1
|
Tarin M, Saljooghi AS. Gasdermin E as a potential target and biomarker for CRISPR-Cas9-based cancer therapy. Biochem Pharmacol 2025; 237:116961. [PMID: 40300704 DOI: 10.1016/j.bcp.2025.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Gasdermin E (GSDME), a protein pivotal in mediating pyroptosis, has gained significant attention due to its role in cancer pathogenesis and its potential as a therapeutic target. The advent of CRISPR-Cas9, a precise genome editing tool, has revolutionized cancer therapy by enabling the manipulation of GSDME expression and function. This review explores the interplay of GSDME and CRISPR-Cas9 in cancer, emphasizing GSDME's unique mechanism of cleavage-dependent pore formation in the cell membrane and its emerging applications as both a therapeutic target and a diagnostic biomarker. We discuss the potential and challenges of using GSDME-induced pyroptosis as a therapeutic strategy and how can enhance its efficacy and specificity. We conclude by highlighting promising future research directions in this emerging field.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Schubert K, Zhang J, Muscolo ME, Braly M, McCausland JW, Lam HN, Hug K, Loven M, Solis SR, Escobar ME, Moore H, Terciano D, Pacheco DF, Lowe TM, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. PLoS Pathog 2025; 21:e1012655. [PMID: 40424556 DOI: 10.1371/journal.ppat.1012655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a key role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Yersinia pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Yersinia virulence (pYV). Several layers of gene regulation enable a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37˚C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is required for robust expression of the Shigella flexneri T3SS that, similar to Yersinia, is encoded on a virulence plasmid whose replication is regulated by sRNA. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of sRNA-regulated virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I promotes virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
| | - Michele E Muscolo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, United States of America
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew Loven
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Santiago Ruiz Solis
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Melissa Estrada Escobar
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Diana Fernandez Pacheco
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Todd M Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, United States of America
| | - Cammie F Lesser
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Tufts Stuart B Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala Universitet, Uppsala, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
3
|
Yin W, Wan M, Zhang Y, Meng H, Pan Z, Jiao X, Gu D. Role of the TPR family protein VPA1365 in regulating type III secretion system 2 and virulence in Vibrio parahaemolyticus. Appl Environ Microbiol 2025; 91:e0220124. [PMID: 40130841 PMCID: PMC12016518 DOI: 10.1128/aem.02201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/23/2025] [Indexed: 03/26/2025] Open
Abstract
Vibrio parahaemolyticus is a notable seafood-borne pathogen capable of colonizing the intestines of hosts and inducing acute gastroenteritis. The intestinal colonization and enterotoxicity of V. parahaemolyticus are highly reliant on the type III secretion system 2 (T3SS2), encoded within the pathogenicity island (Vp-PAI). The expression of Vp-PAI is strictly regulated by bile acid signals and transcriptional regulators VtrA/VtrB. In this study, we identified a tetratricopeptide repeat (TPR) family protein named VPA1365, which regulates the expression of T3SS2 and is indispensable for the intestinal colonization of V. parahaemolyticus. The expression and secretion of the T3SS2-dependent protein VopD2 were significantly reduced in Δvpa1365 compared to that of the wild type (WT), suggesting that VPA1365 positively regulates the function of T3SS2. Further research indicated that VPA1365 directly binds to the promoters of vtrA, thereby increasing the expression levels of T3SS2-associated genes. Additionally, the deletion of vpa1365 markedly reduced the cytotoxicity, adhesion ability, biofilm formation, and hemolytic activity of V. parahaemolyticus. VPA1365 was found to control the expression levels of these virulence-associated genes by binding to the promoters of scrG, pilA, and mshA. In a zebrafish infection model, the Δvpa1365 infected groups demonstrated a higher survival rate compared to the zebrafish infected with WT. In conclusion, this study identified a TPR family protein VPA1365, which regulates the expression levels of T3SS2 and virulence-associated genes in V. parahaemolyticus, further broadening our understanding of its virulence factors. IMPORTANCE The type III secretion system 2 (T3SS2) is of crucial significance for the pathogenicity of Vibrio parahaemolyticus; nevertheless, the biological functions of many genes within the T3SS2 gene cluster and the transcriptional regulatory network of T3SS2 remain ambiguous. In this study, we identified VPA1365, a tetratricopeptide repeat family regulator encoded in the T3SS2 gene cluster, which differs from other known T3SS2 regulatory factors, such as OmpR, ToxR, or LysR family proteins. VPA1365 not only positively regulated the expression and secretion of T3SS2-related proteins but also enhanced the virulence in infant rabbits and zebrafish. Moreover, we identified several novel functions of VPA1365, such as its contribution to hemolytic activity, biofilm formation, cytotoxicity, and adhesion ability, uncovering its global physiological role in V. parahaemolyticus. The putative VPA1365-binding site was predicted and identified through the MEME-Suite tool and electrophoretic mobility shift analysis. Collectively, these results broaden our understanding of the regulatory pathways of T3SS2 and virulence.
