoxia. Collectively, our data demonstrate the widespread presence of m3C modification in the human transcriptome and provide a resource for functional studies of m3C-mediated RNA metabolism.
Collapse
Affiliation(s)
- Yunyi Gao
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingyu Hou
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Zhanjiang 524000, China
| | - Saisai Wei
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Canlan Wu
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sujun Yan
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany SUNY, Albany, NY 12222, United States
| | - Jun Zhang
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Zhanjiang 524000, China
| | - Xiangwei Gao
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
14
|
Waugh AH, Catto MA, Arsenault SV, Kay S, Ross KG, Hunt BG. Molecular underpinnings of plasticity and supergene-mediated polymorphism in fire ant queens. J Evol Biol 2025; 38:333-344. [PMID: 39693226 DOI: 10.1093/jeb/voae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Characterizing molecular underpinnings of plastic traits and balanced polymorphisms represent 2 important goals of evolutionary biology. Fire ant gynes (pre-reproductive queens) provide an ideal system to study potential links between these phenomena because they exhibit both supergene-mediated polymorphism and nutritional plasticity in weight and colony-founding behaviour. Gynes with the inversion supergene haplotype are lightweight and depend on existing workers to initiate reproduction. Gynes with only the ancestral, non-inverted gene arrangement accumulate more nutrient reserves as adults and, in a distinct colony-founding behaviour, initiate reproduction without help from workers. However, when such gynes overwinter in the natal nest they develop an environmentally induced lightweight phenotype and colony-founding behaviour, similar to gynes with the inversion haplotype that have not overwintered. To evaluate the extent of shared mechanisms between plasticity and balanced polymorphism in fire ant gyne traits, we assessed whether genes with expression variation linked to overwintering plasticity may be affected by the evolutionary divergence between supergene haplotypes. To do so, we first compared transcriptional profiles of brains and ovaries from overwintered and non-overwintered gynes to identify plasticity-associated genes. These genes were enriched for metabolic and behavioural functions. Next, we compared plasticity-associated genes to those differentially expressed by supergene genotype, revealing a significant overlap of the 2 sets in ovarian tissues. We also identified sequence substitutions between supergene variants of multiple plasticity-associated genes, consistent with a scenario in which an ancestrally plastic phenotype responsive to an environmental condition became increasingly genetically regulated.
Collapse
Affiliation(s)
- Alex H Waugh
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Samuel V Arsenault
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, United States
| | - Sasha Kay
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Kenneth G Ross
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Brendan G Hunt
- Department of Genetics, University of Georgia, Athens, GA, United States
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Spealman P, de Santana C, De T, Gresham D. Multilevel Gene Expression Changes in Lineages Containing Adaptive Copy Number Variants. Mol Biol Evol 2025; 42:msaf005. [PMID: 39847535 PMCID: PMC11789944 DOI: 10.1093/molbev/msaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025] Open
Abstract
Copy number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas, CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that gene expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- chemostats. We find CNV-amplified genes correlate with higher mRNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of gene expression by the abundance of the preceding step we were able to identify widespread differences in the efficiency of each level of gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA-binding sites for Ssd1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which genome evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública—Universidade Estadual de Feira de Santana (UEFS), Bahia, Brazil
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology—New York University, New York, NY, USA
| |
Collapse
|
16
|
Van Goubergen J, Peřina M, Handle F, Morales E, Kremer A, Schmidt O, Kristiansen G, Cronauer MV, Santer FR. Targeting the CLK2/SRSF9 splicing axis in prostate cancer leads to decreased ARV7 expression. Mol Oncol 2025; 19:496-518. [PMID: 39258426 PMCID: PMC11792998 DOI: 10.1002/1878-0261.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target. A common single nucleotide polymorphism, rs5918762, was found to affect the splicing rate and thus the expression of ARV7 in cellular models and patient specimens. Serine/arginine-rich splicing factor 9 (SRSF9) was found to bind to and increase the inclusion of the cryptic exon 3 of ARV7 during the splicing process in the alternative C allele of rs5918762. The dual specificity protein kinase CLK2 interferes with the activity of SRSF9 by regulating its expression. Inhibition of the Cdc2-like kinase (CLK) family by the small molecules cirtuvivint or lorecivivint results in the decreased expression of ARV7. Both inhibitors show potent anti-proliferative effects in enzalutamide-treated or -naive PC models. Thus, targeting aberrant alternative splicing at the 3'UTR of ARV7 by disturbing the CLK2/SRSF9 axis might be a valuable therapeutic approach in late stage, ARSI-resistant PC.
Collapse
Affiliation(s)
- Jasper Van Goubergen
- Division of Experimental Urology, Department of UrologyMedical University of InnsbruckAustria
| | - Miroslav Peřina
- Division of Experimental Urology, Department of UrologyMedical University of InnsbruckAustria
- Department of Experimental Biology, Faculty of SciencePalacký University OlomoucCzech Republic
| | - Florian Handle
- Institute of Pathology, Neuropathology & Molecular PathologyMedical University of InnsbruckAustria
| | - Elisa Morales
- Division of Experimental Urology, Department of UrologyMedical University of InnsbruckAustria
| | - Anika Kremer
- Institute of PathologyUniversity Hospital BonnGermany
| | - Oliver Schmidt
- Institute of Cell Biology, BiocenterMedical University of InnsbruckAustria
| | | | | | - Frédéric R. Santer
- Division of Experimental Urology, Department of UrologyMedical University of InnsbruckAustria
| |
Collapse
|
17
|
Zhang Y, Huang Z, Lu W, Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit Rev Oncol Hematol 2025; 206:104599. [PMID: 39701503 DOI: 10.1016/j.critrevonc.2024.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Alternative polyadenylation (APA) serves as a crucial mechanism for the posttranscriptional regulation of gene expression and influences gene expression by generating diverse mRNA isoforms. This process is regulated by a diverse array of RNA-binding proteins (RBPs), which selectively bind to specific sequences or structures within the pre-mRNA molecule. Dysregulation of APA and its associated RBPs has been implicated in numerous diseases, including cardiovascular diseases, nervous system disease, and cancer. For instance, aberrant APA events have been observed in several types of tumors, contributing to tumor heterogeneity and affecting key cellular pathways involved in cell proliferation, invasion, metastasis, and response to therapy. This review critically evaluates the current understanding of APA mechanisms and the multifaceted roles of RBPs in orchestrating this intricate process. We highlight recent advancements in high-throughput sequencing and bioinformatics tools that have enhanced our ability to study APA on a genome-wide scale. Moreover, we explored the pathological consequences of APA dysregulation, emphasizing its role in oncogenesis. By elucidating the intricate relationships between APA and RBPs, this review aims to underscore the potential of targeting the APA machinery and RBPs for therapeutic intervention. Understanding these molecular processes holds promise for developing novel diagnostic markers and treatment strategies for a range of human cancers.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China; Clinical Research Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China.
