1
|
Cao W, He Y, Fu R, Chen Y, Yu J, He Z. A Review of Carbohydrate Supplementation Approaches and Strategies for Optimizing Performance in Elite Long-Distance Endurance. Nutrients 2025; 17:918. [PMID: 40077786 PMCID: PMC11901785 DOI: 10.3390/nu17050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Carbohydrate supplementation is a common practice among endurance athletes participating in long-distance competitions. However, glycogen storage regulation, in-competition blood glucose levels, and their relationship with athletic performance are influenced by multiple factors. This review summarizes the recent research progress on carbohydrate supplementation, addressing its applications in the pre-, during-, and post-competition phases. It explores variables that influence the effectiveness of carbohydrate supplementation and provides a summary of strategies, based on six key aspects: carbohydrate properties, multi-nutrient interactions, gastrointestinal function, individual differences (such as age and gender), environmental conditions, and psychological factors. The combination of different types, ratios, and concentrations of carbohydrates has been demonstrated to enhance the efficiency of carbohydrate digestion and absorption. The synergistic combination of protein, sodium, and caffeine intake demonstrates enhanced efficacy in carbohydrate supplementation strategies. Gastrointestinal tolerance training for carbohydrate supplementation has been identified as an effective measure to alleviate gastrointestinal discomfort during high-dose carbohydrate intake. The adjustment of the carbohydrate-to-fat ratio and the type of carbohydrate intake has been found to mitigate the impact of gender and menstrual cycles on glycogen storage and substrate utilization. Modifying the timing of glycogen storage and regulating the concentration and temperature of carbohydrate solutions during competition have been demonstrated to facilitate coping with the elevated energy expenditure and metabolic substrate shift from fat to carbohydrates, triggered by a combination of environmental and psychological factors, including special environmental and climatic conditions (e.g., high altitude, high temperature, high humidity, and cold) and emotional states (e.g., pre-competition stress and anxiety during the competition). To achieve precise carbohydrate supplementation for athletes in major events under various competitive environments, it is necessary to quantitatively assess the effects of carbohydrate supplementation, supported by mechanistic studies. This can be achieved by utilizing wearable devices to monitor the entire competition, coupled with data collection technologies, such as high-throughput profiling. Furthermore, emerging data analytics techniques, such as machine learning and causal inference, should be leveraged to refine supplementation strategies.
Collapse
Affiliation(s)
- Wei Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (W.C.)
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Yong He
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (W.C.)
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Ronghua Fu
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Yiru Chen
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| | - Jiabei Yu
- Beijing Research Institute of Sports Science, Beijing 100075, China
| | - Zihong He
- Exercise Biology Center, China Institute of Sport Science, Beijing 100061, China
| |
Collapse
|
2
|
Smid DJ, Klous L, Ballak SB, Catoire M, De Hoogh IM, Hoevenaars FPM. Exploring the role of nutritional strategies to influence physiological and cognitive mechanisms in cold weather operations in military personnel. Front Physiol 2025; 16:1539615. [PMID: 40092148 PMCID: PMC11907006 DOI: 10.3389/fphys.2025.1539615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction As a basis for performance optimal nutritional balance is key to keep the body functioning at homeostatic capacity. When environmental circumstances become challenging such as in a cold environment extraordinary performance is requested specifically for physiological (i.e., vascular response, diet induced thermogenesis, immune response), and cognitive mechanisms (i.e., cognitive function, psychological and cognitive wellbeing) of the human body. In this review we describe which nutritional strategies could enhance military performance in the cold by mitigation of CWIs. Methods We will first describe how exposure to cold affects the physiological or cognitive mechanisms itself and then we will explain how nutrition can be used to optimize these affected mechanisms. We will discuss long-term nutritional solutions preventing shortfalls and potential direct quick fixes for physiological and cognitive mechanisms. Results For optimal functioning of the immune system and infection prevention, absence of micronutrient deficiencies is key and should be pursued amongst military personnel. For the effectivity of PUFA's, Echinacea purpurea and probiotics in immune functioning, more research is needed in the CWO context. A multitude of micronutrients (i.e., nitrate, L-citrulline, L-arginine) appears to be able to enhance vasodilation, perhaps partially offsetting the detrimental effect of cold on peripheral blood circulation. Although the direct effect of diet induced thermogenesis is small in comparison to being physically active, it is of interest to investigate the effects of adding a combination of spices to the rations, such as capsaicin from red pepper, cinnamon, ginger, and menthol. Also, of interest for stimulation of thermogenesis are caffeine, and polyphenolic compounds. Caffeine and tyrosine supplementation 1 h, resp. 2 h before a cognitively demanding task during CWOs could be used to mitigate decreases in cognitive performance. Alternatives that are of interest, but need more research, include chocolate polyphenols and omega-3 fatty acids. Conclusion Even though some recommendations can be provided, it is evident that much information regarding the effectiveness and application of micronutrients in cold weather operations is still lacking. More focus should be placed on investigating (micro)nutritional solutions, practical feasibility, and implementation in operational military personnel to better understand the magnitude of the possible benefits in cold conditions.