Collapse
Affiliation(s)
- Wenliang Yin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengyan Wan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Youkun Zhang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Bao H, Wang Y, Li H, Wang Q, Lei Y, Ye Y, Wadood SF, Zhu H, Staehelin C, Stacey G, Xu S, Cao Y. The rhizobial effector NopT targets Nod factor receptors to regulate symbiosis in Lotus japonicus. eLife 2025; 13:RP97196. [PMID: 40183777 PMCID: PMC11970910 DOI: 10.7554/elife.97196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
It is well documented that type-III effectors are required by Gram-negative pathogens to directly target different host cellular pathways to promote bacterial infection. However, in the context of legume-rhizobium symbiosis, the role of rhizobial effectors in regulating plant symbiotic pathways remains largely unexplored. Here, we show that NopT, a YopT-type cysteine protease of Sinorhizobium fredii NGR234 directly targets the plant's symbiotic signaling pathway by associating with two Nod factor receptors (NFR1 and NFR5 of Lotus japonicus). NopT inhibits cell death triggered by co-expression of NFR1/NFR5 in Nicotiana benthamiana. Full-length NopT physically interacts with NFR1 and NFR5. NopT proteolytically cleaves NFR5 both in vitro and in vivo, but can be inactivated by NFR1 as a result of phosphorylation. NopT plays an essential role in mediating rhizobial infection in L. japonicus. Autocleaved NopT retains the ability to cleave NFR5 but no longer interacts with NFR1. Interestingly, genomes of certain Sinorhizobium species only harbor nopT genes encoding truncated proteins without the autocleavage site. These results reveal an intricate interplay between rhizobia and legumes, in which a rhizobial effector protease targets NFR5 to suppress symbiotic signaling. NFR1 appears to counteract this process by phosphorylating the effector. This discovery highlights the role of a bacterial effector in regulating a signaling pathway in plants and opens up the perspective of developing kinase-interacting proteases to fine-tune cellular signaling processes in general.
Collapse
Affiliation(s)
- Hanbin Bao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yanan Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Haoxing Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Qiang Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yutao Lei
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Ying Ye
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Syed F Wadood
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Hui Zhu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Gary Stacey
- Divisions of Plant Science and Technology, Christopher S. Bond Life Sciences Center, University of MissouriColumbiaUnited States
| | - Shutong Xu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yangrong Cao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
5
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Schubert K, Braly M, Zhang J, Muscolo ME, Lam HN, Hug K, Moore H, McCausland JW, Terciano D, Lowe T, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617751. [PMID: 39416138 PMCID: PMC11482874 DOI: 10.1101/2024.10.11.617751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a critical role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Y. pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Y ersinia virulence (pYV). Several layers of gene regulation enables a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37°C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is also required for robust expression of the Shigella flexneri virulence plasmid-encoded T3SS. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining normal PCN of model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I reinforces PCN and virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - Michele E Muscolo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Todd Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
7
|