| | - Zikun Huang
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China
| | - Weiqing Lu
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, Shantou, Guangdong 515041, China
| | - Zhaoyong Liu
- Department of Orthopedics, First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
18
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
19
|
Li S, Noroozizadeh S, Moayedpour S, Kogler-Anele L, Xue Z, Zheng D, Montoya FU, Agarwal V, Bar-Joseph Z, Jager S. mRNA-LM: full-length integrated SLM for mRNA analysis. Nucleic Acids Res 2025; 53:gkaf044. [PMID: 39898548 PMCID: PMC11962594 DOI: 10.1093/nar/gkaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/07/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
The success of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) messenger RNA (mRNA) vaccine has led to increased interest in the design and use of mRNA for vaccines and therapeutics. Still, selecting the most appropriate mRNA sequence for a protein remains a challenge. Several recent studies have shown that the specific mRNA sequence can have a significant impact on the translation efficiency, half-life, degradation rates, and other issues that play a major role in determining vaccine efficiency. To enable the selection of the most appropriate sequence, we developed mRNA-LM, an integrated small language model for modeling the entire mRNA sequence. mRNA-LM uses the contrastive language-image pretraining integration technology to combine three separate language models for the different mRNA segments. We trained mRNA-LM on millions of diverse mRNA sequences from several different species. The unsupervised model was able to learn meaningful biology related to evolution and host-pathogen interactions. Fine-tuning of mRNA-LM allowed us to use it in several mRNA property prediction tasks. As we show, using the full-length integrated model led to accurate predictions, improving on prior methods proposed for this task.
Collapse
Affiliation(s)
- Sizhen Li
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
| | - Shahriar Noroozizadeh
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Heinz College, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | | | | | - Zexin Xue
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, United States
| | | | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA 02451, United States
| | | | - Sven Jager
- Digital R&D, Sanofi, Cambridge, MA 02141, United States
| |
Collapse
|
20
|
Zou X, Zhao Z, Chen Y, Xiong K, Wang Z, Chen S, Chen H, Wei GH, Xu S, Li W, Ni T, Li L. Impact of rare non-coding variants on human diseases through alternative polyadenylation outliers. Nat Commun 2025; 16:682. [PMID: 39819850 PMCID: PMC11739498 DOI: 10.1038/s41467-024-55407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
Although rare non-coding variants (RVs) play crucial roles in complex traits and diseases, understanding their mechanisms and identifying disease-associated RVs continue to be major challenges. Here we constructed a comprehensive atlas of alternative polyadenylation (APA) outliers (aOutliers), including 1334 3' UTR and 200 intronic aOutliers, from 15,201 samples across 49 human tissues. These aOutliers exhibit unique characteristics from transcription or splicing outliers, with a pronounced RV enrichment. Mechanistically, aOutlier-RVs alter poly(A) signals and splicing sites, and perturbation indeed triggers APA events. Furthermore, we developed a Bayesian-based APA RV prediction model, which successfully pinpointed a specific set of 1799 RVs impacting 278 genes with significantly large disease effect sizes. Notably, we observed a convergence effect between rare and common cancer variants, exemplified by regulation in the DDX18 gene. Together, this study introduced an APA-enhanced framework for genome annotation, underscoring APA's role in uncovering functional RVs linked to complex traits and diseases.
Collapse
Affiliation(s)
- Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Kewei Xiong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zeyang Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shuxin Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hui Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
- Center for Evolutionary Biology, and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
21
|
Wang Q, Gou X, Liu L, Deng D, Zhao Y, Zhou J, Xie Y, Jiang Y, Li J, Zhang J, Liu Y. Heterogeneous nuclear ribonucleoprotein C promotes non-small cell lung cancer progression by enhancing XB130 mRNA stability and translation. Cancer Cell Int 2025; 25:10. [PMID: 39800708 PMCID: PMC11727598 DOI: 10.1186/s12935-025-03638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood. Heterogeneous nuclear ribonucleoprotein C (hnRNPC), as an RNA-binding protein, is known to modulate multiple aspects of RNA metabolism and has been implicated in the pathogenesis of various cancers. We have previously discovered that hnRNPC is one of the candidate proteins that interact with the 3' untranslated region (3'UTR) of XB130 in non-small cell lung cancer (NSCLC). Therefore, this study aims to comprehensively elucidate how hnRNPC regulates the expression of XB130 in NSCLC. MATERIALS AND METHODS We evaluated the expression of hnRNPC in cancer and assessed the correlation between hnRNPC expression and prognosis in cancer patients using public databases. Subsequently, several stable cell lines were constructed. The proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of these cells were detected through Real-time cellular analysis, adherent colony formation, wound healing assay, invasion assay, and Western blotting. The specific regulatory manner between hnRNPC and XB130 was investigated by Real-time quantitative PCR, Western blotting, RNA pull‑down assay, dual‑luciferase reporter assay, RNA immunoprecipitation, and Co-Immunoprecipitation. RESULTS We identified that hnRNPC expression is significantly elevated in NSCLC and correlates with poor prognosis in patients with lung adenocarcinoma. HnRNPC overexpression in NSCLC cells increased the expression of XB130, subsequently activating the PI3K/Akt signaling pathway and ultimately promoting cell proliferation and EMT. Additionally, overexpressing XB130 in hnRNPC-silenced cells partially restored cell proliferation and EMT. Mechanistically, hnRNPC specifically bound to the 3'UTR segments of XB130 mRNA, enhancing mRNA stability by inhibiting the recruitment of nucleases 5'-3' exoribonuclease 1 (XRN1) and DIS3-like 3'-5' exoribonuclease 2 (DIS3L2). Furthermore, hnRNPC simultaneously interacted with the eukaryotic initiation factor 4E (eIF4E), a component of the eIF4F complex, facilitating the circularization of XB130 mRNA and thereby increasing its translation efficiency. CONCLUSIONS HnRNPC overexpression promotes NSCLC progression by enhancing XB130 mRNA stability and translation, suggesting that hnRNPC might be a potential therapeutic and prognostic target for NSCLC.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Daolan Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Jianglun Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| | - Jian Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| |
Collapse
|
22
|
Jame-Chenarboo F, Reyes JN, Twells NM, Ng HH, Macdonald D, Hernando E, Mahal LK. Screening the human miRNA interactome reveals coordinated up-regulation in melanoma, adding bidirectional regulation to miRNA networks. SCIENCE ADVANCES 2025; 11:eadr0277. [PMID: 39792681 PMCID: PMC11721578 DOI: 10.1126/sciadv.adr0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation. Herein, we demonstrate coordinated up-regulation of functionally coupled proteins by miRNA. We focused on CD98hc, the heavy chain of the amino acid transporter LAT-1, and α-2,3-sialyltransferases ST3GAL1 and ST3GAL2, which are critical for CD98hc stability in melanoma. Profiling miRNA regulation using our high-throughput miRFluR assay, we identified miRNA that up-regulated the expression of both CD98hc and either ST3GAL1 or ST3GAL2. These co-up-regulating miRNAs were enriched in melanoma datasets associated with transformation and progression. Our findings add co-up-regulation by miRNA into miRNA regulatory networks and add a bidirectional twist to the impact miRNAs have on protein regulation and glycosylation.