Collapse
Affiliation(s)
- Dagmar J. Smid
- Research group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Lisa Klous
- Research group Human Performance, Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Sam B. Ballak
- Research group Human Performance, Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Milène Catoire
- Research group Human Performance, Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Iris M. De Hoogh
- Research group Human Performance, Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - Femke P. M. Hoevenaars
- Research group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
3
|
Rosbrook P, Margolis LM, Pryor JL. Nutritional Considerations in Exercise-Based Heat Acclimation: A Narrative Review. Sports Med 2024; 54:3005-3017. [PMID: 39217233 DOI: 10.1007/s40279-024-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In addition to its established thermoregulatory and cardiovascular effects, heat stress provokes alterations in macronutrient metabolism, gastrointestinal integrity, and appetite. Inadequate energy, carbohydrate, and protein intake have been implicated in reduced exercise and heat tolerance. Classic exercise heat acclimation (HA) protocols employ low-to-moderate-intensity exercise for 5-14 days, while recent studies have evolved the practice by implementing high-intensity and task-specific exercise during HA, which potentially results in impaired post-HA physical performance despite adequate heat adaptations. While there is robust literature demonstrating the performance benefit of various nutritional interventions during intensive training and competition, most HA studies implement few nutritional controls. This review summarizes the relationships between heat stress, HA, and intense exercise in connection with substrate metabolism, gastrointestinal function, and the potential consequences of reduced energy availability. We discuss the potential influence of macronutrient manipulations on HA study outcomes and suggest best practices to implement nutritional controls.
Collapse
Affiliation(s)
- Paul Rosbrook
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA.
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA
| | - J Luke Pryor
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
4
|
Ojanen T, Margolis L, van der Sanden K, Haman F, Kingma B, Simonelli G. Cold operational readiness in the military: from science to practice. BMJ Mil Health 2024:military-2024-002740. [PMID: 39353679 DOI: 10.1136/military-2024-002740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Cold weather operations are logistically difficult to orchestrate and extremely challenging for soldiers. Decades of research and empirical evidence indicate that humans are extremely vulnerable to cold and that individual responses are highly variable. In this context, it may be necessary to develop personalised strategies to sustain soldiers' performance and ensure overall mission success in the cold. Systematic cold weather training is essential for soldiers to best prepare to operate during, and recover from, cold weather operations. The purpose of this review is to highlight key aspects of cold weather training, including (1) human responses to cold, (2) nutrition, (3) sleep and (4) protective equipment requirements. Bringing science to practice to improve training principles can facilitate soldiers performing safely and effectively in the cold. Cold weather training prepares soldiers for operations in cold, harsh environments. However, decreases in physical, psychological and thermoregulatory performance have been reported following such training, which influences operational ability and increases the overall risk of injuries. When optimising the planning of field training exercises or operational missions, it is important to understand the soldiers' physical and cognitive performance capacity, as well as their capacity to cope and recover during and after the exercise or mission. Even though the body is fully recovered in terms of body composition or hormonal concentrations, physical or cognitive performance can still be unrecovered. When overlooked, symptoms of overtraining and risk of injury may increase, decreasing operational readiness.
