1
|
Novakovic M, Han Y, Kathe NC, Ni Y, Emmanouilidis L, Allain FHT. LLPS REDIFINE allows the biophysical characterization of multicomponent condensates without tags or labels. Nat Commun 2025; 16:4628. [PMID: 40389460 DOI: 10.1038/s41467-025-59759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) phenomenon plays a vital role in multiple cell biology processes, providing a mechanism to concentrate biomolecules and promote cellular reactions locally. Despite its significance in biology, there is a lack of conventional techniques suitable for studying biphasic samples in their biologically relevant form. Here, we present a label-free and non-invasive approach to characterize biomolecular condensates termed LLPS REstricted DIFusion of INvisible speciEs (REDIFINE). Relying on diffusion NMR measurements, REDIFINE exploits the exchange dynamics between molecules in the condensed and dispersed phases to determine not only diffusion constants and the fractions in both phases but also the average radius of the condensed droplets and the exchange rate between the phases. Observing proteins, RNAs, water, as well as small molecules, and even assessing the concentrations of biomolecules in both phases, REDIFINE analysis allows a rapid biophysical characterization of multicomponent condensates which is important to understand their functional roles. In comparing multiple systems, REDIFINE reveals that folded RNA-binding proteins form smaller and more dynamic droplets compared to the disordered ones.
Collapse
Affiliation(s)
- Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| | - Yaning Han
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Nina C Kathe
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yinan Ni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Duarah A, Subedi S, Dayhoff GW, Uversky VN, Tripathi T. Proteome-wide identification and comprehensive profiling of intrinsic disorder in Fasciola gigantica. Int J Biol Macromol 2025:144158. [PMID: 40383327 DOI: 10.1016/j.ijbiomac.2025.144158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Despite the wealth of proteome sequences from multicellular parasitic helminths, studies on intrinsically disordered proteins (IDPs) in these organisms remain limited, particularly compared to viruses, bacteria, and unicellular parasites. We provide a comprehensive analysis of intrinsic disorder within the proteome of Fasciola gigantica, a parasitic liver fluke, using multiple predictive tools. Out of 12,537 proteins analyzed, a significant portion exhibited a distinct amino acid composition, characterized by an enrichment of polar and charged residues and a relative depletion of hydrophobic and aromatic residues, which are hallmarks of IDPs. These compositional features likely confer structural flexibility and functional adaptability, facilitating the survival of the parasite in diverse and hostile environments within its host. The presence of IDPs was further supported by compositional profiling of experimentally validated proteins in the DisProt database. Approximately 34.15 % of the F. gigantica proteome comprises highly disordered proteins, while 59.27 % is moderately disordered, as calculated from six well-established predictors integrated under the RIDAO platform. The consistent findings across various predictors, including PONDR® and IUPred, underscore the reliability of these results. Additionally, a detailed analysis of the distribution of charged residues in the proteome was performed. The high prevalence of IDPs in F. gigantica suggests their critical role in host-pathogen interactions, potentially providing functional advantages such as binding promiscuity and adaptability, which are essential for the survival of the parasite within the host. This study highlights the importance of IDPs in the biology of F. gigantica and provides insights into their potential roles in the parasite's pathogenesis and interactions with the host immune system.
Collapse
Affiliation(s)
- Anjelika Duarah
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Guy W Dayhoff
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
3
|
Prosdocimi F, Farias STD. Coacervates meet the RNP-world: liquid-liquid phase separation and the emergence of biological compartmentalization. Biosystems 2025; 252:105480. [PMID: 40324711 DOI: 10.1016/j.biosystems.2025.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Understanding the emergence of biological compartmentalization in the context of the primordial soup is essential for unraveling the origin of life on Earth. This study revisits the classical coacervate theory, examining its historical development, supporting evidence, and major criticisms. Building upon Alexandr Oparin's foundational ideas, we propose an updated perspective in which the first biological compartments emerged through the formation of ribonucleoprotein (RNP) condensates-complexes of intrinsically disordered peptides and RNAs-via liquid-liquid phase separation (LLPS). Drawing on contemporary insights into how LLPS mediates intracellular organization, we argue that such membraneless RNP-based aggregates could have facilitated biochemical reactions in the aqueous environments of early Earth. By reinterpreting Oparin's coacervates through the lens of modern molecular biology, this study offers a renewed framework for understanding the origin of biological compartmentalization within the RNP-world hypothesis.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Savio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
4
|
Zhang Y, Wang J, Fang H, Hu S, Yang B, Zhou J, Grifone R, Li P, Lu T, Wang Z, Zhang C, Huang Y, Wu D, Gong Q, Shi DL, Li A, Shao M. Rbm24a dictates mRNA recruitment for germ granule assembly in zebrafish. EMBO J 2025:10.1038/s44318-025-00442-z. [PMID: 40281355 DOI: 10.1038/s44318-025-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The germ granules are ribonucleoprotein (RNP) biomolecular condensates that determine the fate of primordial germ cells (PGCs) and serve as a model for studying RNP granule assembly. Here, we show that the maternal RNA-binding protein Rbm24a is a key factor governing the specific sorting of mRNAs into germ granules. Mechanistically, Rbm24a interacts with the germ plasm component Buc to dictate the specific recruitment of germ plasm mRNAs into phase-separated condensates. Germ plasm particles lacking Rbm24a and mRNAs fail to undergo kinesin-dependent transport toward cleavage furrows where small granules fuse into large aggregates. Therefore, the loss of maternal Rbm24a causes a complete degradation of the germ plasm and the disappearance of PGCs. These findings demonstrate that the Rbm24a/Buc complex functions as a nucleating organizer of germ granules, highlighting an emerging mechanism for RNA-binding proteins in reading and recruiting RNA components into a phase-separated protein scaffold.
Collapse
Affiliation(s)
- Yizhuang Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiasheng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Hailing Fang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Shuqi Hu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Boya Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Jiayi Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Raphaëlle Grifone
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France
| | - Panfeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - Zhengyang Wang
- Shandong University Taishan College, 266237, Qingdao, China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 524045, Zhanjiang, China
| | - Yubin Huang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, 266237, Qingdao, China
| | - Qianqian Gong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China
| | - De-Li Shi
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Paris, France.
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Ang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences and Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 266237, Qingdao, China.
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, 266237, Qingdao, China.
- Shandong University-Yuanchen Joint Biomedical Technology Laboratory, 266237, Qingdao, China.
| |
Collapse
|
5
|
Liu Z, Song X, Thillainadesan G, Sugiyama T. The nuclear poly(A)-binding protein Pab2/PABPN1 promotes heterochromatin assembly through the formation of Pab2 nuclear condensates. PLoS Genet 2025; 21:e1011647. [PMID: 40163528 PMCID: PMC12002642 DOI: 10.1371/journal.pgen.1011647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/16/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
The assembly of constitutive heterochromatin is a prerequisite for maintaining genome stability. However, the mechanism of heterochromatin formation has yet to be completely understood. Here, we demonstrate a crucial role of the nuclear poly(A)-binding protein (PABP) Pab2/PABPN1 in promoting constitutive heterochromatin formation in the fission yeast Schizosaccharomyces japonicus. Histone H3 Lys 9 di- and tri-methylation, hallmarks of heterochromatin, are significantly reduced at centromeres in the absence of Pab2. Pab2 forms nuclear condensates through its RNA-recognition motif (RRM) and the intrinsically disordered domain (IDR), both of which bind to centromeric non-coding RNAs. Intriguingly, two key heterochromatin factors, the histone H3 Lys9 methyltransferase Clr4 and the Mi2-type chromatin remodeler Mit1, associate with centromeres in a Pab2-dependent manner. Pab2 interacts with two putative RNA-binding proteins, the ZC3H3 ortholog Red5 and the RBM26·27 ortholog Rmn1, both essential for heterochromatin formation. Deletion of the Pab2 N-terminal region, which disrupts this interaction, largely abolishes Pab2 function, underscoring the importance of this complex. Pab2 also associates and colocalizes with Ppn1 (a PPP1R10 ortholog), a component of the cleavage and polyadenylation specificity factor (CPSF) complex, and ppn1 mutations disrupt constitutive heterochromatin. Notably, both Ppn1 and Rmn1 are able to interact with Clr4. Our findings reveal that Pab2 plays a pivotal role in heterochromatin assembly by forming nuclear condensates through its RRM/IDR, and Pab2 condensates facilitate the recruitment of Clr4 and Mit1 to centromeres, potentially through its binding proteins, Ppn1 and Rmn1. This study provides new insights into the mechanisms underlying heterochromatin formation and highlights the importance of RNA-binding proteins and phase separation in this process.