Collapse
Affiliation(s)
| | - Joseph N. Reyes
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
24
|
Guan Y, Li B, Zhang Y, Luo H, Wang X, Bai X, Zheng Z, Huang Y, Wei W, Huang M, Song X, Zhong G. Pharmacogenetic and pharmacokinetic factors for dexmedetomidine-associated hemodynamic instability in pediatric patients. Front Pharmacol 2025; 15:1515523. [PMID: 39840108 PMCID: PMC11745869 DOI: 10.3389/fphar.2024.1515523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Purpose The incidence of hemodynamic instability associated with dexmedetomidine (DEX) sedation has been reported to exceed 50%, with substantial inter-individual variability in response. Genetic factors have been suggested to contribute significantly to such variation. The aim of this study was to identify the clinical, pharmacokinetic, and genetic factors associated with DEX-induced hemodynamic instability in pediatric anesthesia patients. Methods A cohort of 270 pediatric patients scheduled for elective interventional surgery received an intranasal dose of 3 mcg·kg-1 of dexmedetomidine, and subsequent propofol induction was conducted when patients had a UMSS of 2-4. The primary endpoint was hemodynamic instability-defined as a composite of hypotension and/or bradycardia, which is characterized by a 20% reduction from age-specific baseline values. Plasma concentrations of dexmedetomidine were determined, and single-nucleotide polymorphisms (SNPs) were genotyped. A validated population pharmacokinetic model was used to estimate pharmacokinetic parameters. LASSO regression was used to identify significant factors, and a Cox's proportional hazards model-derived nomogram for hemodynamic instability was developed. Results Hemodynamic instability was observed in 52 out of 270 patients (209 events), resulting in a cumulative incidence of 16.30% at 90 min, as estimated by Kaplan-Meier estimation, and it was associated with a median time to event of 35 min. The interval time between DEX initiation and propofol induction was 16 min (IQR: 12-22 min). The cumulative incidence was 8.2% within 22 min after DEX initiation. The identified significant risk factors for DEX-associated hemodynamic instability included weight, DEX clearance, concomitant propofol use, and the following gene variants UGT2B10 rs1841042 (hazard ratio (HR):1.41, 95% confidence interval (CI): 1.12-1.79), CYP2A6 rs8192733 (HR:0.28, 95%CI:0.09-0.88), ADRA2B rs3813662 (HR:1.39,95%CI:1.02-1.89), CACNA2D2 rs2236957 (HR:1.46, 95%CI:1.09-1.96), NR1I2 rs3814057 (HR:0.64, 95%CI:0.43-0.95), and CACNB2 rs10764319 (HR:1.40,95%CI:1.05-1.87). The areas under the curve for the training and test cohorts were 0.881 and 0.762, respectively. The calibration curve indicated excellent agreement. Conclusion The predictive nomogram, which incorporates genetic variants (UGT2B10, CYP2A6, ADRA2B, CACNA2D2, NR1I2, and CACNB2) along with clinical factors such as weight, DEX clearance, and propofol use, may help prevent DEX-associated hemodynamic instability. Delayed hemodynamic instability is likely to occur after 35-min DEX initiation in patients with lower DEX clearance after propofol induction.
Collapse
Affiliation(s)
- Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Bilian Li
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yiyu Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Hao Luo
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xueding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xue Bai
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhuoling Zheng
- Department of Pharmacy, Sun Yat-sen University Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yaying Huang
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Wei
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2025; 62:91-108. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
26
|
Martin S, Kim CY, Coller J. Assessment of mRNA Decay and Calculation of Codon Occurrence to mRNA Stability Correlation Coefficients after 5-EU Metabolic Labeling. Methods Mol Biol 2025; 2863:151-182. [PMID: 39535710 DOI: 10.1007/978-1-0716-4176-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
mRNA translation and decay are tightly connected. This chapter describes a method to assess the influence of each codon identity on mRNA stability in cultured cells. The technique involves metabolic labeling of the nascent mRNAs by addition of the nucleoside analog 5-ethynyluridine (5-EU), purification of the RNA at different time-points after chase of the 5-EU, then biotinylation with Click chemistry, pull-down, and sequencing. The transcripts' half-lives are calculated from the expression level of each mRNA at the different time-points. Finally, the method describes the calculation of the Codon occurrence to mRNA Stability correlation Coefficient, or CSC, as a correlation between the codon occurrence in a transcript and the transcript half-life, for each codon.
