1
|
Chan C, Mukai K, Groisman EA. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. mBio 2025:e0022725. [PMID: 40162747 DOI: 10.1128/mbio.00227-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Molecular chaperones are critical for protein homeostasis. In bacteria, chaperone trigger factor (TF) folds proteins co-translationally, and chaperone DnaK requires a J-domain cochaperone and nucleotide exchange factor GrpE to fold proteins largely post-translationally. However, when the pathogen Salmonella enterica serovar Typhimurium faces the infection-relevant condition of cytoplasmic Mg2+ starvation, DnaK reduces protein synthesis independently. This raises the possibility that bacteria differentially express chaperones and cochaperones. We now report that S. Typhimurium responds to cytoplasmic Mg2+ starvation by increasing mRNA amounts of dnaK while decreasing those of the TF-encoding gene tig and J-domain cochaperone genes dnaJ and djlA. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence PhoP, which increases dnaK mRNA amounts by lowering the ATP concentration, thereby hindering proteolysis of the alternative sigma factor RpoH responsible for dnaK transcription. We also establish that DnaK exerts negative feedback on the RpoH protein and RpoH-dependent transcripts independently of J-domain cochaperones. Thus, bacteria express chaperones and cochaperones coordinately or differentially depending on the specific stress perturbing protein homeostasis.IMPORTANCEMolecular chaperones typically require cochaperones to fold proteins and to prevent protein aggregation, and the corresponding genes are thus coordinately expressed. We have now identified an infection-relevant stress condition in which the genes specifying chaperone DnaK and cochaperone DnaJ are differentially expressed despite belonging to the same operon. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence in the pathogen Salmonella enterica serovar Typhimurium. Moreover, it likely reflects that Salmonella requires dnaK, but not J-domain cochaperone-encoding genes, for survival against cytoplasmic Mg2+ starvation and expresses genes only when needed. Thus, the specific condition impacting protein homeostasis determines the coordinate versus differential expression of molecular chaperones and cochaperones.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keiichiro Mukai
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Iwadate Y, Slauch JM. The CorC proteins MgpA (YoaE) and CorC protect from excess-cation stress and are required for egg white tolerance and virulence in Salmonella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643926. [PMID: 40166170 PMCID: PMC11957008 DOI: 10.1101/2025.03.18.643926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cation homeostasis is a vital function. In Salmonella, growth in very low Mg2+ induces expression of high-affinity Mg2+ transporters and synthesis of polyamines, organic cations that substitute for Mg2+. Once Mg2+ levels are re-established, the polyamines must be excreted by PaeA. Otherwise, cells lose viability due to a condition we term excess-cation stress. We sought additional tolerance mechanisms for this stress. We show that CorC and MgpA (YoaE) are essential for survival in stationary phase after Mg2+ starvation. Deletion of corC causes a loss of viability additive with the paeA phenotype. Deletion of mgpA causes a synthetic defect in the corC background. This lethality is suppressed by loss of the inducible Mg2+ transporters, suggesting that the corC mgpA mutant is sensitive to changes in intracellular Mg2+. CorC and MgpA function independently of PaeA. A paeA mutant is sensitive to externally added polyamine in stationary phase; loss of CorC and MgpA suppressed this sensitivity. Conversely, the corC mgpA mutant, but not the paeA mutant, exhibited sensitivity to high Mg2+ and egg white. The corC mgpA mutant is also attenuated in a mouse model. The corC and mgpA genes are induced in response to increased Mg2+ concentrations. Thus, CorC and MgpA play some interrelated role in cation homeostasis. It is unlikely that these phenotypes are due to absolute levels of cations. Rather, the cell maintains relative concentrations of various cations that likely compete for binding to anionic components. Imbalance of these cations affects some essential function(s), leading to a loss of viability.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Feng Y, Xiao W, Li X, Cao W, Jiang Y, Zhang W, Jiang W, Xin F, Jiang M. High Ectoine Production from Lignocellulosic Hydrolysate by Escherichia coli through Metabolic and Fermentation Engineering. ACS Synth Biol 2025; 14:609-620. [PMID: 39933098 DOI: 10.1021/acssynbio.