Collapse
Affiliation(s)
- Ziyue Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuyi Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gobi Thillainadesan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Qu T, Zhang C, Lu X, Dai J, He X, Li W, Han L, Yin D, Zhang E. 8q24 derived ZNF252P promotes tumorigenesis by driving phase separation to activate c-Myc mediated feedback loop. Nat Commun 2025; 16:1986. [PMID: 40011431 PMCID: PMC11865308 DOI: 10.1038/s41467-025-56879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
As a well-known cancer risk region, the 8q24 locus is frequently amplified in a variety of solid tumors. Here we identify a pseudogene-derived oncogenic lncRNA, ZNF252P, which is upregulated in a variety of cancer types by copy number gain as well as c-Myc-mediated transcriptional activation. Mechanistically, ZNF252P binds and drives "phase separation" of HNRNPK and ILF3 protein in the nucleus and cytoplasm, respectively, to transcriptionally and posttranscriptionally activate c-Myc, thus forming a c-Myc/ZNF252P/c-Myc positive feedback loop. These findings expand the understanding of the relationship between genomic instability in the 8q24 region and tumorigenesis and clarify a regulatory mechanism involved in transcription and posttranscription from the perspective of RNA-mediated nuclear and cytoplasmic protein phase separation, which sheds light on the dialogue with the driver oncogene c-Myc. The pivotal regulatory axis of ZNF252P/c-Myc has potential as a promising biomarker and therapeutic target in cancer development.
Collapse
Affiliation(s)
- Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Xu X, Peng Q, Ren Z, Han Y, Jiang X, Wu Z, Tan S, Yang W, Oyang L, Luo X, Lin J, Xia L, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. CircRNF13 enhances IGF2BP1 phase separation-mediated ITGB1 mRNA stabilization in an m6A-dependent manner to promote oral cancer cisplatin chemoresistance. Mol Cancer 2025; 24:36. [PMID: 39891203 PMCID: PMC11783750 DOI: 10.1186/s12943-025-02239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025] Open
Abstract
Oral cancer ranks among the most common malignancies within the head and neck region; however, its etiology remains inadequately understood despite substantial research advances in recent years. Many studies highlight the regulatory role of circular RNAs (circRNAs) in human cancers, suggesting their potential as cancer biomarkers. However, their specific mechanisms in oral cancer are not well understood. This study analyzed circRNAs expression in oral cancer, identifying circRNF13 (circbaseID: has_circ_0006801) as having elevated expression in oral cancer cells and tissues. Our study demonstrated that circRNF13 is correlated with increased tumor grade and stage in oral cancer. Results from both in vitro and in vivo experiments indicated that circRNF13 enhances cancer cell proliferation and tumor growth, while concurrently diminishing tumor sensitivity to cisplatin. Mechanistically, circRNF13 interacts with the m6A "reader" protein IGF2BP1, inhibiting its ubiquitin-mediated degradation and promoting its phase separation formation. Subsequently, circRNF13 augments the stability of ITGB1 mRNA via IGF2BP1 in a manner dependent on m6A modification. The m6A modification of ITGB1 mRNA is modulated by the phase separation of IGF2BP1, thereby promoting the malignant progression of oral cancer cells. This evidence positions circRNF13 as a crucial regulatory molecule in the pathogenesis of oral cancer and suggests its potential as a therapeutic target. This discovery enriches our understanding of the mechanistic role of circRNAs.
Collapse
Affiliation(s)
- Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Zhu Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Hao Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China.
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China.
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, 410013, P. R. China.
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, Hunan, 410013, P. R. China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, P. R. China.
| |
Collapse
|
8
|
Tu W, Theisen RQ, Jin P, Chenoweth DM, Patel AJ, Good MC. Delivery of Peptide Coacervates to Form Stable Interaction Hubs in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625566. [PMID: 39651133 PMCID: PMC11623604 DOI: 10.1101/2024.11.26.625566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Cells contain membrane-bound and membraneless organelles that operate as spatially distinct biochemical niches. However, these subcellular reaction centers lose fidelity with aging and as a result of disease. A grand challenge for biomedicine is restoring or augmenting cellular functionalities. Although commonly tackled by gene replacement therapy, an excited new strategy is the delivery of protein-based materials that can directly interact with and alter biological networks inside a cell. In this study we sought to develop long-lasting materials capable of cellular uptake and incorporation, akin to an artificial organelle or intracellular interaction hub. Drawing inspiration from protein-based membranelles organelles, we developed a new delivery method to transplant micron size peptide-based compartments into living cells. We determined conditions to form large stable coacervates that are efficiently taken up by a variety of useful cell types and demonstrate their intracellular stability over time. We developed tools to enhance the extent and spatial organization of cargo loading into these coacervates, including co-assembly of nanobodies that selectively bind to targets of interest. Combining them together, we demonstrate successful targeting of GFP protein inside cells. These results represent an important first step toward the development of deliverable synthetic organelles that can be fabricated in vitro and taken up by cells for applications in cell engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wangjie Tu
- Bioengineering Graduate Group, University of Pennsylvania, PA 19104
| | - Rachel Q. Theisen
- Department of Cell and Developmental Biology, University of Pennsylvania, PA 19104
| | - Pengfei Jin
- Chemistry Graduate Group, University of Pennsylvania, PA 19104
| | - David M. Chenoweth
- Chemistry Graduate Group, University of Pennsylvania, PA 19104
- Department of Chemistry, University of Pennsylvania, PA 19104
| | - Amish J. Patel
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, PA 19104
| | - Matthew C. Good
- Bioengineering Graduate Group, University of Pennsylvania, PA 19104
- Department of Cell and Developmental Biology, University of Pennsylvania, PA 19104
- Department of Bioengineering, University of Pennsylvania, PA 19104
| |
Collapse
|
9
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
10
|
Kiebler MA, Bauer KE. RNA granules in flux: dynamics to balance physiology and pathology. Nat Rev Neurosci 2024; 25:711-725. [PMID: 39367081 DOI: 10.1038/s41583-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
The life cycle of an mRNA is a complex process that is tightly regulated by interactions between the mRNA and RNA-binding proteins, forming molecular machines known as RNA granules. Various types of these membrane-less organelles form inside cells, including neurons, and contribute critically to various physiological processes. RNA granules are constantly in flux, change dynamically and adapt to their local environment, depending on their intracellular localization. The discovery that RNA condensates can form by liquid-liquid phase separation expanded our understanding of how compartments may be generated in the cell. Since then, a plethora of new functions have been proposed for distinct condensates in cells that await their validation in vivo. The finding that dysregulation of RNA granules (for example, stress granules) is likely to affect neurodevelopmental and neurodegenerative diseases further boosted interest in this topic. RNA granules have various physiological functions in neurons and in the brain that we would like to focus on. We outline examples of state-of-the-art experiments including timelapse microscopy in neurons to unravel the precise functions of various types of RNA granule. Finally, we distinguish physiologically occurring RNA condensation from aberrant aggregation, induced by artificial RNA overexpression, and present visual examples to discriminate both forms in neurons.