Collapse
Affiliation(s)
- Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Christopher Y Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- RNA Innovation Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
27
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
28
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
29
|
Han G, Cui M, Lu P, Zhang T, Yin R, Hu J, Chai J, Wang J, Gao K, Liu W, Yao S, Cao Z, Zheng Y, Tian W, Guo R, Shen M, Liu Z, Li W, Zhao S, Lin X, Zhang Y, Song K, Sun Y, Zhou F, Zhang H. Selective translation of nuclear mitochondrial respiratory proteins reprograms succinate metabolism in AML development and chemoresistance. Cell Stem Cell 2024; 31:1777-1793.e9. [PMID: 39357516 DOI: 10.1016/j.stem.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Mitochondrial adaptations dynamically reprogram cellular bioenergetics and metabolism and confer key properties for human cancers. However, the selective regulation of these mitochondrial responses remains largely elusive. Here, inspired by a genetic screening in acute myeloid leukemia (AML), we identify RAS effector RREB1 as a translational regulator and uncover a unique translation control system for nuclear-encoded mitochondrial proteins in human cancers. RREB1 deletion reduces mitochondrial activities and succinate metabolism, thereby damaging leukemia stem cell (LSC) function and AML development. Replenishing complex II subunit SDHD rectifies these deficiencies. Notably, inhibition of complex II re-sensitizes AML cells to venetoclax treatment. Mechanistically, a short RREB1 variant binds to a conserved motif in the 3' UTRs and cooperates with elongation factor eEF1A1 to enhance protein translation of nuclear-encoded mitochondrial mRNAs. Overall, our findings reveal a unique translation control mechanism for mitochondrial adaptations in AML pathogenesis and provide a potential strategy for targeting this vulnerability of LSCs.
Collapse
Affiliation(s)
- Guoqiang Han
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Manman Cui
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pengbo Lu
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kexin Gao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Weidong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuxin Yao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ziyan Cao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanbing Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wen Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Min Shen
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Zhao
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangpeng Lin
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Zhang
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Haojian Zhang
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; RNA Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
30
|
Sun Y, Pang Y, Wu X, Zhu R, Wang L, Tian M, He X, Liu D, Yang X. Landscape of alternative splicing and polyadenylation during growth and development of muscles in pigs. Commun Biol 2024; 7:1607. [PMID: 39627472 PMCID: PMC11614907 DOI: 10.1038/s42003-024-07332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Alternative polyadenylation (APA) is emerging as a post-transcriptional regulatory mechanism, similar as that of alternative splicing (AS), and plays a prominent role in regulating gene expression and increasing the complexity of the transcriptome and proteome. We use polyadenylation selected long-read isoform sequencing to obtain full-length transcript sequences in porcine muscles at five developmental stages. We identify numerous novel transcripts unannotated in the existing pig genome, including transcripts mapping to known and unknown gene loci, and widespread transcript diversity in porcine muscles. The top 100 most isoformic genes are mainly enriched in Gene Ontology terms related to muscle growth and development. It is revealed that intron retention/exon inclusion and the usage of distal polyadenylation site (PAS) are associated with ageing through analyzing changes of AS and PAS during muscle development. We also identify developmental changes in major transcripts and major PASs. Furthermore, genes/transcripts important for muscle development are identified. The results confirm the importance of AS and APA in pig muscles, substantially increasing transcriptional diversity and showing an important mechanism underlying gene regulation in muscles.
Collapse
Affiliation(s)
- Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
31
|
Gummadi ASC, Muppa DK, Yella VR. Dissecting non-B DNA structural motifs in untranslated regions of eukaryotic genomes. Genomics Inform 2024; 22:25. [PMID: 39605082 PMCID: PMC11603647 DOI: 10.1186/s44342-024-00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The untranslated regions (UTRs) of genes significantly impact various biological processes, including transcription, posttranscriptional control, mRNA stability, localization, and translation efficiency. In functional areas of genomes, non-B DNA structures such as cruciform, curved, triplex, G-quadruplex, and Z-DNA structures are common and have an impact on cellular physiology. Although the role of these structures in cis-regulatory regions such as promoters is well established in eukaryotic genomes, their prevalence within UTRs across different eukaryotic classes has not been extensively documented. Our study investigated the prevalence of various non-B DNA motifs within the 5' and 3' UTRs across diverse eukaryotic species. Our comparative analysis encompassed the 5'-UTRs and 3'UTRs of 360 species representing diverse eukaryotic domains of life, including Arthropoda (Diptera, Hemiptera, and Hymenoptera), Chordata (Artiodactyla, Carnivora, Galliformes, Passeriformes, Primates, Rodentia, Squamata, Testudines), Magnoliophyta (Brassicales), Fabales (Poales), and Nematoda (Rhabditida), on the basis of datasets derived from the UTRdb. We observed that species belonging to taxonomic orders such as Rhabditida, Diptera, Brassicales, and Hemiptera present a prevalence of curved DNA motifs in their UTRs, whereas orders such as Testudines, Galliformes, and Rodentia present a preponderance of G-quadruplexes in both UTRs. The distribution of motifs is conserved across different taxonomic classes, although species-specific variations in motif preferences were also observed. Our research unequivocally illuminates the prevalence and potential functional implications of non-B DNA motifs, offering invaluable insights into the evolutionary and biological significance of these structures.
Collapse
Affiliation(s)
- Aruna Sesha Chandrika Gummadi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Divya Kumari Muppa
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Venakata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
32
|
Hueso M, Mallén A, Navarro E. Generation of Transcript Length Variants and Reprogramming of mRNA Splicing During Atherosclerosis Progression in ApoE-Deficient Mice. Biomedicines 2024; 12:2703. [PMID: 39767610 PMCID: PMC11672872 DOI: 10.3390/biomedicines12122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background. Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Objective. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control. Methods. We gathered microarray mRNA expression data from the aortas of mice after 2 or 16 weeks of treatments, and used these data in a Bioinformatics analysis. Results. Here, we report the lengthening of the 5'UTR/3'UTRs and the shortening of the CDS in downregulated mRNAs during ATS progression. Furthermore, treatment with the αCD40-specific siRNA resulted in the partial reversion of the 3'UTR lengthening. Exon analysis showed that these length variations were actually due to changes in the number of exons embedded in mRNAs, and the further examination of transcripts co-expressed at weeks 2 and 16 in mice treated with the control siRNA revealed a process of mRNA isoform switching in which transcript variants differed in the patterns of alternative splicing or activated latent/cryptic splice sites. Conclusion. We document length variations in the 5'UTR/3'UTR and CDS of mRNAs downregulated during atherosclerosis progression and suggest a role for mRNA splicing reprogramming and transcript isoform switching in the generation of disease-related mRNA sequence diversity and variability.