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Ectoine, a major compatible solute in halophilic micro-organisms, shows great potential in cosmetics and pharmaceuticals areas owing to its water-binding properties and capability to prevent oxidative damage. In this study, the ectABC gene cluster responsible for the ectoine synthesis originated from halophilic bacterium Halomonas venusta was first assembled into Escherichia coli. Subsequently, the crr gene in PTS was knocked out to further drive the metabolic flux from phosphoenolpyruvate to oxaloacetate, resulting in 1.27 g/L of ectoine. Then, the rate-limiting enzyme LysC in the ectoine synthesis pathway was identified and modified. The recombinant E. coli with the further overexpression of feedback-insensitive mutant EclysC* increased the ectoine titer to 2.51 g/L with a yield of 0.37 g/g in shake flasks. After the medium optimization including the carbon and nitrogen source, sodium chloride, and magnesium sulfate concentration, the ectoine titer was improved to 4.55 g/L. 115.15 g/L of ectoine with a yield of 0.23 g/g was obtained in the 5.0 L bioreactor through the optimization of substrate feeding and IPTG supplementation in the fed-batch fermentation. To achieve the cost-effective production of ectoine, lignocellulosic hydrolysate from wheat straw was adopted. 134.08 g/L of ectoine with a yield of 0.33 g/g sugar and a productivity of 3.7 g/L/h was finally produced, representing a relatively high level of ectoine production from renewable resources compared to other studies. This study provides valuable insights into a cost-effective and efficient method for industrial-scale ectoine production.
Collapse
Affiliation(s)
- Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenlong Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinyi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Weiyu Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Vellappan S, Sun J, Favate J, Jagadeesan P, Cerda D, Shah P, Yadavalli SS. Translation profiling of stress-induced small proteins reveals a novel link among signaling systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612970. [PMID: 39345582 PMCID: PMC11429745 DOI: 10.1101/2024.09.13.612970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Signaling networks allow adaptation to stressful environments by activating genes that counteract stressors. Small proteins (≤ 50 amino acids long) are a rising class of stress response regulators. Escherichia coli encodes over 150 small proteins, most of which lack phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we identify stress-induced small proteins using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, several of them transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, underscoring their physiological significance in low magnesium stress. Most remarkably, we elucidate an unusual connection via a small membrane protein YoaI, between major signaling networks - PhoR-PhoB and EnvZ-OmpR in E. coli, advancing our understanding of small protein regulators in cellular signaling.
Collapse
Affiliation(s)
- Sangeevan Vellappan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Junhong Sun
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - John Favate
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Pranavi Jagadeesan
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
| | - Debbie Cerda
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| | - Premal Shah
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ USA
- Department of Genetics, School of Arts and Sciences, Rutgers University, Piscataway, NJ USA
| |
Collapse
|
5
|
Seffouh A, Nikolay R, Ortega J. Critical steps in the assembly process of the bacterial 50S ribosomal subunit. Nucleic Acids Res 2024; 52:4111-4123. [PMID: 38554105 PMCID: PMC11077053 DOI: 10.1093/nar/gkae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
During assembly, ribosomal particles in bacteria fold according to energy landscapes comprised of multiple parallel pathways. Cryo-electron microscopy studies have identified a critical maturation step that occurs during the late assembly stages of the 50S subunit in Bacillus subtilis. This step acts as a point of convergency for all the parallel assembly pathways of the subunit, where an assembly intermediate accumulates in a 'locked' state, causing maturation to pause. Assembly factors then act on this critical step to 'unlock' the last maturation steps involving the functional sites. Without these factors, the 50S subunit fails to complete its assembly, causing cells to die due to a lack of functional ribosomes to synthesize proteins. In this review, we analyze these findings in B. subtilis and examine other cryo-EM studies that have visualized assembly intermediates in different bacterial species, to determine if convergency points in the ribosome assembly process are a common theme among bacteria. There are still gaps in our knowledge, as these methodologies have not yet been applied to diverse species. However, identifying and characterizing these convergency points can reveal how different bacterial species implement unique mechanisms to regulate critical steps in the ribosome assembly process.