Collapse
Affiliation(s)
- Michael A Kiebler
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Karl E Bauer
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Moon J, Kim SW, Lee JS. Metal Ion-Condensed DNA Nanoparticle Library: Phase Separation and Transition and Antisense Therapy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59116-59127. [PMID: 39427257 DOI: 10.1021/acsami.4c16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
DNA condensation has long been investigated as a fundamental cellular activity and is known to be driven by the mediation of diverse condensing agents. The phase behaviors of DNA during condensation are particularly interesting because the complicated molecular structure of natural nucleotides fundamentally allows electrostatic, coordinate covalent, and various other secondary interactions with the condensing agents. Recently, metal ion (Mn+)-induced DNA condensation has emerged as a powerful approach to synthesizing nanoparticulate DNA structures suitable for therapeutic gene delivery. However, how the DNA phase changes during Mn+-induced DNA condensation has rarely been observed and is not understood yet. In this study, a library of Mn+-condensed DNA nanoparticles (Mn+-CDNPs) was established using 30 different types of Mn+s, and their phase behaviors during condensation were elucidated using spherical nucleic acids (SNAs) as electron microscopic labels. Importantly, the phase transition and separation of DNA were demonstrated to be driven by the Mn+s into either the growth of individual DNA particles or the fission of bulky DNA aggregates. Pt2+ and Eu3+ were chosen as model systems for the demonstration. The hard and soft acid nature of Mn+ is presumably the underlying driving force of these phase transitions. In addition, the Mn+-controlled anticancer therapeutic efficiency of the Mn+-CDNP library as a state-of-the-art gene delivery platform was demonstrated even for unmodified antisense oligonucleotides in association with the potential toxicity of the Mn+s released from the Mn+-CDNPs. This comprehensive study of the Mn+-dependent condensation of nucleic acids provides profound insights into the chemistry of the nucleic acid-Mn+ interactions and the reliable theragnostic applications of Mn+-CDNPs as functional nucleic acid nanostructures.
Collapse
Affiliation(s)
- Jeesu Moon
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang-Won Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Cao X, Zhang Y, Ding Y, Wan Y. Identification of RNA structures and their roles in RNA functions. Nat Rev Mol Cell Biol 2024; 25:784-801. [PMID: 38926530 DOI: 10.1038/s41580-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.
Collapse
Affiliation(s)
- Xinang Cao
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Yueying Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Yu X, Hu W, Dong H, Zhao T, Wang X, Chen L, Xue S, Li JP, Luo SZ. Phase Separation Enhanced PROTAC for Highly Efficient Protein Degradation. Biomacromolecules 2024; 25:4374-4383. [PMID: 38825770 DOI: 10.1021/acs.biomac.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Biomacromolecular condensates formed via phase separation establish compartments for the enrichment of specific compositions, which is also used as a biological tool to enhance molecule condensation, thereby increasing the efficiency of biological processes. Proteolysis-targeting chimeras (PROTACs) have been developed as powerful tools for targeted protein degradation in cells, offering a promising approach for therapies for different diseases. Herein, we introduce an intrinsically disordered region in the PROTAC (denoted PSETAC), which led to the formation of droplets of target proteins in the cells and increased degradation efficiency compared with PROTAC without phase separation. Further, using a nucleus targeting intrinsically disordered domain, the PSETAC was able to target and degrade nuclear-located proteins. Finally, we demonstrated intracellular delivery of PSETAC using lipid nanoparticle-encapsulated mRNA (mRNA-LNP) for the degradation of the endogenous target protein. This study established the PSETAC mRNA-LNP method as a potentially translatable, safe therapeutic strategy for the development of clinical applications based on PROTAC.
Collapse
Affiliation(s)
- Xiaolin Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenrui Hu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaotian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Xue
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, 751 05 Uppsala, Sweden
| | - Shi-Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Weakly HMJ, Keller SL. Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools. Biophys J 2024; 123:1329-1341. [PMID: 38160256 PMCID: PMC11163299 DOI: 10.1016/j.bpj.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.
Collapse
Affiliation(s)
- Heidi M J Weakly
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington.
| |
Collapse
|
15
|
Mayer A, Li J, McLaughlin G, Gladfelter A, Roper M. Mitigating transcription noise via protein sharing in syncytial cells. Biophys J 2024; 123:968-978. [PMID: 38459697 PMCID: PMC11052695 DOI: 10.1016/j.bpj.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Bursty transcription allows nuclei to concentrate the work of transcribing mRNA into short, intermittent intervals, potentially reducing transcriptional interference. However, bursts of mRNA production can increase noise in protein abundances. Here, we formulate models for gene expression in syncytia, or multinucleate cells, showing that protein abundance noise may be mitigated locally via spatial averaging of diffuse proteins. Our modeling shows a universal reduction in protein noise, which increases with the average number of nuclei per cell and persists even when the number of nuclei is itself a random variable. Experimental data comparing distributions of a cyclin mRNA that is conserved between brewer's yeast and a closely related filamentous fungus Ashbya gossypii confirm that syncytism is permissive of greater levels of transcriptional noise. Our findings suggest that division of transcriptional labor between nuclei allows syncytia to sidestep tradeoffs between efficiency and precision of gene expression.
Collapse
Affiliation(s)
- Alex Mayer
- Department of Mathematics, UCLA, Los Angeles, California.
| | - Jiayu Li
- Department of Mathematics, UCLA, Los Angeles, California
| | - Grace McLaughlin
- Department of Biology, Duke University, Durham, North Carolina; Department of Biology, UNC, Chapel Hill, North Carolina
| | - Amy Gladfelter
- Department of Biology, Duke University, Durham, North Carolina
| | - Marcus Roper
- Department of Mathematics, UCLA, Los Angeles, California; Department of Computational Medicine, UCLA, Los Angeles, California
| |
Collapse
|
16
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
17
|
Zhang Q, Ye H, Liu C, Zhou H, He M, Liang X, Zhou Y, Wang K, Qin Y, Li Z, Chen M. PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment. Virol Sin 2024; 39:235-250. [PMID: 38072230 PMCID: PMC11074649 DOI: 10.1016/j.virs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Inclusion bodies (IBs) of respiratory syncytial virus (RSV) are formed by liquid-liquid phase separation (LLPS) and contain internal structures termed "IB-associated granules" (IBAGs), where anti-termination factor M2-1 and viral mRNAs are concentrated. However, the mechanism of IBAG formation and the physiological function of IBAGs are unclear. Here, we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein (mRNP) condensates formed by secondary LLPS. Mechanistically, the RSV nucleoprotein (N) and M2-1 interact with and recruit PABP to IBs, promoting PABP to bind viral mRNAs transcribed in IBs by RNA-recognition motif and drive secondary phase separation. Furthermore, PABP-eIF4G1 interaction regulates viral mRNP condensate composition, thereby recruiting specific translation initiation factors (eIF4G1, eIF4E, eIF4A, eIF4B and eIF4H) into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment. Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanzhe Ye
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haiwu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingbin He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaodong Liang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kun Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
18
|
Nicchitta CV. An emerging role for the endoplasmic reticulum in stress granule biogenesis. Semin Cell Dev Biol 2024; 156:160-166. [PMID: 36202692 PMCID: PMC10208384 DOI: 10.1016/j.semcdb.2022.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Stress granules (SGs), structurally dynamic, optically resolvable, macromolecular assemblies of mRNAs, RNA binding proteins (RBPs), translation factors, ribosomal subunits, as well as other interacting proteins, assemble in response to cell stress conditions that elicit phosphorylation of eukaryotic initiation factor 2α (eIF2α) and consequently, the inactivation of translation initiation. SG biology is conserved throughout eukaryotes and has recently been linked to the pathological sequelae of neurodegenerative disorders, cancer biology, and viral infection. Substantial insights into mechanisms of SG biogenesis, and more broadly the phenomenon of biological liquid-liquid phase separation (LLPS), have been aided by detailed proteomic and transcriptomic studies as well as in vitro reconstitution approaches. A particularly interesting and largely unexplored element of SG biology is the cell biological context of SG biogenesis, including its subcellular organization and more recently, evidence that the endoplasmic reticulum (ER) membrane may serve important functions in RNA granule biology generally and SG biogenesis specifically. A central role for the ER in SG biogenesis is discussed and a hypothesis linking SG formation on the ER to the trafficking, localization and de novo translation of newly exported mRNAs is presented.