Collapse
Affiliation(s)
- Miguel Hueso
- Experimental Nephrology Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Department of Nephrology, Hospital Universitari and Bellvitge, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adrián Mallén
- Experimental Nephrology Lab, Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Estanis Navarro
- REMAR Group, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain
| |
Collapse
|
33
|
Sousa B, Bessa M, de Mendonça FL, Ferreira PG, Moreira A, Pereira-Castro I. APAtizer: a tool for alternative polyadenylation analysis of RNA-Seq data. Bioinformatics 2024; 40:btae689. [PMID: 39558592 PMCID: PMC11601165 DOI: 10.1093/bioinformatics/btae689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
SUMMARY APAtizer is a tool designed to analyze alternative polyadenylation events on RNA-sequencing data. The tool handles different file formats, including BAM, htseq, and DaPars bedGraph files. It provides a user-friendly interface that allows users to generate informative visualizations, including Volcano plots, heatmaps, and gene lists. These outputs allow the user to retrieve useful biological insights such as the occurrence of polyadenylation events when comparing two biological conditions. In addition, it can perform differential gene expression, gene ontology analysis, visualization of Venn diagram intersections, and correlation analysis. AVAILABILITY AND IMPLEMENTATION Source code and example case studies for APAtizer are available at https://github.com/GeneRegulationi3S/APAtizer/.
Collapse
Affiliation(s)
- Bruno Sousa
- Gene Regulation Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
- FCUP—Faculdade de Ciências, Universidade do Porto, Porto, 4169-007, Portugal
| | - Maria Bessa
- Gene Regulation Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
| | - Filipa L de Mendonça
- Gene Regulation Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
| | - Pedro G Ferreira
- FCUP—Faculdade de Ciências, Universidade do Porto, Porto, 4169-007, Portugal
- Laboratory of Artificial Intelligence and Decision Support, Institute for Systems and Computer Engineering Technology and Science, Porto, 4200-465, Portugal
| | - Alexandra Moreira
- Gene Regulation Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Isabel Pereira-Castro
- Gene Regulation Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
34
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
35
|
Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber. Genome Biol 2024; 25:252. [PMID: 39358737 PMCID: PMC11445940 DOI: 10.1186/s13059-024-03402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Powdery mildew is a disease with one of the most substantial impacts on cucumber production globally. The most efficient approach for controlling powdery mildew is the development of genetic resistance; however, few genes associated with inherent variations in cucumber powdery mildew resistance have been identified as of yet. RESULTS In this study, we re-sequence 299 cucumber accessions, which are divided into four geographical groups. A genome-wide association study identifies 50 sites significantly associated with natural variations in powdery mildew resistance. Linkage disequilibrium analysis further divides these 50 sites into 32 linkage disequilibrium blocks containing 41 putative genes. Virus-induced gene silencing and gene expression analysis implicate CsGy5G015960, which encodes a phosphate transporter, as the candidate gene regulating powdery mildew resistance. On the basis of the resequencing data, we generate five CsGy5G015960 haplotypes, identifying Hap.1 as the haplotype most likely associated with powdery mildew resistance. In addition, we determine that a 29-bp InDel in the 3' untranslated region of CsGy5G015960 is responsible for mRNA stability. Overexpression of CsGy5G015960Hap.1 in the susceptible line enhances powdery mildew resistance and phosphorus accumulation. Further comparative RNA-seq analysis demonstrates that CsGy5G015960Hap.1 may regulate cucumber powdery mildew resistance by maintaining a higher H2O2 level through the depletion of multiple class III peroxidases. CONCLUSIONS Here we identify a candidate powdery mildew-resistant gene in cucumber using GWAS. The identified gene may be a promising target for molecular breeding and genetic engineering in cucumber to enhance powdery mildew resistance.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yujiao Du
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Suhao Li
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Tan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xueli Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaodong Yang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
36
|
Oztepe T, Sahin FI, Yilmaz AC, Baskin E, Haberal M, Terzi YK. Determination of the Frequency of BCL-2 Polymorphisms (c.-717C>A and c.*2364G>A) and LIF Polymorphism (c.*1414T>G) in Patients with Congenital Anomalies of the Kidney and Urinary Tract. Mol Syndromol 2024; 15:371-379. [PMID: 39359948 PMCID: PMC11444711 DOI: 10.1159/000538653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/31/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are characterized by several malformations. Its prevalence is 0.3-0.6% in live births. The B-cell lymphoma (BCL-2) gene regulates apoptosis, and the Leukemia Inhibitory Factor (LIF) gene plays a role in many biological processes, such as blastocyst growth and uterine preparation for implantation. In this study, two single nucleotide polymorphisms (SNPs) of the BCL-2 gene (rs2279115 and rs4987856) and one SNP of the LIF gene (rs929271) were investigated in CAKUT patients for the first time. Methods Hundred and twenty-nine CAKUT patients and 105 controls were enrolled in this study. We used polymerase chain reaction-restriction fragment length polymorphism for rs2279115 and rs929271 and SNaPshot for rs4987856. The χ2 test was used to compare discrete variables, and the independent sample t test was used to compare continuous variables. Results The allele frequencies for the rs2279115 and rs4987856 polymorphisms of BCL-2 and the rs929271 polymorphism of LIF were not significantly different between the patient and control groups (p = 0.162, p = 0.053, p = 0.635, respectively). However, the co-segregation analysis revealed a significant difference in the distribution of allele frequencies between the patient and control groups for two genetic variations: LIF rs929271 SNP and BCL-2 rs4987856 SNP (p = 0.034). The relative odds ratio was 2.444 (95% Confidence Interval (CI) 1.054-5.671). Conclusion This study, which is the first time in the literature, showed that changes in BCL-2 and LIF genes are associated with CAKUT disease.
