1
|
Shank B, Carloni JT, Geoghegan P, Fields DM, Goode AG, Walsh HJ, Wahle RA. Bridging the spawner-recruit disconnect II: Revealing basin-scale correlations between zooplankton and lobster settlement dynamics in the Gulf of Maine. FISHERIES RESEARCH 2024; 278:107082. [DOI: 10.1016/j.fishres.2024.107082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Feyrer LJ, Stanistreet JE, Moors-Murphy HB. Navigating the unknown: assessing anthropogenic threats to beaked whales, family Ziphiidae. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240058. [PMID: 38633351 PMCID: PMC11021932 DOI: 10.1098/rsos.240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
This review comprehensively evaluates the impacts of anthropogenic threats on beaked whales (Ziphiidae)-a taxonomic group characterized by cryptic biology, deep dives and remote offshore habitat, which have challenged direct scientific observation. By synthesizing information published in peer-reviewed studies and grey literature, we identified available evidence of impacts across 14 threats for each Ziphiidae species. Threats were assessed based on their pathways of effects on individuals, revealing many gaps in scientific understanding of the risks faced by beaked whales. By applying a comprehensive taxon-level analysis, we found evidence that all beaked whale species are affected by multiple stressors, with climate change, entanglement and plastic pollution being the most common threats documented across beaked whale species. Threats assessed as having a serious impact on individuals included whaling, military sonar, entanglement, depredation, vessel strikes, plastics and oil spills. This review emphasizes the urgent need for targeted research to address a range of uncertainties, including cumulative and population-level impacts. Understanding the evidence and pathways of the effects of stressors on individuals can support future assessments, guide practical mitigation strategies and advance current understanding of anthropogenic impacts on rare and elusive marine species.
Collapse
Affiliation(s)
- Laura J. Feyrer
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
- Department of Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Joy E. Stanistreet
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| | - Hilary B. Moors-Murphy
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| |
Collapse
|
3
|
Agarwal V, Chávez-Casillas J, Inomura K, Mouw CB. Patterns in the temporal complexity of global chlorophyll concentration. Nat Commun 2024; 15:1522. [PMID: 38374303 PMCID: PMC10876569 DOI: 10.1038/s41467-024-45976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Decades of research have relied on satellite-based estimates of chlorophyll-a concentration to identify oceanographic processes and plan in situ observational campaigns; however, the patterns of intrinsic temporal variation in chlorophyll-a concentration have not been investigated on a global scale. Here we develop a metric to quantify time series complexity (i.e., a measure of the ups and downs of sequential observations) in chlorophyll-a concentration and show that seemingly disparate regions (e.g., Atlantic vs Indian, equatorial vs subtropical) in the global ocean can be inherently similar. These patterns can be linked to the regularity of chlorophyll-a concentration change and the likelihood of anomalous events within the satellite record. Despite distinct spatial changes in decadal chlorophyll-a concentration, changes in time series complexity have been relatively consistent. This work provides different metrics for monitoring the global ocean and suggests that the complexity of chlorophyll-a time series can be independent of its magnitude.
Collapse
Affiliation(s)
- Vitul Agarwal
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| | - Jonathan Chávez-Casillas
- Department of Mathematics and Applied Mathematical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Colleen B Mouw
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| |
Collapse
|
4
|
Pearson HC, Savoca MS, Costa DP, Lomas MW, Molina R, Pershing AJ, Smith CR, Villaseñor-Derbez JC, Wing SR, Roman J. Whales in the carbon cycle: can recovery remove carbon dioxide? Trends Ecol Evol 2023; 38:238-249. [PMID: 36528413 DOI: 10.1016/j.tree.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
The great whales (baleen and sperm whales), through their massive size and wide distribution, influence ecosystem and carbon dynamics. Whales directly store carbon in their biomass and contribute to carbon export through sinking carcasses. Whale excreta may stimulate phytoplankton growth and capture atmospheric CO2; such indirect pathways represent the greatest potential for whale-carbon sequestration but are poorly understood. We quantify the carbon values of whales while recognizing the numerous ecosystem, cultural, and moral motivations to protect them. We also propose a framework to quantify the economic value of whale carbon as populations change over time. Finally, we suggest research to address key unknowns (e.g., bioavailability of whale-derived nutrients to phytoplankton, species- and region-specific variability in whale carbon contributions).