Collapse
|
19
|
Kilgore HR, Mikhael PG, Overholt KJ, Boija A, Hannett NM, Van Dongen C, Lee TI, Chang YT, Barzilay R, Young RA. Distinct chemical environments in biomolecular condensates. Nat Chem Biol 2024; 20:291-301. [PMID: 37770698 DOI: 10.1038/s41589-023-01432-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
Diverse mechanisms have been described for selective enrichment of biomolecules in membrane-bound organelles, but less is known about mechanisms by which molecules are selectively incorporated into biomolecular assemblies such as condensates that lack surrounding membranes. The chemical environments within condensates may differ from those outside these bodies, and if these differed among various types of condensate, then the different solvation environments would provide a mechanism for selective distribution among these intracellular bodies. Here we use small molecule probes to show that different condensates have distinct chemical solvating properties and that selective partitioning of probes in condensates can be predicted with deep learning approaches. Our results demonstrate that different condensates harbor distinct chemical environments that influence the distribution of molecules, show that clues to condensate chemical grammar can be ascertained by machine learning and suggest approaches to facilitate development of small molecule therapeutics with optimal subcellular distribution and therapeutic benefit.
Collapse
Affiliation(s)
- Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | - Peter G Mikhael
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kalon J Overholt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Regina Barzilay
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Yan X, Zhang M, Wang D. Interplay between posttranslational modifications and liquid‒liquid phase separation in tumors. Cancer Lett 2024; 584:216614. [PMID: 38246226 DOI: 10.1016/j.canlet.2024.216614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Liquid‒liquid phase separation (LLPS) is a general phenomenon recently recognized to be critically involved in the regulation of a variety of cellular biological processes, such as transcriptional regulation, heterochromatin formation and signal transduction, through the compartmentalization of proteins or nucleic acids into droplet-like condensates. These processes are directly or indirectly related to tumor initiation and treatment. Posttranslational modifications (PTMs), which represent a rapid and reversible mechanism involved in the functional regulation of proteins, have emerged as key events in modulating LLPS under physiological or pathophysiological conditions, including tumorigenesis and antitumor therapy. In this review, we introduce the biological functions participated in cancer-associated LLPS, discuss the potential roles of LLPS during tumor onset or therapy, and emphasize the mechanistic characteristics of LLPS regulated by PTMs and its effects on tumor progression. We then provide a perspective on further studies on LLPS and its regulation by PTMs in cancer research. This review aims to broaden the understanding of the functions of LLPS and its regulation by PTMs under normal or aberrant cellular conditions.
Collapse
Affiliation(s)
- Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
21
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Szoke T, Goldberger O, Albocher-Kedem N, Barsheshet M, Dezorella N, Nussbaum-Shochat A, Wiener R, Schuldiner M, Amster-Choder O. Regulation of major bacterial survival strategies by transcripts sequestration in a membraneless organelle. Cell Rep 2023; 42:113393. [PMID: 37934665 DOI: 10.1016/j.celrep.2023.113393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
TmaR, the only known pole-localizer protein in Escherichia coli, was shown to cluster at the cell poles and control localization and activity of the major sugar regulator in a tyrosine phosphorylation-dependent manner. Here, we show that TmaR assembles by phase separation (PS) via heterotypic interactions with RNA in vivo and in vitro. An unbiased automated mutant screen combined with directed mutagenesis and genetic manipulations uncovered the importance of a predicted nucleic-acid-binding domain, a disordered region, and charged patches, one containing the phosphorylated tyrosine, for TmaR condensation. We demonstrate that, by protecting flagella-related transcripts, TmaR controls flagella production and, thus, cell motility and biofilm formation. These results connect PS in bacteria to survival and provide an explanation for the linkage between metabolism and motility. Intriguingly, a point mutation or increase in its cellular concentration induces irreversible liquid-to-solid transition of TmaR, similar to human disease-causing proteins, which affects cell morphology and division.
Collapse
Affiliation(s)
- Tamar Szoke
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Meshi Barsheshet
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Poruthoor AJ, Sharma A, Grossfield A. Understanding the free-energy landscape of phase separation in lipid bilayers using molecular dynamics. Biophys J 2023; 122:4144-4159. [PMID: 37742069 PMCID: PMC10645549 DOI: 10.1016/j.bpj.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Liquid-liquid phase separation inside the cell often results in biological condensates that can critically affect cell homeostasis. Such phase separation events occur in multiple parts of cells, including the cell membranes, where the "lipid raft" hypothesis posits the formation of ordered domains floating in a sea of disordered lipids. The resulting lipid domains often have functional roles. However, the thermodynamics of lipid phase separation and their resulting mechanistic effects on cell function and dysfunction are poorly understood. Understanding such complex phenomena in cell membranes, with their diverse lipid compositions, is exceptionally difficult. For these reasons, simple model systems that can recapitulate similar behavior are widely used to study this phenomenon. Despite these simplifications, the timescale and length scales of domain formation pose a challenge for molecular dynamics (MD) simulations. Thus, most MD studies focus on spontaneous lipid phase separation-essentially measuring the sign (but not the amplitude) of the free-energy change upon separation-rather than directly interrogating the thermodynamics. Here, we propose a proof-of-concept pipeline that can directly measure this free energy by combining coarse-grained MD with enhanced sampling protocols using a novel collective variable. This approach will be a useful tool to help connect the thermodynamics of phase separation with the mechanistic insights already available from MD simulations.
Collapse
Affiliation(s)
- Ashlin J Poruthoor
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York
| | - Akshara Sharma
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
24
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
25
|
Borodavka A, Acker J. Seeing Biomolecular Condensates Through the Lens of Viruses. Annu Rev Virol 2023; 10:163-182. [PMID: 37040799 DOI: 10.1146/annurev-virology-111821-103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.
Collapse
Affiliation(s)
- Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
26
|
Kang H, Xu T. N6-methyladenosine RNA methylation modulates liquid‒liquid phase separation in plants. THE PLANT CELL 2023; 35:3205-3213. [PMID: 37032432 PMCID: PMC10473200 DOI: 10.1093/plcell/koad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Membraneless biomolecular condensates form distinct subcellular compartments that enable a cell to orchestrate numerous biochemical reactions in a spatiotemporal-specific and dynamic manner. Liquid‒liquid phase separation (LLPS) facilitates the formation of membraneless biomolecular condensates, which are crucial for many cellular processes in plants, including embryogenesis, the floral transition, photosynthesis, pathogen defense, and stress responses. The main component required for LLPS is a protein harboring key characteristic features, such as intrinsically disordered regions, low-complexity sequence domains, and prion-like domains. RNA is an additional component involved in LLPS. Increasing evidence indicates that modifications in proteins and RNAs play pivotal roles in LLPS. In particular, recent studies have indicated that N6-methyladenosine (m6A) modification of messenger RNA is crucial for LLPS in plants and animals. In this review, we provide an overview of recent developments in the role of mRNA methylation in LLPS in plant cells. Moreover, we highlight the major challenges in understanding the pivotal roles of RNA modifications and elucidating how m6A marks are interpreted by RNA-binding proteins crucial for LLPS.