Collapse
Affiliation(s)
- Tugce Oztepe
- Department of Medical Genetics, Baskent University, Ankara, Turkey
| | | | | | - Esra Baskin
- Department of Pediatric Nephrology, Baskent University, Ankara, Turkey
| | - Mehmet Haberal
- Division of Transplantation, Department of Surgery, Baskent University, Ankara, Turkey
| | | |
Collapse
|
37
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614981. [PMID: 39386702 PMCID: PMC11463612 DOI: 10.1101/2024.09.25.614981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins (RBPs), which can modulate the fate of the RNA molecules from transcription to degradation. Vice versa, RNA can regulate the interactions and functions of the associated proteins. Dysregulation of RBPs is linked to diseases such as cancer and neurological disorders. RNA and RBPs are present in mitotic structures like the centrosomes and spindle microtubules, but their influence on mitotic spindle integrity remains unknown. Thus, we applied the R-DeeP strategy for the proteome-wide identification of RNA-dependent proteins and complexes to cells synchronized in mitosis versus interphase. The resulting atlas of RNA-dependent proteins in cell division can be accessed through the R-DeeP 3.0 database (R-DeeP3.dkfz.de). It revealed key mitotic factors as RNA-dependent such as AURKA, KIFC1 and TPX2 that were linked to RNA despite their lack of canonical RNA-binding domains. KIFC1 was identified as a new interaction partner and phosphorylation substrate of AURKA at S349 and T359. In addition, KIFC1 interacted with both, AURKA and TPX2, in an RNA-dependent manner. Our data suggest a riboregulation of mitotic protein-protein interactions during spindle assembly, offering new perspectives on the control of cell division processes by RNA-protein complexes.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
38
|
Hsu CH, Hong SF, Lo YS, Ho HY, Lin CC, Chuang YC, Hsieh MJ, Chou MC. The Role of Ryanodine Receptor 2 Polymorphisms in Oral Squamous Cell Carcinoma Susceptibility and Clinicopathological Features. Int J Mol Sci 2024; 25:10328. [PMID: 39408657 PMCID: PMC11476886 DOI: 10.3390/ijms251910328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and oral squamous cell carcinoma (OSCC) is one of the most common types. There is strong evidence that ryanodine receptor 2 (RYR2) plays an important role in different types of cancer according to previous studies. Its expression is associated with survival in patients with HNSCC, but it is unknown whether altered RYR2 expression contributes to tumorigenesis. Therefore, we examined how RYR2 polymorphisms affect OSCC susceptibility and clinicopathological characteristics. Five single nucleotide polymorphisms (SNPs) of RYR2, rs12594, rs16835904, rs2779359, rs3765097, and rs3820216, were analyzed in 562 cases of OSCC and 332 healthy controls using real-time PCR. We demonstrated that RYR2 SNP rs12594 was significantly different between the case and control groups, but this difference was not significant after adjusting for personal habits. In contrast, we found that different genotypes of SNP rs2779359 were significantly associated with the characteristics of clinical stage and tumor size in OSCC patients, according to the odds ratios and the adjusted odds ratios; specifically, patients with the T genotype had 1.477-fold (95% CI, 1.043 to 2.091; p = 0.028) and 1.533-fold (95% CI, 1.087-2.162; p = 0.015) increases in clinical stage and tumor size, respectively, compared with patients with the C allele. The results of our study, in which RYR2 SNPs associated with OSCC progression and development were examined for the first time, suggest that clinicopathological characteristics may alter OSCC susceptibility. Finally, RYR2 SNP rs2779359 not only plays a role in both the prognosis and diagnosis of oral cancer but is also likely an important predictive factor for recurrence, response to treatment, and medication toxicity.
Collapse
Affiliation(s)
- Ching-Hui Hsu
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - San-Fu Hong
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
39
|
Foyt D, Brown D, Zhou S, Huang B. HybriSeq: Probe-based Device-free Single-cell RNA Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559406. [PMID: 37808850 PMCID: PMC10557710 DOI: 10.1101/2023.09.27.559406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We have developed the HybriSeq method for single-cell RNA profiling, which utilizes in situ hybridization of multiple probes for targeted transcripts, followed by split-pool barcoding and sequencing analysis of the probes. We have shown that HybriSeq can achieve high sensitivity for RNA detection with multiple probes and profile differential splicing. The utility of HybriSeq is demonstrated in characterizing cell-to-cell heterogeneities of a panel of 95 cell-cycle-related genes and the detection of misannotated transcripts.
Collapse
Affiliation(s)
- Daniel Foyt
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Shuqin Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94143, United States of America
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, 94158, United States of America
| |
Collapse
|
40
|
Arumugam T, Adimulam T, Gokul A, Ramsuran V. Variation within the non-coding genome influences genetic and epigenetic regulation of the human leukocyte antigen genes. Front Immunol 2024; 15:1422834. [PMID: 39355248 PMCID: PMC11442197 DOI: 10.3389/fimmu.2024.1422834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Variation within the non-coding genome may influence the regulation and expression of important genes involved in immune control such as the human leukocyte antigen (HLA) system. Class I and Class II HLA molecules are essential for peptide presentation which is required for T lymphocyte activation. Single nucleotide polymorphisms within non-coding regions of HLA Class I and Class II genes may influence the expression of these genes by affecting the binding of transcription factors and chromatin modeling molecules. Furthermore, an interplay between genetic and epigenetic factors may also influence HLA expression. Epigenetic factors such as DNA methylation and non-coding RNA, regulate gene expression without changing the DNA sequence. However, genetic variation may promote or allow genes to escape regulation by epigenetic factors, resulting in altered expression. The HLA system is central to most diseases, therefore, understanding the role of genetics and epigenetics on HLA regulation will tremendously impact healthcare. The knowledge gained from these studies may lead to novel and cost-effective diagnostic approaches and therapeutic interventions. This review discusses the role of non-coding variants on HLA regulation. Furthermore, we discuss the interplay between genetic and epigenetic factors on the regulation of HLA by evaluating literature based on polymorphisms within DNA methylation and miRNA regulatory sites within class I and Class II HLA genes. We also provide insight into the importance of the HLA non-coding genome on disease, discuss ethnic-specific differences across the HLA region and provide guidelines for future HLA studies.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Anmol Gokul
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
41
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Shen R, Yao Q, Tan X, Ren W, Zhong D, Zhang X, Li X, Dong C, Cao X, Tian Y, Zhu JK, Lu Y. In-locus gene silencing in plants using genome editing. THE NEW PHYTOLOGIST 2024; 243:2501-2511. [PMID: 38798233 DOI: 10.1111/nph.19856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Gene silencing is crucial in crop breeding for desired trait development. RNA interference (RNAi) has been used widely but is limited by ectopic expression of transgenes and genetic instability. Introducing an upstream start codon (uATG) into the 5'untranslated region (5'UTR) of a target gene may 'silence' the target gene by inhibiting protein translation from the primary start codon (pATG). Here, we report an efficient gene silencing method by introducing a tailor-designed uATG-containing element (ATGE) into the 5'UTR of genes in plants, occupying the original start site to act as a new pATG. Using base editing to introduce new uATGs failed to silence two of the tested three rice genes, indicating complex regulatory mechanisms. Precisely inserting an ATGE adjacent to pATG achieved significant target protein downregulation. Through extensive optimization, we demonstrated this strategy substantially and consistently downregulated target protein expression. By designing a bidirectional multifunctional ATGE4, we enabled tunable knockdown from 19% to 89% and observed expected phenotypes. Introducing ATGE into Waxy, which regulates starch synthesis, generated grains with lower amylose, revealing the value for crop breeding. Together, we have developed a programmable and robust method to knock down gene expression in plants, with potential for biological mechanism exploration and crop enhancement.
