1
|
Sun S, Li S, Seim I, Du X, Yang X, Liu K, Wei Z, Shao C, Fan G, Liu X. Complete mitogenomes reveal high diversity and recent population dynamics in Antarctic krill. BMC Genomics 2025; 26:419. [PMID: 40301719 PMCID: PMC12039093 DOI: 10.1186/s12864-025-11579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The Antarctic krill (Euphausia superba) is a keystone species in the Southern Ocean ecosystem, influencing food web dynamics and ecosystem functionality. Despite its ecological importance, further exploration is essential to understand their population dynamics. RESULTS In this study, we present the complete mitogenome of the Antarctic krill. The assembly is 18,926 bp, including a notably large 3,952 bp control region (CR). The CR features a satellite repeat spanning 2,289 bp, showcasing the effectiveness of long-read sequencing in resolving complex genomic regions. Additionally, we identified 900 nuclear-mitochondrial segments (NUMTs) totaling 2.79 Mb, shedding light on the dynamic integration of mitochondrial DNA (mtDNA) into the nuclear genomes. By establishing a dataset comprising 80 krill mitogenomes, we unveil substantial mitochondrial diversity, particularly within the ND4 gene. While our analysis reveals no significant differentiation among four geographically distinct groups, we identify at least four maternal genetic clusters. Haplotype network analysis and demographic reconstructions suggest a recent population expansion, likely driven by favorable environmental conditions during the late Pleistocene. Furthermore, our investigation into selection pressures on mitochondrial genes reveals evidence of purifying selection across all 13 protein-coding genes, underscoring the pivotal role of mtDNA conservation in maintaining mitochondrial function under extreme environments. CONCLUSIONS This study provides a repository of Antarctic krill mitogenomes and insights into the population genetics and evolutionary history of this ecologically important species from a mitogenomic perspective, with implications for krill conservation and management in the Southern Ocean.
Collapse
Affiliation(s)
- Shuai Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xiao Du
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Xianwei Yang
- BGI Research, Qingdao, 266555, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhanfei Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
2
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Guerin MN, Ellis TS, Ware MJ, Manning A, Coley AA, Amini A, Igboanugo AG, Rothrock AP, Chung G, Gunsalus KC, Bracht JR. Evolution of a biological thermocouple by adaptation of cytochrome c oxidase in a subterrestrial metazoan, Halicephalobus mephisto. Commun Biol 2024; 7:1214. [PMID: 39342021 PMCID: PMC11439043 DOI: 10.1038/s42003-024-06886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
In this study, we report a biological temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the complete mitochondrial genome sequence of this organism and show through dN/dS analysis evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively selected amino acid substitutions were located in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase completely shuts down at low temperatures (20 °C), leading to a 4.8-fold reduction in the transmembrane proton gradient (ΔΨm) compared to optimal temperature (37 °C). Direct measurement of oxygen consumption found a corresponding 4.6-fold drop at 20 °C compared to 37 °C. Correspondingly, the lifecycle of H. mephisto takes four times longer at low temperature than at higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success across varying environmental temperatures.
Collapse
Affiliation(s)
- Megan N Guerin
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - TreVaughn S Ellis
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Mark J Ware
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Alexandra Manning
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ariana A Coley
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Ali Amini
- Mathematics and Statistics Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Adaeze G Igboanugo
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - Amaya P Rothrock
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA
| | - George Chung
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology and Department of Biology, New York University, New York, NY, 10003, USA
| | - John R Bracht
- Biology Department, American University, 4400 Massachusetts Avenue, NW, Washington, DC, 20016, USA.
| |
Collapse
|
4
|
Papadea P, Larsson NG. Older age reduces mtDNA mutation inheritance. NATURE AGING 2024; 4:1174-1176. [PMID: 39232112 DOI: 10.1038/s43587-024-00701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Affiliation(s)
- Polyxeni Papadea
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Árnadóttir ER, Moore KHS, Guðmundsdóttir VB, Ebenesersdóttir SS, Guity K, Jónsson H, Stefánsson K, Helgason A. The rate and nature of mitochondrial DNA mutations in human pedigrees. Cell 2024; 187:3904-3918.e8. [PMID: 38851187 DOI: 10.1016/j.cell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.