Collapse
Affiliation(s)
- Hunseung Kang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Joint International Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| |
Collapse
|
27
|
Poruthoor AJ, Sharma A, Grossfield A. Understanding the Free Energy Landscape of Phase Separation in Lipid Bilayers using Molecular Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526537. [PMID: 36778479 PMCID: PMC9915641 DOI: 10.1101/2023.01.31.526537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid-liquid phase separation (LLPS) inside the cell often results in biological condensates that can critically impact cell homeostasis. Such phase separation events occur in multiple parts of cells, including the cell membranes, where the so-called "lipid raft" hypothesis posits the formation of ordered domains floating in a sea of disordered lipids. The resulting lipid domains often have functional roles. However, the thermodynamics of lipid phase separation and their resulting mechanistic effects on cell function and dysfunction are poorly understood. Understanding such complex phenomena in cell membranes, with their diverse lipid compositions, is exceptionally difficult. For this reasons, simple model systems that can recapitulate similar behavior are widely used to study this phenomenon. Despite these simplifications, the timescale and and length scales of domain formation pose a challenge for molecular dynamics (MD) simulations. Thus, most MD studies focus on spontaneous lipid phase separation - essentially measuring the sign (but not the amplitude) of the free energy change upon separation - rather than directly interrogating the thermodynamics. Here, we propose a proof-of-concept pipeline that can directly measure this free energy by combining coarse-grained MD with enhanced sampling protocols using a novel collective variable. This approach will be a useful tool to help connect the thermodynamics of phase separation with the mechanistic insights already available from molecular dynamics simulations. SIGNIFICANCE Standard molecular dynamics simulations can determine the sign the free energy change upon phase separation, but not the amplitude. We present a new method to determine the phase separation free energy for lipid membranes, based on a enhanced sampling using the weighted ensemble method combined with a novel collective variable, validated using coarse-grained simulations applied to several simple systems. The new method will be valuable as a way to develop models that connect molecular-level structural features to the thermodynamics of phase separation.
Collapse
Affiliation(s)
- Ashlin J. Poruthoor
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Akshara Sharma
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
28
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
29
|
Rothé B, Fortier S, Gagnieux C, Schmuziger C, Constam DB. Antagonistic interactions among structured domains in the multivalent Bicc1-ANKS3-ANKS6 protein network govern phase transitioning of target mRNAs. iScience 2023; 26:106855. [PMID: 37275520 PMCID: PMC10232731 DOI: 10.1016/j.isci.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The growing number of diseases linked to aberrant phase transitioning of ribonucleoproteins highlights the need to uncover how the interplay between multivalent protein and RNA interactions is regulated. Cytoplasmic granules of the RNA binding protein Bicaudal-C (Bicc1) are regulated by the ciliopathy proteins ankyrin (ANK) and sterile alpha motif (SAM) domain-containing ANKS3 and ANKS6, but whether and how target mRNAs are affected is unknown. Here, we show that head-to-tail polymers of Bicc1 nucleated by its SAM domain are interconnected by K homology (KH) domains in a protein meshwork that mediates liquid-to-gel transitioning of client transcripts. Moreover, while the dispersion of these granules by ANKS3 concomitantly released bound mRNAs, co-recruitment of ANKS6 by ANKS3 reinstated Bicc1 condensation and ribonucleoparticle assembly. RNA-independent Bicc1 polymerization and its dual regulation by ANKS3 and ANKS6 represent a new mechanism to couple the reversible immobilization of client mRNAs to controlled protein phase transitioning between distinct metastable states.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Maity H, Nguyen HT, Hori N, Thirumalai D. Odd-even disparity in the population of slipped hairpins in RNA repeat sequences with implications for phase separation. Proc Natl Acad Sci U S A 2023; 120:e2301409120. [PMID: 37276412 PMCID: PMC10268303 DOI: 10.1073/pnas.2301409120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Low-complexity nucleotide repeat sequences, which are implicated in several neurological disorders, undergo liquid-liquid phase separation (LLPS) provided the number of repeat units, n, exceeds a critical value. Here, we establish a link between the folding landscapes of the monomers of trinucleotide repeats and their propensity to self-associate. Simulations using a coarse-grained Self-Organized Polymer (SOP) model for (CAG)n repeats in monovalent salt solutions reproduce experimentally measured melting temperatures, which are available only for small n. By extending the simulations to large n, we show that the free-energy gap, ΔGS, between the ground state (GS) and slipped hairpin (SH) states is a predictor of aggregation propensity. The GS for even n is a perfect hairpin (PH), whereas it is a SH when n is odd. The value of ΔGS (zero for odd n) is larger for even n than for odd n. As a result, the rate of dimer formation is slower in (CAG)30 relative to (CAG)31, thus linking ΔGS to RNA-RNA association. The yield of the dimer decreases dramatically, compared to the wild type, in mutant sequences in which the population of the SH decreases substantially. Association between RNA chains is preceded by a transition to the SH even if the GS is a PH. The finding that the excitation spectrum-which depends on the exact sequence, n, and ionic conditions-is a predictor of self-association should also hold for other RNAs (mRNA for example) that undergo LLPS.
Collapse
Affiliation(s)
- Hiranmay Maity
- Department of Chemistry, The University of Texas at Austin, AustinTX78712
| | - Hung T. Nguyen
- Department of Chemistry, The University of Texas at Austin, AustinTX78712
| | - Naoto Hori
- School of Pharmacy, University of Nottingham, NG7 2rD, United Kingdom
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, AustinTX78712
- Department of Physics, The University of Texas at Austin, AustinTX78712
| |
Collapse
|
31
|
Peng KC, Siao W, Hsieh HL. FAR-RED INSENSITIVE 219 and phytochrome B corepress shade avoidance via modulating nuclear speckle formation. PLANT PHYSIOLOGY 2023; 192:1449-1465. [PMID: 36869668 PMCID: PMC10231371 DOI: 10.1093/plphys/kiad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Plants can sense the shade from neighboring plants by detecting a reduction of the red:far-red light (R:FR) ratio. Phytochrome B (phyB) is the primary photoreceptor that perceives shade light and regulates jasmonic acid (JA) signaling. However, the molecular mechanisms underlying phyB and JA signaling integration in shade responses remain largely unknown. Here, we show the interaction of phyB and FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT1 (JAR1) in a functional demand manner in Arabidopsis (Arabidopsis thaliana) seedling development. Genetic evidence and interaction studies indicated that phyB and FIN219 synergistically and negatively regulate shade-induced hypocotyl elongation. Moreover, phyB interacted with various isoforms of FIN219 under high and low R:FR light. Methyl jasmonate (MeJA) treatment, FIN219 mutation, and PHYBOE digalactosyldiacylglycerol synthase1-1 (dgd1-1) plants, which show increased levels of JA, altered the patterns of phyB-associated nuclear speckles under the same conditions. Surprisingly, PHYBOE dgd1-1 showed a shorter hypocotyl phenotype than its parental mutants under shade conditions. Microarray assays using PHYBOE and PHYBOE fin219-2 indicated that PHYB overexpression substantially affects defense response-related genes under shade light and coregulates expression of auxin-responsive genes with FIN219. Thus, our findings reveal that phyB substantially crosstalks with JA signaling through FIN219 to modulate seedling development under shade light.