Collapse
Affiliation(s)
- Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Rainer Nikolay
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
6
|
H, Elliot MA. Multifactorial genetic control and magnesium levels govern the production of a Streptomyces antibiotic with unusual cell density dependence. mSystems 2024; 9:e0136823. [PMID: 38493407 PMCID: PMC11019849 DOI: 10.1128/msystems.01368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Streptomyces bacteria are renowned both for their antibiotic production capabilities and for their cryptic metabolic potential. Their metabolic repertoire is subject to stringent genetic control, with many of the associated biosynthetic gene clusters being repressed by the conserved nucleoid-associated protein Lsr2. In an effort to stimulate new antibiotic production in wild Streptomyces isolates, we leveraged the activity of an Lsr2 knockdown construct and successfully enhanced antibiotic production in the wild Streptomyces isolate WAC07094. We determined that this new activity stemmed from increased levels of the angucycline-like family member saquayamycin. Saquayamycin has both antibiotic and anti-cancer activities, and intriguingly, beyond Lsr2-mediated repression, we found saquayamycin production was also suppressed at high density on solid or in liquid growth media; its levels were greatest in low-density cultures. This density-dependent control was exerted at the level of the cluster-situated regulatory gene sqnR and was mediated in part through the activity of the PhoRP two-component regulatory system, where deleting phoRP led to both constitutive antibiotic production and sqnR expression. This suggests that PhoP functions to repress the expression of sqnR at high cell density. We further discovered that magnesium supplementation could alleviate this density dependence, although its action was independent of PhoP. Finally, we revealed that the nitrogen-responsive regulators GlnR and AfsQ1 could relieve the repression exerted by Lsr2 and PhoP. Intriguingly, we found that this low density-dependent production of saquayamycin was not unique to WAC07094; saquayamycin production by another wild isolate also exhibited low-density activation, suggesting that this spatial control may serve an important ecological function in their native environments.IMPORTANCEStreptomyces specialized metabolic gene clusters are subject to complex regulation, and their products are frequently not observed under standard laboratory growth conditions. For the wild Streptomyces isolate WAC07094, production of the angucycline-family compound saquayamycin is subject to a unique constellation of control factors. Notably, it is produced primarily at low cell density, in contrast to the high cell density production typical of most antibiotics. This unusual density dependence is conserved in other saquayamycin producers and is driven by the pathway-specific regulator SqnR, whose expression is influenced by both nutritional and genetic elements. Collectively, this work provides new insights into an intricate regulatory system governing antibiotic production and indicates there may be benefits to including low-density cultures in antibiotic screening platforms.
Collapse
Affiliation(s)
- Hindra
- Institute of Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute of Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Wang Z, Cui T, Wang Q. Optimization of degradation conditions and analysis of degradation mechanism for nitrite by Bacillus aryabhattai 47. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171096. [PMID: 38387569 DOI: 10.1016/j.scitotenv.2024.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive nitrite levels cause significant damage to aquaculture, making it crucial to explore green and reliable nitrite removal technologies. In this study, A Bacillus aryabhattai (designated as the strain 47) isolated from aquaculture wastewater was used as the experimental strain. The nitrite degradation conditions of the strain 47 were optimized, and the optimal conditions are: glucose was 12.74 g/L, fermented special soybean meal was 21.27 g/L, MgCl2 369 mg/L, pH 7.0, incubated at 30 °C with the inoculum size of 2 % and the rotation speed of 170 rpm. Under the optimal conditions, the nitrite concentration of the culture solution was 200 mg/L, and the nitrite removal rate reached 91.4 %. Meanwhile, the mechanism by which Mg2+ enhanced the nitrite degradation ability of the strain 47 was investigated by transcriptomics. An operon structure directed cellular trafficking of Mg2+, and then, the Mg2+-mediated catalytic reaction of multiple enzymes enhanced and improved cellular metabolic processes (e.g. the transport and metabolism of nitrite, central carbohydrate metabolism oxidative phosphorylation). At the same time, with the progress of cell metabolism, cells secreted a series of enzymes related to nitrite transport and metabolism to promote the metabolism of nitrite. And the process of the assimilated nitrate reduction pathway of nitrite degradation in the strain 47 was elaborated at the transcriptome level. This study provided a new insight into nitrite treatment mediated by microbial organisms.