Collapse
Affiliation(s)
- Tommi Ojanen
- Finnish Defence Research Agency, Järvenpää, Finland
| | | | - K van der Sanden
- Netherlands Organization of Applied Scientific Research, Soesterberg, The Netherlands
| | - F Haman
- University of Ottawa, Ottawa, Ontario, Canada
| | - B Kingma
- Netherlands Organization of Applied Scientific Research, Soesterberg, The Netherlands
| | - G Simonelli
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre d'études avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
- Department of Neuroscience, University of Montreal, Montreal, Québec, Canada
| |
Collapse
|
5
|
Xue C, Zhu S, Li Y, Chen X, Lu L, Su P, Zhang Q, Liu X, Guan R, Liu Z, Zhao Z, Tang S, Chen J, Zhang J, Zhang W, Lu H, Luo W. Cold exposure accelerates lysine catabolism to promote cold acclimation via remodeling hepatic histone crotonylation. ENVIRONMENT INTERNATIONAL 2024; 192:109015. [PMID: 39312841 DOI: 10.1016/j.envint.2024.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Cold environments pose serious threats on human health, with increased risk for myocardial infarction, stroke, frostbite, and hypothermia. Acquired cold acclimation is required to minimize cold-induced injures and to improve metabolic health. However, the underlying mechanisms remain to be fully elucidated. OBJECTIVE We aimed to identify critical amino acids involved in cold acclimation and unmask the regulatory mechanisms. METHODS A total of twenty male participants were recruited and followed up after 3 months' natural cold exposure. Cold-induced vasodilation (CIVD) tests and clinical biochemical analysis were performed at baseline and after 3-months cold exposure, whilst blood samples were collected, and plasma amino acids were analyzed by targeted metabolomics. To further confirm the effect of lysine on cold tolerance and explain the latent mechanism, mice were challenged with chronic cold exposure for 7 days with lysine supplement, then core and local surface temperature as well as thermogenesis activity were detected. RESULTS Continuous cold exposure shortened the CIVD onset time and increased the average finger temperature. Levels of the plasma lysine and glycine were decreased in both humans and mice. Venn analysis from three datasets revealed that lysine was the only significantly changed plasma amino acid, which strongly correlated with the altered CIVD. Moreover, mice sustained a relatively higher core temperature and surface temperature in the back, tail and paws upon lysine supplementation. Furthermore, lysine supplementation increased the level of histone H3K18cr and promoted the gene and protein expression of Cpt1a, Cpt2 and Cyp27a1 in liver. CONCLUSION Our work identified lysine as a critical amino acid for the remodeling of hepatic histone crotonylation that facilitates cold acclimation.
Collapse
Affiliation(s)
- Chong Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Sijin Zhu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zongcai Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zhiwei Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Shan Tang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Huanyu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Schafer EA, Chapman CL, Castellani JW, Looney DP. Energy expenditure during physical work in cold environments: physiology and performance considerations for military service members. J Appl Physiol (1985) 2024; 137:995-1013. [PMID: 39205639 PMCID: PMC11486477 DOI: 10.1152/japplphysiol.00210.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Effective execution of military missions in cold environments requires highly trained, well-equipped, and operationally ready service members. Understanding the metabolic energetic demands of performing physical work in extreme cold conditions is critical for individual medical readiness of service members. In this narrative review, we describe 1) the extreme energy costs of performing militarily relevant physical work in cold environments, 2) key factors specific to cold environments that explain these additional energy costs, 3) additional environmental factors that modulate the metabolic burden, 4) medical readiness consequences associated with these circumstances, and 5) potential countermeasures to be developed to aid future military personnel. Key characteristics of the cold operational environment that cause excessive energy expenditure in military personnel include thermoregulatory mechanisms, winter apparel, inspiration of cold air, inclement weather, and activities specific to cold weather. The combination of cold temperatures with other environmental stressors, including altitude, wind, and wet environments, exacerbates the overall metabolic strain on military service members. The high energy cost of working in these environments increases the risk of undesirable consequences, including negative energy balance, dehydration, and subsequent decrements in physical and cognitive performance. Such consequences may be mitigated by the application of enhanced clothing and equipment design, wearable technologies for biomechanical assistance and localized heating, thermogenic pharmaceuticals, and cold habituation and training guidance. Altogether, the reduction in energy expenditure of modern military personnel during physical work in cold environments would promote desirable operational outcomes and optimize the health and performance of service members.