Collapse
Affiliation(s)
- Kai-Chun Peng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wei Siao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
32
|
Gao Y, Zhu Y, Sun Q, Chen D. Argonaute-dependent ribosome-associated protein quality control. Trends Cell Biol 2023; 33:260-272. [PMID: 35981909 DOI: 10.1016/j.tcb.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Ribosome-associated protein quality control (RQC) is a protein surveillance mechanism that eliminates defective nascent polypeptides. The E3 ubiquitin ligase, Ltn1, is a key regulator of RQC that targets substrates for ubiquitination. Argonaute proteins (AGOs) are central players in miRNA-mediated gene silencing and have recently been shown to also regulate RQC by facilitating Ltn1. Therefore, AGOs directly coordinate post-transcriptional gene silencing and RQC, ensuring efficient gene silencing. We summarize the principles of RQC and the functions of AGOs in miRNA-mediated gene silencing, and discuss how AGOs associate with the endoplasmic reticulum (ER) to assist Ltn1 in controlling RQC. We highlight that RQC not only eliminates defective nascent polypeptides but also removes unwanted protein products when AGOs participate.
Collapse
Affiliation(s)
- Yajie Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China.
| |
Collapse
|
33
|
Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiol Dis 2023; 178:106011. [PMID: 36702317 DOI: 10.1016/j.nbd.2023.106011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Metabolic reactions within cells occur in various isolated compartments with or without borders, the latter being known as membrane-less organelles (MLOs). The MLOs show liquid-like properties and are formed by a process known as liquid-liquid phase separation (LLPS). MLOs contribute to different molecules interactions such as protein-protein, protein-RNA, and RNA-RNA driven by various factors, such as multivalency of intrinsic disorders. MLOs are involved in several cell signaling pathways such as transcription, immune response, and cellular organization. However, disruption of these processes has been found in different pathologies. Recently, it has been demonstrated that protein aggregates, a characteristic of some neurodegenerative diseases, undergo similar phase separation. Tau protein is known as a major neurofibrillary tangles component in Alzheimer's disease (AD). This protein can undergo phase separation to form a MLO known as tau droplet in vitro and in vivo, and this process can be facilitated by several factors, including crowding agents, RNA, and phosphorylation. Tau droplet has been shown to mature into insoluble aggregates suggesting that this process may precede and induce neurodegeneration in AD. Here we review major factors involved in liquid droplet formation within a cell. Additionally, we highlight recent findings concerning tau aggregation following phase separation in AD, along with the potential therapeutic strategies that could be explored in this process against the progression of this pathology.
Collapse
Affiliation(s)
- Hassan Ainani
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
34
|
Strauss S, Acker J, Papa G, Desirò D, Schueder F, Borodavka A, Jungmann R. Principles of RNA recruitment to viral ribonucleoprotein condensates in a segmented dsRNA virus. eLife 2023; 12:e68670. [PMID: 36700549 PMCID: PMC9925054 DOI: 10.7554/elife.68670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/26/2023] [Indexed: 01/27/2023] Open
Abstract
Rotaviruses transcribe 11 distinct RNAs that must be co-packaged prior to their replication to make an infectious virion. During infection, nontranslating rotavirus transcripts accumulate in cytoplasmic protein-RNA granules known as viroplasms that support segmented genome assembly and replication via a poorly understood mechanism. Here, we analysed the RV transcriptome by combining DNA-barcoded smFISH of rotavirus-infected cells. Rotavirus RNA stoichiometry in viroplasms appears to be distinct from the cytoplasmic transcript distribution, with the largest transcript being the most enriched in viroplasms, suggesting a selective RNA enrichment mechanism. While all 11 types of transcripts accumulate in viroplasms, their stoichiometry significantly varied between individual viroplasms. Accumulation of transcripts requires the presence of 3' untranslated terminal regions and viroplasmic localisation of the viral polymerase VP1, consistent with the observed lack of polyadenylated transcripts in viroplasms. Our observations reveal similarities between viroplasms and other cytoplasmic RNP granules and identify viroplasmic proteins as drivers of viral RNA assembly during viroplasm formation.
Collapse
Affiliation(s)
| | - Julia Acker
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Guido Papa
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Daniel Desirò
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Florian Schueder
- Max Planck Institute of BiochemistryMunichGermany
- Department of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
| | | | - Ralf Jungmann
- Max Planck Institute of BiochemistryMunichGermany
- Department of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
| |
Collapse
|
35
|
Zhorabek F, Abesekara MS, Liu J, Dai X, Huang J, Chau Y. Construction of multiphasic membraneless organelles towards spontaneous spatial segregation and directional flow of biochemical reactions. Chem Sci 2023; 14:801-811. [PMID: 36755726 PMCID: PMC9890938 DOI: 10.1039/d2sc05438h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
Many intracellular membraneless organelles (MLOs) appear to adapt a hierarchical multicompartment organization for efficient coordination of highly complex reaction networks. Recapitulating such an internal architecture in biomimetic platforms is, therefore, an important step to facilitate the functional understanding of MLOs and to enable the design of advanced microreactors. Herein, we present a modular bottom-up approach for building synthetic multiphasic condensates using a set of engineered multivalent polymer-oligopeptide hybrids. These hybrid constructs exhibit dynamic phase separation behaviour generating membraneless droplets with a subdivided interior featuring distinct chemical and physical properties, whereby a range of functional biomolecules can be spontaneously enriched and spatially segregated. The platform also attains separated confinement of transcription and translation reactions in proximal compartments, while allowing inter-compartment communication via a directional flow of reactants. With advanced structural and functional features attained, this system can be of great value as a MLO model and as a cell-free system for multiplex chemical biosynthesis.
Collapse
Affiliation(s)
- Fariza Zhorabek
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Manisha Sandupama Abesekara
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Jianhui Liu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Xin Dai
- Department of Chemistry, Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SARChina
| | - Jinqing Huang
- Department of Chemistry, Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong SARChina
| | - Ying Chau
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
36
|
Zhu H, Narita M, Joseph JA, Krainer G, Arter WE, Olan I, Saar KL, Ermann N, Espinosa JR, Shen Y, Kuri MA, Qi R, Welsh TJ, Collepardo‐Guevara R, Narita M, Knowles TPJ. The Chromatin Regulator HMGA1a Undergoes Phase Separation in the Nucleus. Chembiochem 2023; 24:e202200450. [PMID: 36336658 PMCID: PMC10098602 DOI: 10.1002/cbic.202200450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Indexed: 11/09/2022]
Abstract
The protein high mobility group A1 (HMGA1) is an important regulator of chromatin organization and function. However, the mechanisms by which it exerts its biological function are not fully understood. Here, we report that the HMGA isoform, HMGA1a, nucleates into foci that display liquid-like properties in the nucleus, and that the protein readily undergoes phase separation to form liquid condensates in vitro. By bringing together machine-leaning modelling, cellular and biophysical experiments and multiscale simulations, we demonstrate that phase separation of HMGA1a is promoted by protein-DNA interactions, and has the potential to be modulated by post-transcriptional effects such as phosphorylation. We further show that the intrinsically disordered C-terminal tail of HMGA1a significantly contributes to its phase separation through electrostatic interactions via AT hooks 2 and 3. Our work sheds light on HMGA1 phase separation as an emergent biophysical factor in regulating chromatin structure.