Zhou L, Zhang Y, Wu S, Kuang Y, Jiang P, Zhu X, Yin K. Type III Secretion System in Intestinal Pathogens and Metabolic Diseases. J Diabetes Res 2024; 2024:4864639. [PMID: 39544522 PMCID: PMC11561183 DOI: 10.1155/2024/4864639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Modern lifestyle changes, especially the consumption of a diet high in salt, sugar, and fat, have contributed to the increasing incidence and prevalence of chronic metabolic diseases such as diabetes, obesity, and gout. Changing lifestyles continuously shape the gut microbiota which is closely related to the occurrence and development of metabolic diseases due to its specificity of composition and structural diversity. A large number of pathogenic bacteria such as Yersinia, Salmonella, Shigella, and pathogenic E. coli in the gut utilize the type III secretion system (T3SS) to help them resist host defenses and cause disease. Although the T3SS is critical for the virulence of many important human pathogens, its relationship with metabolic diseases remains unknown. This article reviews the structure and function of the T3SS, the disruption of intestinal barrier integrity by the T3SS, the changes in intestinal flora containing the T3SS in metabolic diseases, the possible mechanisms of the T3SS affecting metabolic diseases, and the application of the T3SS in the treatment of metabolic diseases. The aim is to provide insights into metabolic diseases targeting the T3SS, thereby serving as a valuable reference for future research on disease diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Yaoyuan Zhang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Shiqi Wu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Yiyu Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Pengfei Jiang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| |
Collapse
|
8
|
Berneking L, Bekere I, Rob S, Schnapp M, Huang J, Ruckdeschel K, Aepfelbacher M. A bacterial effector protein promotes nuclear translocation of Stat3 to induce IL-10. Eur J Cell Biol 2023; 102:151364. [PMID: 37806297 DOI: 10.1016/j.ejcb.2023.151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
The multifunctional Yersinia effector YopM inhibits effector triggered immunity and increases production of the anti-inflammatory cytokine Interleukin-10 (IL-10) to suppress the host immune response. Previously it was shown that YopM induces IL-10 gene expression by elevating phosphorylation of the serine-threonine kinase RSK1 in the nucleus of human macrophages. Using transcriptomics, we found that YopM strongly affects expression of genes belonging to the JAK-STAT signaling pathway. Further analysis revealed that YopM mediates nuclear translocation of the transcription factor Stat3 in Y. enterocolitica infected macrophages and that knockdown of Stat3 inhibited YopM-induced IL-10 gene expression. YopM-induced Stat3 translocation did not depend on autocrine IL-10, activation of RSK1 or tyrosine phosphorylation of Stat3. Thus, besides activation of RSK1, stimulation of nuclear translocation of Stat3 is another mechanism by which YopM increases IL-10 gene expression in macrophages.
Collapse
Affiliation(s)
- Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sören Rob
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
9
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Dubyak GR, Miller BA, Pearlman E. Pyroptosis in neutrophils: Multimodal integration of inflammasome and regulated cell death signaling pathways. Immunol Rev 2023; 314:229-249. [PMID: 36656082 PMCID: PMC10407921 DOI: 10.1111/imr.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1β release during inflammasome signaling have been extensively characterized in macrophages. This involves cleavage of GSDMD by caspase-1 to generate GSDMD macropores that mediate IL-1β efflux and progression to pyroptotic lysis. Neutrophils, which rapidly accumulate in large numbers at sites of tissue infection or damage, become the predominant local source of IL-1β in coordination with their potent microbiocidal capacity. Similar to macrophages, neutrophils express GSDMD and utilize the same spectrum of diverse inflammasome platforms for caspase-1-mediated cleavage of GSDMD. Distinct from macrophages, neutrophils possess a remarkable capacity to resist progression to GSDMD-dependent pyroptotic lysis to preserve their viability for efficient microbial killing while maintaining GSDMD-dependent mechanisms for export of bioactive IL-1β. Rather, neutrophils employ cell-specific mechanisms to conditionally engage GSDMD-mediated pyroptosis in response to bacterial pathogens that use neutrophils as replicative niches. GSDMD and pyroptosis have also been mechanistically linked to induction of NETosis, a signature neutrophil pathway that expels decondensed nuclear DNA into extracellular compartments for immobilization and killing of microbial pathogens. This review summarizes a rapidly growing number of recent studies that have produced new insights, unexpected mechanistic nuances, and some controversies regarding the regulation of, and roles for, neutrophil inflammasomes, pyroptosis, and GSDMs in diverse innate immune responses.