Collapse
Affiliation(s)
- Rundong Shen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572024, China
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qi Yao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xinhang Tan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Wendan Ren
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dating Zhong
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xuening Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinbo Li
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572024, China
| | - Chao Dong
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572024, China
| | - Xuesong Cao
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yifu Tian
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572024, China
| | - Jian-Kang Zhu
- Institute of Crop Sciences/National Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), and Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Sanya, 572024, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuming Lu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
43
|
Liu X, Xie H, Liu W, Zuo J, Li S, Tian Y, Zhao J, Bai M, Li J, Bao L, Han J, Zhang ZC. Dynamic regulation of alternative polyadenylation by PQBP1 during neurogenesis. Cell Rep 2024; 43:114525. [PMID: 39037895 DOI: 10.1016/j.celrep.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Alternative polyadenylation (APA) is a critical post-transcriptional process that generates mRNA isoforms with distinct 3' untranslated regions (3' UTRs), thereby regulating mRNA localization, stability, and translational efficiency. Cell-type-specific APA extensively shapes the diversity of the cellular transcriptome, particularly during cell fate transition. Despite its recognized significance, the precise regulatory mechanisms governing cell-type-specific APA remain unclear. In this study, we uncover PQBP1 as an emerging APA regulator that actively maintains cell-specific APA profiles in neural progenitor cells (NPCs) and delicately manages the equilibrium between NPC proliferation and differentiation. Multi-omics analysis shows that PQBP1 directly interacts with the upstream UGUA elements, impeding the recruitment of the CFIm complex and influencing polyadenylation site selection within genes associated with the cell cycle. Our findings elucidate the molecular mechanism by which PQBP1 orchestrates dynamic APA changes during neurogenesis, providing valuable insights into the precise regulation of cell-type-specific APA and the underlying pathogenic mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xian Liu
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Hao Xie
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Wenhua Liu
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Jian Zuo
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Song Li
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China
| | | | - Meizhu Bai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junhai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| | - Zi Chao Zhang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210096, China.
| |
Collapse
|
44
|
Akhtar MN, Singh A, Manjunath LE, Dey D, Kumar SD, Vasu K, Das A, Eswarappa SM. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J Cell Sci 2024; 137:jcs261921. [PMID: 39140134 PMCID: PMC11385324 DOI: 10.1242/jcs.261921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
FEM1B is a substrate-recognition component of the CRL2 E3 ubiquitin-protein ligase. This multi-protein complex targets specific proteins for ubiquitylation, which leads to their degradation. Here, we demonstrate the regulation of FEM1B expression by stop codon readthrough (SCR). In this process, translating ribosomes readthrough the stop codon of FEM1B to generate a C-terminally extended isoform that is highly unstable. A total of 81 nucleotides in the proximal 3'UTR of FEM1B constitute the necessary and sufficient cis-signal for SCR. Also, they encode the amino acid sequence responsible for the degradation of the SCR product. CRISPR-edited cells lacking this region, and therefore SCR of FEM1B, showed increased FEM1B expression. This in turn resulted in reduced expression of SLBP (a target of FEM1B-mediated degradation) and replication-dependent histones (target of SLBP for mRNA stability), causing cell cycle delay. Evolutionary analysis revealed that this phenomenon is specific to the genus Pan and Homo (Hominini). Overall, we show a relatively recently evolved SCR process that relieves the cell cycle from the negative regulation by FEM1B.
Collapse
Affiliation(s)
- Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Lekha E. Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruba Dey
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sangeetha Devi Kumar
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Arpan Das
- Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Sandeep M. Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
45
|
Guo X, Ping J, Yang Y, Su X, Shu XO, Wen W, Chen Z, Zhang Y, Tao R, Jia G, He J, Cai Q, Zhang Q, Giles GG, Pearlman R, Rennert G, Vodicka P, Phipps A, Gruber SB, Casey G, Peters U, Long J, Lin W, Zheng W. Large-Scale Alternative Polyadenylation-Wide Association Studies to Identify Putative Cancer Susceptibility Genes. Cancer Res 2024; 84:2707-2719. [PMID: 38759092 PMCID: PMC11326986 DOI: 10.1158/0008-5472.can-24-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Alternative polyadenylation (APA) modulates mRNA processing in the 3'-untranslated regions (3' UTR), affecting mRNA stability and translation efficiency. Research into genetically regulated APA has the potential to provide insights into cancer risk. In this study, we conducted large APA-wide association studies to investigate associations between APA levels and cancer risk. Genetic models were built to predict APA levels in multiple tissues using genotype and RNA sequencing data from 1,337 samples from the Genotype-Tissue Expression project. Associations of genetically predicted APA levels with cancer risk were assessed by applying the prediction models to data from large genome-wide association studies of six common cancers among European ancestry populations: breast, ovarian, prostate, colorectal, lung, and pancreatic cancers. A total of 58 risk genes (corresponding to 76 APA sites) were associated with at least one type of cancer, including 25 genes previously not linked to cancer susceptibility. Of the identified risk APAs, 97.4% and 26.3% were supported by 3'-UTR APA quantitative trait loci and colocalization analyses, respectively. Luciferase reporter assays for four selected putative regulatory 3'-UTR variants demonstrated that the risk alleles of 3'-UTR variants, rs324015 (STAT6), rs2280503 (DIP2B), rs1128450 (FBXO38), and rs145220637 (LDHA), significantly increased the posttranscriptional activities of their target genes compared with reference alleles. Furthermore, knockdown of the target genes confirmed their ability to promote proliferation and migration. Overall, this study provides insights into the role of APA in the genetic susceptibility to common cancers. Significance: Systematic evaluation of associations of alternative polyadenylation with cancer risk reveals 58 putative susceptibility genes, highlighting the contribution of genetically regulated alternative polyadenylation of 3'UTRs to genetic susceptibility to cancer.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Yaohua Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia
| | - Xinwan Su
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Xiao-ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Yunjing Zhang
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Ran Tao
- Department of Biostatistics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Jingni He
- Department of Biochemistry and Molecular Biology & Medical Genetics, University of Calgary, Calgary, Canada
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Qingrun Zhang