Collapse
Affiliation(s)
- Hongjia Zhu
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Masako Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Jerelle A. Joseph
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Georg Krainer
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - William E. Arter
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Transition Bio Ltd., Maxwell CentreJJ Thomson AvenueCambridgeUK
| | - Ioana Olan
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Kadi L. Saar
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Transition Bio Ltd., Maxwell CentreJJ Thomson AvenueCambridgeUK
| | - Niklas Ermann
- Transition Bio Ltd., Maxwell CentreJJ Thomson AvenueCambridgeUK
| | - Jorge R. Espinosa
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
| | - Yi Shen
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Masami Ando Kuri
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Runzhang Qi
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Timothy J. Welsh
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Rosana Collepardo‐Guevara
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Tuomas P. J. Knowles
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
| |
Collapse
|
37
|
A Five-LLPS Gene Risk Score Prognostic Signature Predicts Survival in Hepatocellular Carcinoma. Int J Genomics 2023; 2023:7299276. [PMID: 36873244 PMCID: PMC9977538 DOI: 10.1155/2023/7299276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Background Primary liver cancer, dominated by hepatocellular carcinoma (HCC), is one of the most common cancer types and the third leading cause of cancer death in 2020. Previous studies have shown that liquid-liquid phase separation (LLPS) plays an important role in the occurrence and development of cancer including HCC, but its influence on the patient prognosis is still unknown. It is necessary to explore the effect of LLPS genes on prognosis to accurately forecast the prognosis of HCC patients and identify relevant targeted therapeutic sites. Methods Using The Cancer Genome Atlas dataset and PhaSepDB dataset, we identified LLPS genes linked to the overall survival (OS) of HCC patients. We applied Least Absolute Shrinkage and Selection Operator (LASSO) Cox penalized regression analysis to choose the best genes for the risk score prognostic signature. We then analysed the validation dataset and evaluated the effectiveness of the risk score prognostic signature. Finally, we performed quantitative real-time PCR experiments to validate the genes in the prognostic signature. Results We identified 43 differentially expressed LLPS genes that were associated with the OS of HCC patients. Five of these genes (BMX, FYN, KPNA2, PFKFB4, and SPP1) were selected to generate a prognostic risk score signature. Patients in the low-risk group were associated with better OS than those in the high-risk group in both the training dataset and the validation dataset. We found that BMX and FYN had lower expression levels in HCC tumour tissues, whereas KPNA2, PFKFB4, and SPP1 had higher expression levels in HCC tumour tissues. The validation demonstrated that the five-LLPS gene risk score signature has the capability of predicting the OS of HCC patients. Conclusion Our study constructed a five-LLPS gene risk score signature that can be applied as an effective and convenient prognostic tool. These five genes might serve as potential targets for therapy and the treatment of HCC.
Collapse
|
38
|
Goldberger O, Szoke T, Nussbaum-Shochat A, Amster-Choder O. Heterotypic phase separation of Hfq is linked to its roles as an RNA chaperone. Cell Rep 2022; 41:111881. [PMID: 36577380 DOI: 10.1016/j.celrep.2022.111881] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
Hfq, an Sm-like protein and the major RNA chaperone in E. coli, has been shown to distribute non-uniformly along a helical path under normal growth conditions and to relocate to the cell poles under certain stress conditions. We have previously shown that Hfq relocation to the poles is accompanied by polar accumulation of most small RNAs (sRNAs). Here, we show that Hfq undergoes RNA-dependent phase separation to form cytoplasmic or polar condensates of different density under normal and stress conditions, respectively. Purified Hfq forms droplets in the presence of crowding agents or RNA, indicating that its condensation is via heterotypic interactions. Stress-induced relocation of Hfq condensates and sRNAs to the poles depends on the pole-localizer TmaR. Phase separation of Hfq correlates with its ability to perform its posttranscriptional roles as sRNA-stabilizer and sRNA-mRNA matchmaker. Our study offers a spatiotemporal mechanism for sRNA-mediated regulation in response to environmental changes.
Collapse
Affiliation(s)
- Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Tamar Szoke
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
39
|
Granik N, Katz N, Willinger O, Goldberg S, Amit R. Formation of synthetic RNA protein granules using engineered phage-coat-protein -RNA complexes. Nat Commun 2022; 13:6811. [PMID: 36357399 PMCID: PMC9649756 DOI: 10.1038/s41467-022-34644-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Liquid-solid transition, also known as gelation, is a specific form of phase separation in which molecules cross-link to form a highly interconnected compartment with solid - like dynamical properties. Here, we utilize RNA hairpin coat-protein binding sites to form synthetic RNA based gel-like granules via liquid-solid phase transition. We show both in-vitro and in-vivo that hairpin containing synthetic long non-coding RNA (slncRNA) molecules granulate into bright localized puncta. We further demonstrate that upon introduction of the coat-proteins, less-condensed gel-like granules form with the RNA creating an outer shell with the proteins mostly present inside the granule. Moreover, by tracking puncta fluorescence signals over time, we detected addition or shedding events of slncRNA-CP nucleoprotein complexes. Consequently, our granules constitute a genetically encoded storage compartment for protein and RNA with a programmable controlled release profile that is determined by the number of hairpins encoded into the RNA. Our findings have important implications for the potential regulatory role of naturally occurring granules and for the broader biotechnology field.
Collapse
Affiliation(s)
- Naor Granik
- Department of Applied Mathematics, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Noa Katz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Or Willinger
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sarah Goldberg
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Roee Amit
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
40
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
42
|
Peng Q, Tan S, Xia L, Wu N, Oyang L, Tang Y, Su M, Luo X, Wang Y, Sheng X, Zhou Y, Liao Q. Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. Int J Biol Sci 2022; 18:5103-5122. [PMID: 35982902 PMCID: PMC9379413 DOI: 10.7150/ijbs.75410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a public health problem of great concern, and it is also one of the main causes of death in the world. Cancer is a disease characterized by dysregulation of diverse cellular processes, including avoiding growth inhibitory factors, avoiding immune damage and promoting metastasis, etc. However, the precise mechanism of tumorigenesis and tumor progression still needs to be further elucidated. Formations of liquid-liquid phase separation (LLPS) condensates are a common strategy for cells to achieve diverse functions, such as chromatin organization, signal transduction, DNA repair and transcriptional regulation, etc. The biomolecular aggregates formed by LLPS are mainly driven by multivalent weak interactions mediated by intrinsic disordered regions (IDRs) in proteins. In recent years, aberrant phase separations and transition have been reported to be related to the process of various diseases, such as neurodegenerative diseases and cancer. Herein, we discussed recent findings that phase separation regulates tumor-related signaling pathways and thus contributes to tumor progression. We also reviewed some tumor virus-associated proteins to regulate the development of virus-associated tumors via phase separation. Finally, we discussed some possible strategies for treating tumors by targeting phase separation.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
43
|
Bartholomai BM, Gladfelter AS, Loros JJ, Dunlap JC. PRD-2 mediates clock-regulated perinuclear localization of clock gene RNAs within the circadian cycle of Neurospora. Proc Natl Acad Sci U S A 2022; 119:e2203078119. [PMID: 35881801 PMCID: PMC9351534 DOI: 10.1073/pnas.2203078119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/24/2022] [Indexed: 02/02/2023] Open
Abstract
The transcription-translation negative feedback loops underlying animal and fungal circadian clocks are remarkably similar in their molecular regulatory architecture and, although much is understood about their central mechanism, little is known about the spatiotemporal dynamics of the gene products involved. A common feature of these circadian oscillators is a significant temporal delay between rhythmic accumulation of clock messenger RNAs (mRNAs) encoding negative arm proteins, for example, frq in Neurospora and Per1-3 in mammals, and the appearance of the clock protein complexes assembled from the proteins they encode. Here, we report use of single-molecule RNA fluorescence in situ hybridization (smFISH) to show that the fraction of nuclei actively transcribing the clock gene frq changes in a circadian manner, and that these mRNAs cycle in abundance with fewer than five transcripts per nucleus at any time. Spatial point patterning statistics reveal that frq is spatially clustered near nuclei in a time of day-dependent manner and that clustering requires an RNA-binding protein, PRD-2 (PERIOD-2), recently shown also to bind to mRNA encoding another core clock component, casein kinase 1. An intrinsically disordered protein, PRD-2 displays behavior in vivo and in vitro consistent with participation in biomolecular condensates. These data are consistent with a role for phase-separating RNA-binding proteins in spatiotemporally organizing clock mRNAs to facilitate local translation and assembly of clock protein complexes.