Collapse
Affiliation(s)
- Zhenhao Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Qiang Wang
- Guangdong Yuzanchen Biotechnology Co., Ltd, Jiangmen 529100, PR China
| |
Collapse
|
8
|
Chan C, Groisman EA. Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis. PLoS Biol 2024; 22:e3002560. [PMID: 38574172 PMCID: PMC10994381 DOI: 10.1371/journal.pbio.3002560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection. This reduction reflects a 3-fold increase in ribosome association with DnaK and a 30-fold decrease in ribosome association with trigger factor, the chaperone normally associated with translating ribosomes. Surprisingly, this reduction does not involve J-domain cochaperones, unlike previously known functions of DnaK. Removing the 74 C-terminal amino acids of the 638-residue long DnaK impeded DnaK association with ribosomes and reduction of protein synthesis, rendering S. Typhimurium defective in protein homeostasis during cytoplasmic Mg2+ starvation. DnaK-dependent reduction in protein synthesis is critical for survival against Mg2+ starvation because inhibiting protein synthesis in a dnaK-independent manner overcame the 10,000-fold loss in viability resulting from DnaK truncation. Our results indicate that DnaK protects bacteria from infection-relevant stresses by coordinating protein synthesis with protein folding capacity.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
9
|
Liu Y, LaBonte S, Brake C, LaFayette C, Rosebrock AP, Caudy AA, Straight PD. MOB rules: Antibiotic Exposure Reprograms Metabolism to Mobilize Bacillus subtilis in Competitive Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585991. [PMID: 38562742 PMCID: PMC10983992 DOI: 10.1101/2024.03.20.585991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antibiotics have dose-dependent effects on exposed bacteria. The medicinal use of antibiotics relies on their growth-inhibitory activities at sufficient concentrations. At subinhibitory concentrations, exposure effects vary widely among different antibiotics and bacteria. Bacillus subtilis responds to bacteriostatic translation inhibitors by mobilizing a population of cells (MOB-Mobilized Bacillus) to spread across a surface. How B. subtilis regulates the antibiotic-induced mobilization is not known. In this study, we used chloramphenicol to identify regulatory functions that B. subtilis requires to coordinate cell mobilization following subinhibitory exposure. We measured changes in gene expression and metabolism and mapped the results to a network of regulatory proteins that direct the mobile response. Our data reveal that several transcriptional regulators coordinately control the reprogramming of metabolism to support mobilization. The network regulates changes in glycolysis, nucleotide metabolism, and amino acid metabolism that are signature features of the mobilized population. Among the hundreds of genes with changing expression, we identified two, pdhA and pucA, where the magnitudes of their changes in expression, and in the abundance of associated metabolites, reveal hallmark metabolic features of the mobilized population. Using reporters of pdhA and pucA expression, we visualized the separation of major branches of metabolism in different regions of the mobilized population. Our results reveal a regulated response to chloramphenicol exposure that enables a population of bacteria in different metabolic states to mount a coordinated mobile response.