Collapse
Affiliation(s)
- Erica A Schafer
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Christopher L Chapman
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - John W Castellani
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - David P Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
7
|
Dibbasey M, Dahaba M, Sarfo F, Begum R, Kanteh M, Sumareh N, Bakare M, Umukoro S, Amambua-Ngwa A. Seasonal variations in haematological and biochemical parameters of healthy Gambian adults: Retrospective study 2018-2022. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003715. [PMID: 39288124 PMCID: PMC11407651 DOI: 10.1371/journal.pgph.0003715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
The objectives of this study were to determine the presence and effect of seasonal variations and provide insights into trend from 2018 to 2022 in a comprehensive set of routine haematological indices and biochemical measurements in Gambian adults with no known underlying health condition. We retrieved five years of data from an electronic database and analysed 493 full blood counts and 643 biochemical data from different individuals. In this study, we focused on data from individuals with no known underlying health condition who visited the clinical diagnostic laboratory for routine medical examinations or assessments.Our study found a positive association between seasonality (wet season as the reference) and Hb (HB: 0.014(0.015), P<0.05), White blood cells (WBC) (WBC: 0.243(0.163), p = 0.0014), and neutrophils (neutrophils: 0.271(0.131), P<0.05) with exception to red blood cells (RBC) (RBC: - 0.184(0.061), P< 0.003) that showed negative association. Despite the association, the seasonal effects on our derived reference intervals for haematological indices and biochemical measurements from wet season to dry season were not statistically significant (P>0.05). In addition, we observed in our heatmap result that some laboratory parameters, including HB, RBC, haematocrit (HCT), urea, liver enzymes, and potassium, showed seasonal variation patterns throughout the year, with median levels being normal to slightly low during the dry season and normal to high during the wet season. We also found no significant difference (P>0.05) among the median values for all parameters from 2018 to 2022. Additionally, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) parameters showed a consistent declining trend from 2018 to 2022. Our study found no seasonal effects on the derived reference intervals of haematological indices and biochemical measurements. However, we observed changes in patterns for certain parameters particularly HB, RBC, liver enzymes, and potassium based on seasonality.
Collapse
Affiliation(s)
- Mustapha Dibbasey
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Accra, Legon, Ghana
| | - Mamudou Dahaba
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Francess Sarfo
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Rosyna Begum
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mustapha Kanteh
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Nyima Sumareh
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mustapha Bakare
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Solomon Umukoro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
8
|
Singh VK, Hu XH, Singh AK, Solanki MK, Vijayaraghavan P, Srivastav R, Joshi NK, Kumari M, Singh SK, Wang Z, Kumar A. Precision nutrition-based strategy for management of human diseases and healthy aging: current progress and challenges forward. Front Nutr 2024; 11:1427608. [PMID: 39183982 PMCID: PMC11341379 DOI: 10.3389/fnut.2024.1427608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Currently, the treatment of various human ailments is based on different therapeutic approaches including traditional and modern medicine systems. Precision nutrition has come into existence as an emerging approach considering the diverse aspects such as age, sex, genetic and epigenetic makeup, apart from the pathophysiological conditions. The continuously and gradually evolving disciplines of genomics about nutrition have elucidated the importance of genetic variations, epigenetic information, and expression of myriads of genes in disease progression apart from the involvement in modulating therapeutic responses. Further, the investigations have presented the considerable role of gut microbiota comprising of commensal and symbionts performing innumerable activities such as release of bioactive molecules, defense against pathogenic microbes, and regulation of immunity. Noteworthy, the characteristics of the microbiome change depending on host attributes, environmental factors, and habitat, in addition to diet, and therefore can be employed as a biomarker to unravel the response to given food. The specific diet and the components thereof can be suggested for supporting the enrichment of the desired microbial community to some extent as an important part of precision nutrition to achieve not only the goal of human health but also of healthy aging.