Collapse
Affiliation(s)
- Bradley M. Bartholomai
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jennifer J. Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
44
|
Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Sołtys K, Tarczewska A, Bystranowska D, Sozańska N. Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules. Biomolecules 2022; 12:907. [PMID: 35883463 PMCID: PMC9312465 DOI: 10.3390/biom12070907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/31/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules has emerged as a new paradigm in cell biology, and the process is one proposed mechanism for the formation of membraneless organelles (MLOs). Bacterial cells have only recently drawn strong interest in terms of studies on both liquid-to-liquid and liquid-to-solid phase transitions. It seems that these processes drive the formation of prokaryotic cellular condensates that resemble eukaryotic MLOs. In this review, we present an overview of the key microbial biomolecules that undergo LLPS, as well as the formation and organization of biomacromolecular condensates within the intracellular space. We also discuss the current challenges in investigating bacterial biomacromolecular condensates. Additionally, we highlight a summary of recent knowledge about the participation of bacterial biomolecules in a phase transition and provide some new in silico analyses that can be helpful for further investigations.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.T.); (D.B.); (N.S.)
| | | | | | | |
Collapse
|
46
|
Kilgore HR, Young RA. Learning the chemical grammar of biomolecular condensates. Nat Chem Biol 2022; 18:1298-1306. [PMID: 35761089 PMCID: PMC9691472 DOI: 10.1038/s41589-022-01046-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/21/2022] [Indexed: 12/24/2022]
Abstract
Biomolecular condensates compartmentalize and regulate assemblies of biomolecules engaged in vital physiological processes in cells. Specific proteins and nucleic acids engaged in shared functions occur in any one kind of condensate, suggesting that these compartments have distinct chemical specificities. Indeed, some small-molecule drugs concentrate in specific condensates due to chemical properties engendered by particular amino acids in the proteins in those condensates. Here we argue that the chemical properties that govern molecular interactions between a small molecule and biomolecules within a condensate can be ascertained for both the small molecule and the biomolecules. We propose that learning this 'chemical grammar', the rules describing the chemical features of small molecules that engender attraction or repulsion by the physicochemical environment of a specific condensate, should enable design of drugs with improved efficacy and reduced toxicity.
Collapse
Affiliation(s)
- Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
47
|
Liu J, Zhorabek F, Zhang T, Lam JWY, Tang BZ, Chau Y. Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201721. [PMID: 35596607 DOI: 10.1002/smll.202201721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Liquid-liquid phase separation (LLPS) drives membraneless organelles (MLOs) formation for organizing biomolecules. Artificial MLOs (AMLOs) have been constructed mostly via the LLPS of engineered proteins capable of regulating limited types of biomolecules. Here, leveraging a minimalist AMLO, driven by LLPS of polymer-oligopeptide hybrids, enrichment, recruitment, and release of multifaceted cargoes are quantitatively shown, including small fluorescent molecules, fluorophore-containing macromolecules, proteins, DNAs, and RNAs. Cargoes show up to 105 -fold enrichment, whilst recruitment and release are triggered by variations of temperature, pH, and/or ionic strength. Also, the first efficacious, rapid, and reversible control of aggregation-induced emission with over 30 folds of modulation of overall fluorescence intensity is achieved, by intensifying the aggregation of luminogens in AMLO. The AMLO is a simple yet versatile platform for potential drug delivery and biosensor applications.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Fariza Zhorabek
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Tianfu Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Shenzhen City, Guangdong, 518172, P. R. China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
48
|
Nguyen HT, Hori N, Thirumalai D. Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics. Nat Chem 2022; 14:775-785. [PMID: 35501484 DOI: 10.1038/s41557-022-00934-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Although it is known that RNA undergoes liquid-liquid phase separation, the interplay between the molecular driving forces and the emergent features of the condensates, such as their morphologies and dynamic properties, is not well understood. We introduce a coarse-grained model to simulate phase separation of trinucleotide repeat RNAs, which are implicated in neurological disorders. After establishing that the simulations reproduce key experimental findings, we show that once recruited inside the liquid droplets, the monomers transition from hairpin-like structures to extended states. Interactions between the monomers in the condensates result in the formation of an intricate and dense intermolecular network, which severely restrains the fluctuations and mobilities of the RNAs inside large droplets. In the largest densely packed high-viscosity droplets, the mobility of RNA chains is best characterized by reptation, reminiscent of the dynamics in polymer melts. Our work provides a microscopic framework for understanding liquid-liquid phase separation in RNA, which is not easily discernible in current experiments.
Collapse
Affiliation(s)
- Hung T Nguyen
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Naoto Hori
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
49
|
Van Lindt J, Lazar T, Pakravan D, Demulder M, Meszaros A, Van Den Bosch L, Maes D, Tompa P. F/YGG-motif is an intrinsically disordered nucleic-acid binding motif. RNA Biol 2022; 19:622-635. [PMID: 35491929 PMCID: PMC9067507 DOI: 10.1080/15476286.2022.2066336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNP) function in RNA processing, have RNA-recognition motifs (RRMs) and intrinsically disordered, low-complexity domains (LCDs). While RRMs are drivers of RNA binding, there is only limited knowledge about the RNA interaction by the LCD of some hnRNPs. Here, we show that the LCD of hnRNPA2 interacts with RNA via an embedded Tyr/Gly-rich region which is a disordered RNA-binding motif. RNA binding is maintained upon mutating tyrosine residues to phenylalanines, but abrogated by mutating to alanines, thus we term the RNA-binding region ‘F/YGG motif’. The F/YGG motif can bind a broad range of structured (e.g. tRNA) and disordered (e.g. polyA) RNAs, but not rRNA. As the F/YGG otif can also interact with DNA, we consider it a general nucleic acid-binding motif. hnRNPA2 LCD can form dense droplets, by liquid–liquid phase separation (LLPS). Their formation is inhibited by RNA binding, which is mitigated by salt and 1,6-hexanediol, suggesting that both electrostatic and hydrophobic interactions feature in the F/YGG motif. The D290V mutant also binds RNA, which interferes with both LLPS and aggregation thereof. We found homologous regions in a broad range of RNA- and DNA-binding proteins in the human proteome, suggesting that the F/YGG motif is a general nucleic acid-interaction motif.
Collapse
Affiliation(s)
- Joris Van Lindt
- Center for Structural Biology, VIBVIB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamas Lazar
- Center for Structural Biology, VIBVIB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Donya Pakravan
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Manon Demulder
- Center for Structural Biology, VIBVIB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Attila Meszaros
- Center for Structural Biology, VIBVIB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ludo Van Den Bosch
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Tompa
- Center for Structural Biology, VIBVIB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
50
|
Feric M, Misteli T. Function moves biomolecular condensates in phase space. Bioessays 2022; 44:e2200001. [PMID: 35243657 PMCID: PMC9277701 DOI: 10.1002/bies.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Phase separation underlies the formation of biomolecular condensates. We hypothesize the cellular processes that occur within condensates shape their structural features. We use the example of transcription to discuss structure-function relationships in condensates. Various types of transcriptional condensates have been reported across the evolutionary spectrum in the cell nucleus as well as in mitochondrial and bacterial nucleoids. In vitro and in vivo observations suggest that transcriptional activity of condensates influences their supramolecular structure, which in turn affects their function. Condensate organization thus becomes driven by differences in miscibility among the DNA and proteins of the transcription machinery and the RNA transcripts they generate. These considerations are in line with the notion that cellular processes shape the structural properties of condensates, leading to a dynamic, mutual interplay between structure and function in the cell.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|