Collapse
Affiliation(s)
- Yongjin Liu
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
| | - Sandra LaBonte
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| | - Courtney Brake
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | - Carol LaFayette
- Department of Visualization, Institute for Applied Creativity, Texas A&M University, College Station, Texas, USA
| | | | - Amy A. Caudy
- Maple Flavored Solutions, LLC, Indianapolis, Indiana, USA
| | - Paul D. Straight
- Biochemistry and Biophysics Department, Texas A&M University, AgriLife Research, College Station, Texas, USA
- Interdisciplinary Program in Genetics and Genomics,Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
12
|
Metaane S, Monteil V, Douché T, Giai Gianetto Q, Matondo M, Maufrais C, Norel F. Loss of CorA, the primary magnesium transporter of Salmonella, is alleviated by MgtA and PhoP-dependent compensatory mechanisms. PLoS One 2023; 18:e0291736. [PMID: 37713445 PMCID: PMC10503707 DOI: 10.1371/journal.pone.0291736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of stationary phase cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have recently shown that a ΔrpoS mutation decreases the magnesium content and expression level of the housekeeping Mg2+-transporter CorA in stationary phase Salmonella. The other two Mg2+-transporters of Salmonella are encoded by the PhoP-activated mgtA and mgtB genes and are expressed under magnesium starvation. The σS control of corA prompted us to evaluate the impact of CorA in stationary phase Salmonella cells, by using global and analytical proteomic analyses and physiological assays. The ΔcorA mutation conferred a competitive disadvantage to exit from stationary phase, and slightly impaired motility, but had no effect on total and free cellular magnesium contents. In contrast to the wild-type strain, the ΔcorA mutant produced MgtA, but not MgtB, in the presence of high extracellular magnesium concentration. Under these conditions, MgtA production in the ΔcorA mutant did not require PhoP. Consistently, a ΔmgtA, but not a ΔphoP, mutation slightly reduced the magnesium content of the ΔcorA mutant. Synthetic phenotypes were observed when the ΔphoP and ΔcorA mutations were combined, including a strong reduction in growth and motility, independently of the extracellular magnesium concentration. The abundance of several proteins involved in flagella formation, chemotaxis and secretion was lowered by the ΔcorA and ΔphoP mutations in combination, but not alone. These findings unravel the importance of PhoP-dependent functions in the absence of CorA when magnesium is sufficient. Altogether, our data pinpoint a regulatory network, where the absence of CorA is sensed by the cell and compensated by MgtA and PhoP- dependent mechanisms.
Collapse
Affiliation(s)
- Selma Metaane
- Biochimie des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3528, Université Paris Cité, Paris, France
| | - Véronique Monteil
- Biochimie des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3528, Université Paris Cité, Paris, France
| | - Thibaut Douché
- Proteomic Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS UAR 2024, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Proteomic Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS UAR 2024, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomic Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS UAR 2024, Université Paris Cité, Paris, France
| | - Corinne Maufrais
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Françoise Norel
- Biochimie des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3528, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Hardy S, Zolotarov Y, Coleman J, Roitman S, Khursheed H, Aubry I, Uetani N, Tremblay M. PRL-1/2 phosphatases control TRPM7 magnesium-dependent function to regulate cellular bioenergetics. Proc Natl Acad Sci U S A 2023; 120:e2221083120. [PMID: 36972446 PMCID: PMC10083557 DOI: 10.1073/pnas.2221083120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.
Collapse
Affiliation(s)
- Serge Hardy
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Yevgen Zolotarov
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Jacob Coleman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Simon Roitman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Hira Khursheed
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Noriko Uetani
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Michel L. Tremblay
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| |
Collapse
|
14
|
Huang H, Lin L, Bu F, Su Y, Zheng X, Chen Y. Reductive Stress Boosts the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes: The Neglected Side of the Intracellular Redox Spectrum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15594-15606. [PMID: 36322896 DOI: 10.1021/acs.est.2c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) among bacteria is becoming a global challenge to the "One Health" concept. During conjugation, the donor/recipient usually encounter diverse stresses induced by the surrounding environment. Previous studies mainly focused on the effects of oxidative stress on plasmid conjugation, but ignored the potential contribution of reductive stress (RS), the other side of the intracellular redox spectrum. Herein, we demonstrated for the first time that RS induced by dithiothreitol could significantly boost the horizontal transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella Typhimurium, and Pseudomonas putida KT2440). Phenotypic and genotypic tests confirmed that RS upregulated genes encoding the transfer apparatus of plasmid RP4, which was attributed to the promoted consumption of intracellular glutamine in the donor rather than the widely reported SOS response. Moreover, RS was verified to benefit ATP supply by activating glycolysis (e.g., GAPDH) and the respiratory chain (e.g., appBC), triggering the deficiency of intracellular free Mg2+ by promoting its binding, and reducing membrane permeability by stimulating cardiolipin biosynthesis, all of which were beneficial to the functioning of transfer apparatus. Overall, our findings uncovered the neglected risks of RS in ARG spreading and updated the regulatory mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Bu
- Shanghai Electric Environmental Protection Group, Shanghai Electric Group Co. Ltd, Shanghai 200092, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
15
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|