- Department of Mathematics and Statistics, Alberta Children’s Hospital Research Institute, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; and Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Amanda Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Stephen B Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Weiqiang Lin
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| |
Collapse
|
46
|
Shu X, Chen Z, Zheng X, Hua G, Zhuang W, Zhang J, Chen J. Quail GHRL and LEAP2 gene cloning, polymorphism detection, phylogenetic analysis, tissue expression profiling and its association analysis with feed intake. Gene 2024; 918:148479. [PMID: 38636815 DOI: 10.1016/j.gene.2024.148479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The GHRL, LEAP2, and GHSR system have recently been identified as important regulators of feed intake in mammals and chickens. However, the complete cloning of the quail GHRL (qGHRL) and quail LEAP2 (qLEAP2) genes, as well as their association with feed intake, remains unclear. This study cloned the entire qGHRL and qLEAP2 cDNA sequence in Chinese yellow quail (Coturnix japonica), including the 5' and 3' untranslated regions. Sanger sequencing analysis revealed no missense mutations in the coding region of qGHRL and qLEAP2. Subsequently, phylogenetic analysis and protein homology alignment were conducted on the qGHRL and qLEAP2 in major poultry species. The findings of this research indicated that the qGHRL and qLEAP2 sequences exhibit a high degree of similarity with those of chicken and turkey. Specifically, the N-terminal 6 amino acids of GHRL mature peptides and all the mature peptide sequence of LEAP2 exhibited consistent patterns across all species examined. The analysis of tissue gene expression profiles indicated that qGHRL was primarily expressed in the proventriculus and brain tissue, whereas qLEAP2 exhibited higher expression levels in the intestinal tissue, kidney, and liver tissue, differing slightly from previous studies conducted on chicken. It is necessary to investigate the significance of elevated expression of qGHRL in brain and qLEAP2 in kidney in the future. Further research has shown that the expression of qLEAP2 can quickly respond to changes in different energy states, whereas qGHRL does not exhibit the same capability. Overall, this study successfully cloned the complete cDNA sequences of qGHRL and qLEAP2, and conducted a comprehensive examination of their tissue expression profiles and gene expression levels in the main expressing organs across different energy states. Our current findings suggested that qLEAP2 is highly expressed in the liver, intestine, and kidney, and its expression level is regulated by feed intake.
Collapse
Affiliation(s)
- Xin Shu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China.
| |
Collapse
|
47
|
Kerkhofs K, Guydosh NR, Bayfield MA. Respiratory Syncytial Virus (RSV) optimizes the translational landscape during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606199. [PMID: 39131278 PMCID: PMC11312563 DOI: 10.1101/2024.08.02.606199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Viral infection often triggers eukaryotic initiator factor 2α (eIF2α) phosphorylation, leading to global 5'-cap-dependent translation inhibition. RSV encodes messenger RNAs (mRNAs) mimicking 5'-cap structures of host mRNAs and thus inhibition of cap-dependent translation initiation would likely also reduce viral translation. We confirmed that RSV limits widespread translation initiation inhibition and unexpectedly found that the fraction of ribosomes within polysomes increases during infection, indicating higher ribosome loading on mRNAs during infection. We found that AU-rich host transcripts that are less efficiently translated under normal conditions become more efficient at recruiting ribosomes, similar to RSV transcripts. Viral transcripts are transcribed in cytoplasmic inclusion bodies, where the viral AU-rich binding protein M2-1 has been shown to bind viral transcripts and shuttle them into the cytoplasm. We further demonstrated that M2-1 is found on polysomes, and that M2-1 might deliver host AU-rich transcripts for translation.
Collapse
Affiliation(s)
- Kyra Kerkhofs
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| | - Nicholas R. Guydosh
- Section on mRNA Regulation and Translation, Laboratory of Biochemistry & Genetics. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A. Bayfield
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| |
Collapse
|
48
|
Iyengar BR, Grandchamp A, Bornberg-Bauer E. How antisense transcripts can evolve to encode novel proteins. Nat Commun 2024; 15:6187. [PMID: 39043684 PMCID: PMC11266595 DOI: 10.1038/s41467-024-50550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Protein coding features can emerge de novo in non coding transcripts, resulting in emergence of new protein coding genes. Studies across many species show that a large fraction of evolutionarily novel non-coding RNAs have an antisense overlap with protein coding genes. The open reading frames (ORFs) in these antisense RNAs could also overlap with existing ORFs. In this study, we investigate how the evolution an ORF could be constrained by its overlap with an existing ORF in three different reading frames. Using a combination of mathematical modeling and genome/transcriptome data analysis in two different model organisms, we show that antisense overlap can increase the likelihood of ORF emergence and reduce the likelihood of ORF loss, especially in one of the three reading frames. In addition to rationalising the repeatedly reported prevalence of de novo emerged genes in antisense transcripts, our work also provides a generic modeling and an analytical framework that can be used to understand evolution of antisense genes.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany.
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany
- Aix-Marseille Université, INSERM, TAGC, Marseille, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen, Germany
| |
Collapse
|
49
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
50
|
Spealman P, de Santana C, De T, Gresham D. Multilevel gene expression changes in lineages containing adaptive copy number variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563336. [PMID: 37961325 PMCID: PMC10634702 DOI: 10.1101/2023.10.20.563336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Copy-number variants (CNVs) are an important class of recurrent variants that mediate adaptive evolution. While CNVs can increase the relative fitness of the organism, they can also incur a cost. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus. To understand the role that expression plays in adaptation, both in relation to the adaptation of the organism to the selective condition, and as a consequence of the CNV, we measured the transcriptome, translatome, and proteome of 4 strains of evolved yeast, each with a unique CNV, and their ancestor in Gln- conditions. We find CNV-amplified genes correlate with higher RNA abundance; however, this effect is reduced at the level of the proteome, consistent with post-transcriptional dosage compensation. By normalizing each level of expression by the abundance of the preceding step we were able to identify widespread divergence in the efficiency of each step in the gene in the efficiency of each step in gene expression. Genes with significantly different translational efficiency were enriched for potential regulatory mechanisms including either upstream open reading frames, RNA binding sites for SSD1, or both. Genes with lower protein expression efficiency were enriched for genes encoding proteins in protein complexes. Taken together, our study reveals widespread changes in gene expression at multiple regulatory levels in lineages containing adaptive CNVs highlighting the diverse ways in which adaptive evolution shapes gene expression.
Collapse
Affiliation(s)
- Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - Carolina de Santana
- Laboratório de Microbiologia Ambiental e Saúde Pública - Universidade Estadual de Feira de Santana (UEFS), Bahia
| | - Titir De
- Center for Genomics and Systems Biology, Department of Biology, New York University
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University
| |
Collapse
|