Collapse
Affiliation(s)
- George R. Dubyak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon A. Miller
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, California, USA
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| |
Collapse
|
11
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Zhang X, Xiong T, Gao L, Wang Y, Liu L, Tian T, Shi Y, Zhang J, Zhao Z, Lu D, Luo P, Zhang W, Cheng P, Jing H, Gou Q, Zeng H, Yan D, Zou Q. Extracellular fibrinogen-binding protein released by intracellular Staphylococcus aureus suppresses host immunity by targeting TRAF3. Nat Commun 2022; 13:5493. [PMID: 36123338 PMCID: PMC9484707 DOI: 10.1038/s41467-022-33205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Many pathogens secrete effectors to hijack intracellular signaling regulators in host immune cells to promote pathogenesis. However, the pathogenesis of Staphylococcus aureus secretory effectors within host cells is unclear. Here, we report that Staphylococcus aureus secretes extracellular fibrinogen-binding protein (Efb) into the cytoplasm of macrophages to suppress host immunity. Mechanistically, RING finger protein 114, a host E3 ligase, mediates K27-linked ubiquitination of Efb at lysine 71, which facilitates the recruitment of tumor necrosis factor receptor associated factor (TRAF) 3. The binding of Efb to TRAF3 disrupts the formation of the TRAF3/TRAF2/cIAP1 (cellular-inhibitor-of-apoptosis-1) complex, which mediates K48-ubiquitination of TRAF3 to promote degradation, resulting in suppression of the inflammatory signaling cascade. Additionally, the Efb K71R mutant loses the ability to inhibit inflammation and exhibits decreased pathogenicity. Therefore, our findings identify an unrecognized mechanism of Staphylococcus aureus to suppress host defense, which may be a promising target for developing effective anti-Staphylococcus aureus immunomodulators. Staphylococcus aureus secrete numerous effectors to evade or inhibit the host immune response, yet the mechanism underlying the effectors ability to manipulate the signalling pathways of macrophages remain unclear. Authors utilise in vitro and in vivo models to explore the role of extracellular fibrinogen-binding protein (Efb) in immune response modulation and pathogenicity.
Collapse
Affiliation(s)
- Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tingrong Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Lin Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.,Department of Basic Courses, NCO School, Third Military Medical University, Shijiazhuang, 050081, China
| | - Luxuan Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, China
| | - Tian Tian
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Shi
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, Sun W. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2022; 119:e2110166119. [PMID: 34969677 PMCID: PMC8764673 DOI: 10.1073/pnas.2110166119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1β signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1β overproduction can completely rescue hemochromatotic mice from the lethal infection.
Collapse
Affiliation(s)
- Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ryan C Meng
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
14
|
Uğurlu Ö, Evran S. Bimolecular fluorescence complementation assay to explore protein-protein interactions of the Yersinia virulence factor YopM. Biochem Biophys Res Commun 2021; 582:43-48. [PMID: 34689104 DOI: 10.1016/j.bbrc.2021.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Yersinia outer protein M (YopM) is one of the effector proteins and essential for virulence. YopM is delivered by the Yersinia type III secretion system (T3SS) into the host cell, where it shows immunosuppressive effect through interaction with host proteins. Therefore, protein-protein interactions of YopM is significant to understand its molecular mechanism. In this study, we aimed to explore protein-protein interactions of YopM with the two components of T3SS, namely LcrV and LcrG. We used bimolecular fluorescence complementation (BiFC) assay and monitored the reassembly of green fluorescence protein in Escherichia coli. As an indicator of the protein-protein interaction, we monitored the in vivo reconstitution of fluorescence by measuring fluorescence intensity and imaging the cells under fluorescence microscope. We showed, for the first time, that YopM interacts with LcrG, but not with LcrV. Here, we propose BiFC assay as a simple method to screen novel interaction partners of YopM.