Collapse
Affiliation(s)
| | | | - Valdís B Guðmundsdóttir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Kamran Guity
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
6
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
7
|
Guerin MN, Ellis T, Ware MJ, Manning A, Coley A, Amini A, Chung G, Gunsalus KC, Bracht JR. Evolution of a biological thermocouple by adaptation of cytochrome c oxidase in a subterrestrial metazoan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570156. [PMID: 38106155 PMCID: PMC10723328 DOI: 10.1101/2023.12.05.570156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In this study we report a naturally evolved temperature-sensing electrical regulator in the cytochrome c oxidase of the Devil Worm, Halicephalobus mephisto. This extremophile metazoan was isolated 1.3 km underground in a South African goldmine, where it adapted to heat and potentially to hypoxia, making its mitochondrial sequence a likely target of adaptational change. We obtained the full mitochondrial genome sequence of this organism, and show through dN/dS analysis statistically robust evidence of positive selection in H. mephisto cytochrome c oxidase subunits. Seventeen of these positively-selected amino acid substitutions were localized in proximity to the H- and K-pathway proton channels of the complex. Surprisingly, the H. mephisto cytochrome c oxidase proton pump completely shuts down at low temperatures (20°C) leading to approximately a 4.8-fold reduction in the transmembrane proton gradient voltage (ΔΨm) compared to optimal temperature (37°C). Direct measurement of oxygen consumption found a corresponding 4.7-fold drop at 20°C compared to 37°C. Correspondingly, the lifecycle of H. mephisto takes four-fold longer at the low temperature compared to higher. This elegant evolutionary adaptation creates a finely-tuned mitochondrial temperature sensor, allowing this ectothermic organism to maximize its reproductive success in varying environmental temperatures. Our study shows that evolutionary innovation may remodel core metabolism to make it more accurately map onto environmental variation.
Collapse
Affiliation(s)
- Megan N Guerin
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - TreVaughn Ellis
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Mark J Ware
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Alexandra Manning
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Ariana Coley
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - Ali Amini
- American University Mathematics and Statistics Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| | - George Chung
- New York University, Center for Genomics and Systems Biology, New York, NY 10003
| | - Kristin C Gunsalus
- New York University, Center for Genomics and Systems Biology, New York, NY 10003
| | - John R Bracht
- American University Biology Department, 4400 Massachusetts Avenue, NW, Washington, DC, United States, 20016
| |
Collapse
|
8
|
Onieva A, Martin J, R Cuesta-Aguirre D, Planells V, Coronado-Zamora M, Beyer K, Vega T, Lozano JE, Santos C, Aluja MP. Complete mitochondrial DNA profile in stroke: A geographical matched case-control study in Spanish population. Mitochondrion 2023; 73:51-61. [PMID: 37793469 DOI: 10.1016/j.mito.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Stroke, the second leading cause of death worldwide, is a complex disease influenced by many risk factors among which we can find reactive oxygen species (ROS). Since mitochondria are the main producers of cellular ROS, nowadays studies are trying to elucidate the role of these organelles and its DNA (mtDNA) variation in stroke risk. The aim of the present study was to perform a comprehensive evaluation of the association between mtDNA mutations and mtDNA content and stroke risk. MATERIAL AND METHODS Homoplasmic and heteroplasmic mutations of the mtDNA were analysed in a case-controls study using 110 S cases and their corresponding control individuals. Mitochondrial DNA copy number (mtDNA-CN) was analysed in 73 of those case-control pairs. RESULTS Our results suggest that haplogroup V, specifically variants m.72C > T, m.4580G > A, m.15904C > T and m.16298 T > C have a protective role in relation to stroke risk. On the contrary, variants m.73A > G, m.11719G > A and m.14766C > T appear to be genetic risk factors for stroke. In this study, we found no statistically significant association between stroke risk and mitochondrial DNA copy number. CONCLUSIONS These results demonstrate the possible role of mtDNA genetics on the pathogenesis of stroke, probably through alterations in mitochondrial ROS production.