Collapse
Affiliation(s)
- Heidi C Pearson
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK, USA.
| | - Matthew S Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Michael W Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Renato Molina
- Rosenstiel School of Marine, Atmospheric, and Earth Science and Miami Herbert Business School, University of Miami, Miami, FL, USA
| | | | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Juan Carlos Villaseñor-Derbez
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA; Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Stephen R Wing
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Joe Roman
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Bisconti M, Pellegrino L, Carnevale G. Evolution of gigantism in right and bowhead whales (Cetacea: Mysticeti: Balaenidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The evolution of gigantic body size represents a key to understand the ecological role of baleen whales in oceanic ecosystems. Many efforts have been devoted to the formulation of equations relating different body parts to total body length and mass in living and fossil mysticetes, mainly focusing on balaenopterid and balaenopterid-like mysticetes. Right whales (family Balaenidae) have a unique head-to-body length ratio, suggesting that their body proportions cannot be predicted effectively using equations based primarily on non-balaenid mysticetes. A new morphometric dataset of living and fossil balaenids is provided herein, and new regression equations allow one to predict the body length and mass of extinct species based on the expected head-to-body length ratio of extant balaenids. The reconstructed values are mapped on a new phylogenetic analysis of the Balaenidae, inferring body size and mass at ancestral nodes. The variations of body size and mass in Balaenidae since the early Miocene are reconstructed, revealing that: (1) a reduction in total body length occurred in the early Pliocene; (2) the origin of the gigantic body size in the bowhead whale (Balaena mysticetus) is probably related to invasion of the Arctic Ocean in the last 3 Myr; and (3) the origin of the gigantic body size in the right whales (genus Eubalaena) occurred since the latest Miocene, probably concomitant with pulses of nutrients sustaining large zooplankton populations. We suggest that the evolution of gigantism in Balaenidae occurred independently in two lineages and, probably, in response to different palaeoenvironmental drivers.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
- San Diego Natural History Museum, 1788 El Prado, San Diego, CA 92101, USA
| | - Luca Pellegrino
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
| |
Collapse
|
6
|
Stephenson F, Hewitt JE, Torres LG, Mouton TL, Brough T, Goetz KT, Lundquist CJ, MacDiarmid AB, Ellis J, Constantine R. Cetacean conservation planning in a global diversity hotspot: dealing with uncertainty and data deficiencies. Ecosphere 2021. [DOI: 10.1002/ecs2.3633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Judi E. Hewitt
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Department of Statistics University of Auckland Auckland New Zealand
| | - Leigh G. Torres
- Department of Fisheries and Wildlife Marine Mammal Institute Oregon State University Newport Oregon USA
| | - Théophile L. Mouton
- Marine Biodiversity Exploitation, and Conservation (MARBEC) UMR IRD‐CNRS‐UM‐IFREMER 9190 Université de Montpellier Montpellier34095France
| | - Tom Brough
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
| | - Kimberly T. Goetz
- National Oceanic and Atmospheric Administration National Marine Fisheries Service Marine Mammal Laboratory Alaska Fisheries Science Center Seattle Alaska USA
- National Institute of Water and Atmosphere (NIWA) Wellington New Zealand
| | - Carolyn J. Lundquist
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Institute of Marine Science University of Auckland Auckland New Zealand
| | | | - Joanne Ellis
- School of Science University of Waikato Tauranga New Zealand
| | - Rochelle Constantine
- Institute of Marine Science University of Auckland Auckland New Zealand
- School of Biological Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
7
|
Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS One 2020; 15:e0231595. [PMID: 32298349 PMCID: PMC7161985 DOI: 10.1371/journal.pone.0231595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Species distribution shifts are a widely reported biological consequence of climate-driven warming across marine ecosystems, creating ecological and social challenges. To meet these challenges and inform management decisions, we need accurate projections of species distributions. Quantitative species distribution models (SDMs) are routinely used to make these projections, while qualitative climate change vulnerability assessments are becoming more common. We constructed SDMs, compared SDM projections to expectations from a qualitative expert climate change vulnerability assessment, and developed a novel approach for combining the two methods to project the distribution and relative biomass of 49 marine species in the Northeast Shelf Large Marine Ecosystem under a “business as usual” climate change scenario. A forecasting experiment using SDMs highlighted their ability to capture relative biomass patterns fairly well (mean Pearson’s correlation coefficient between predicted and observed biomass = 0.24, range = 0–0.6) and pointed to areas needing improvement, including reducing prediction error and better capturing fine-scale spatial variability. SDM projections suggest the region will undergo considerable biological changes, especially in the Gulf of Maine, where commercially-important groundfish and traditional forage species are expected to decline as coastal fish species and warmer-water forage species historically found in the southern New England/Mid-Atlantic Bight area increase. The SDM projections only occasionally aligned with vulnerability assessment expectations, with agreement more common for species with adult mobility and population growth rates that showed low sensitivity to climate change. Although our blended approach tried to build from the strengths of each method, it had no noticeable improvement in predictive ability over SDMs. This work rigorously evaluates the predictive ability of SDMs, quantifies expected species distribution shifts under future climate conditions, and tests a new approach for integrating SDMs and vulnerability assessments to help address the complex challenges arising from climate-driven species distribution shifts.
Collapse
|