Collapse
Affiliation(s)
- Özge Uğurlu
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey; Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya/ Hatay, Turkey
| | - Serap Evran
- Ege University, Faculty of Science, Department of Biochemistry, 35100, Bornova-Izmir, Turkey.
| |
Collapse
|
15
|
Bekere I, Huang J, Schnapp M, Rudolph M, Berneking L, Ruckdeschel K, Grundhoff A, Günther T, Fischer N, Aepfelbacher M. Yersinia remodels epigenetic histone modifications in human macrophages. PLoS Pathog 2021; 17:e1010074. [PMID: 34793580 PMCID: PMC8639070 DOI: 10.1371/journal.ppat.1010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Various pathogens systematically reprogram gene expression in macrophages, but the underlying mechanisms are largely unknown. We investigated whether the enteropathogen Yersinia enterocolitica alters chromatin states to reprogram gene expression in primary human macrophages. Genome-wide chromatin immunoprecipitation (ChIP) seq analyses showed that pathogen-associated molecular patterns (PAMPs) induced up- or down-regulation of histone modifications (HMod) at approximately 14500 loci in promoters and enhancers. Effectors of Y. enterocolitica reorganized about half of these dynamic HMod, with the effector YopP being responsible for about half of these modulatory activities. The reorganized HMod were associated with genes involved in immune response and metabolism. Remarkably, the altered HMod also associated with 61% of all 534 known Rho GTPase pathway genes, revealing a new level in Rho GTPase regulation and a new aspect of bacterial pathogenicity. Changes in HMod were associated to varying degrees with corresponding gene expression, e. g. depending on chromatin localization and cooperation of the HMod. In summary, infection with Y. enterocolitica remodels HMod in human macrophages to modulate key gene expression programs of the innate immune response. Human pathogenic bacteria can affect epigenetic histone modifications to modulate gene expression in host cells. However, a systems biology analysis of this bacterial virulence mechanism in immune cells has not been performed. Here we analyzed genome-wide epigenetic histone modifications and associated gene expression changes in primary human macrophages infected with enteropathogenic Yersinia enterocolitica. We demonstrate that Yersinia virulence factors extensively modulate histone modifications and associated gene expression triggered by the pathogen-associated molecular patterns (PAMPs) of the bacteria. The epigenetically modulated genes are involved in several key pathways of the macrophage immune response, including the Rho GTPase pathway, revealing a novel level of Rho GTPase regulation by a bacterial pathogen. Overall, our findings provide an in-depth view of epigenetic and gene expression changes during host-pathogen interaction and might have further implications for understanding of the innate immune memory in macrophages.
Collapse
Affiliation(s)
- Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maren Rudolph
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Thomas Günther
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| |
Collapse
|
16
|
Ahlawat S, Singh AK, Shankar A, Yadav A, Sharma KK. Infected insect gut reveals differentially expressed proteins for cellular redox, metal resistance and secretion system in Yersinia enterocolitica-Helicoverpa armigera pathogenic model. Biotechnol Lett 2021; 43:1845-1867. [PMID: 34165641 DOI: 10.1007/s10529-021-03157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Mouse infection models are frequently used to study the host-pathogen interaction studies. However, due to several constraints, there is an urgent need for a simple, rapid, easy to handle, inexpensive, and ethically acceptable in vivo model system for studying the virulence of enteropathogens. Thus, the present study was performed to develop the larvae of Helicoverpa armigera as a rapid-inexpensive in vivo model system to evaluate the effect of Yersinia enterocolitica strain 8081 on its midgut via a label-free proteomic approach. RESULTS Helicoverpa armigera larvae fed with Yersinia enterocolitica strain 8081 manifested significant reduction in body weight and damage in midgut. On performing label-free proteomic study, secretory systems, putative hemolysin, and two-component system emerged as the main pathogenic proteins. Further, proteome comparison between control and Yersinia added diet-fed (YADF) insects revealed altered cytoskeletal proteins in response to increased melanization (via a prophenoloxidase cascade) and free radical generation. In concurrence, FTIR-spectroscopy, and histopathological and biochemical analysis confirmed gut damage in YADF insects. Finally, the proteome data suggests that the mechanism of infection and the host response in Y. enterocolitica-H. armigera system mimics Yersinia-mammalian gut interactions. CONCLUSIONS All data from current study collectively suggest that H. armigera larva can be considered as a potential in vivo model system for studying the enteropathogenic infection by Y. enterocolitica strain 8081.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Amarjeet Kumar Singh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Asha Yadav
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|