Collapse
Affiliation(s)
- Ana Onieva
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Joan Martin
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel R Cuesta-Aguirre
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Violeta Planells
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Marta Coronado-Zamora
- Institut de Biotecnologia i Biomedicina; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona 08916 Barcelona, Spain
| | - Tomás Vega
- Dirección General de Salud Pública. Consejería de Sanidad. Junta de Castilla y León, 47007 Valladolid, Spain
| | - José Eugenio Lozano
- Dirección General de Salud Pública. Consejería de Sanidad. Junta de Castilla y León, 47007 Valladolid, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
9
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
10
|
Kremer LS, Bozhilova LV, Rubalcava-Gracia D, Filograna R, Upadhyay M, Koolmeister C, Chinnery PF, Larsson NG. A role for BCL2L13 and autophagy in germline purifying selection of mtDNA. PLoS Genet 2023; 19:e1010573. [PMID: 36608143 PMCID: PMC9851501 DOI: 10.1371/journal.pgen.1010573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Collapse
Affiliation(s)
- Laura S. Kremer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lyuba V. Bozhilova
- MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Diana Rubalcava-Gracia
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mamta Upadhyay
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F. Chinnery
- MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Palozzi JM, Jeedigunta SP, Minenkova AV, Monteiro VL, Thompson ZS, Lieber T, Hurd TR. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab 2022; 34:1809-1823.e6. [PMID: 36323236 DOI: 10.1016/j.cmet.2022.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.
Collapse
Affiliation(s)
- Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Vernon L Monteiro
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Zoe S Thompson
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Toby Lieber
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
12
|
Meshnik L, Bar-Yaacov D, Kasztan D, Neiger T, Cohen T, Kishner M, Valenci I, Dadon S, Klein CJ, Vance JM, Nevo Y, Züchner S, Ovadia O, Mishmar D, Ben-Zvi A. Mutant C. elegans mitofusin leads to selective removal of mtDNA heteroplasmic deletions across generations to maintain fitness. BMC Biol 2022; 20:40. [PMID: 35139855 PMCID: PMC8829988 DOI: 10.1186/s12915-022-01241-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) is present at high copy numbers in animal cells, and though characterized by a single haplotype in each individual due to maternal germline inheritance, deleterious mutations and intact mtDNA molecules frequently co-exist (heteroplasmy). A number of factors, such as replicative segregation, mitochondrial bottlenecks, and selection, may modulate the exitance of heteroplasmic mutations. Since such mutations may have pathological consequences, they likely survive and are inherited due to functional complementation via the intracellular mitochondrial network. Here, we hypothesized that compromised mitochondrial fusion would hamper such complementation, thereby affecting heteroplasmy inheritance. Results We assessed heteroplasmy levels in three Caenorhabditis elegans strains carrying different heteroplasmic mtDNA deletions (ΔmtDNA) in the background of mutant mitofusin (fzo-1). Animals displayed severe embryonic lethality and developmental delay. Strikingly, observed phenotypes were relieved during subsequent generations in association with complete loss of ΔmtDNA molecules. Moreover, deletion loss rates were negatively correlated with the size of mtDNA deletions, suggesting that mitochondrial fusion is essential and sensitive to the nature of the heteroplasmic mtDNA mutations. Introducing the ΔmtDNA into a fzo-1;pdr-1;+/ΔmtDNA (PARKIN ortholog) double mutant resulted in a skewed Mendelian progeny distribution, in contrast to the normal distribution in the fzo-1;+/ΔmtDNA mutant, and severely reduced brood size. Notably, the ΔmtDNA was lost across generations in association with improved phenotypes. Conclusions Taken together, our findings show that when mitochondrial fusion is compromised, deleterious heteroplasmic mutations cannot evade natural selection while inherited through generations. Moreover, our findings underline the importance of cross-talk between mitochondrial fusion and mitophagy in modulating the inheritance of mtDNA heteroplasmy. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01241-2.
Collapse
Affiliation(s)
- Lana Meshnik
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Bar-Yaacov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dana Kasztan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tali Neiger
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tal Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mor Kishner
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itay Valenci
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sara Dadon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Christopher J Klein
- Department of Neurology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jeffery M Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yoram Nevo
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, Petach Tikva, Israel
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ofer Ovadia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|