Collapse
Affiliation(s)
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Amit Kishore Singh
- Botany Department, B.N. College, T.M. Bhagalpur University, Bhagalpur, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | | | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Naveen Kumar Joshi
- Amity Institute of Microbial Biotechnology, Amity University, Noida, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sandeep Kumar Singh
- Department of Microbiology, Indian Agriculture Research Institute, New Delhi, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
9
|
Scott JM, Deuster PA. Role of nutrition in human performance in military populations. BMJ Mil Health 2024; 170:415-419. [PMID: 36792226 DOI: 10.1136/military-2022-002311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
The role of nutrition and performance is well established. Service members' physical and cognitive performance, sleep and mood are impacted by nutritional choices. Although many eating patterns have emerged, consensus among experts recommend a dietary pattern focused on predominantly whole plant-based foods. Adequate intakes of fruits, vegetables, whole grains, beans, legumes, nuts and seeds should be prioritised. Implementation of strategic and intentional fuelling strategies around times of activity maintain adequate energy stores, enhance recovery and protect against training injuries. Carbohydrates are prioritised before, during and after activity or a mission, although the type and amount will vary based on duration and intensity of activity. Protein is generally the focus after activity or a mission and may be included before activity depending on individual tolerance. There are no specific recommendations for fat consumption before, during and after exercise that will improve performance. That said, Service members generally tolerate low-fat meals/snacks prior to exercise, limit fat intake during exercise, may include fat as part of the post exercise meal/snack, and generally consume most fat during the maintenance and growth phase. Careful consideration and planning for food and fluid requirements should be made when Service members are exposed to heat, cold and/or altitude. Operational rations are formulated to meet the nutritional needs of all Service members across a variety of diverse climates, environments and altitudes. Service members may use dietary supplements to improve their performance and need to be aware of available resources to help them make informed decisions.
Collapse
Affiliation(s)
- Jonathan M Scott
- Consortium for Health and Military Performance, Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - P A Deuster
- Consortium for Health and Military Performance, Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
10
|
Bach CW, Saracino PG, Baur DA, Willingham BD, Ruby BC, Ormsbee MJ. Cold Ambient Temperature Does Not Alter Subcutaneous Abdominal Adipose Tissue Lipolysis and Blood Flow in Endurance-Trained Cyclists. Int J Sport Nutr Exerc Metab 2024; 34:145-153. [PMID: 38330938 DOI: 10.1123/ijsnem.2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
This study sought to investigate the effect of cold ambient temperature on subcutaneous abdominal adipose tissue (SCAAT) lipolysis and blood flow during steady-state endurance exercise in endurance-trained cyclists. Ten males (age: 23 ± 3 years; peak oxygen consumption: 60.60 ± 4.84 ml·kg-1·min-1; body fat: 18.4% ± 3.5%) participated in baseline lactate threshold (LT) and peak oxygen consumption testing, two familiarization trials, and two experimental trials. Experimental trials consisted of cycling in COLD (3 °C; 42% relative humidity) and neutral (NEU; 19 °C; 39% relative humidity) temperatures. Exercise consisted of 25 min cycling at 70% LT and 25 min at 90% LT. In situ SCAAT lipolysis and blood flow were measured via microdialysis. Heart rate, core temperature, carbohydrate and fat oxidation, blood glucose, and blood lactate were also measured. Heart rate, core temperature, oxygen consumption, and blood lactate increased with exercise but were not different between COLD and NEU. SCAAT blood flow did not change from rest to exercise or between COLD and NEU. Interstitial glycerol increased during exercise (p < .001) with no difference between COLD and NEU. Fat oxidation increased (p < .001) at the onset of exercise and remained elevated thereafter with no difference between COLD and NEU. Carbohydrate oxidation increased with increasing exercise intensity and was greater at 70% LT in COLD compared to NEU (p = .030). No differences were observed between conditions for any other variable. Cycling exercise increased SCAAT lipolysis but not blood flow. Ambient temperature did not alter SCAAT metabolism, SCAAT blood flow, or fat oxidation in well-trained cyclists, though cold exposure increased whole-body carbohydrate oxidation at lower exercise intensities.
Collapse
Affiliation(s)
- Christopher W Bach
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Patrick G Saracino
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
- Department of Human Performance and Health, The University of South Carolina Upstate, Spartanburg, SC, USA
| | - Daniel A Baur
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
- Department of Human Performance and Wellness, Virginia Military Institute, Lexington, VA, USA
| | - Brandon D Willingham
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
- Department of Kinesiology, Coastal Carolina University, Conway, SC, USA
| | - Brent C Ruby
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, Missoula, MT, USA
| | - Michael J Ormsbee
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
Margolis LM, Pasiakos SM. Performance nutrition for cold-weather military operations. Int J Circumpolar Health 2023; 82:2192392. [PMID: 36934427 PMCID: PMC10026745 DOI: 10.1080/22423982.2023.2192392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
.High daily energy expenditure without compensatory increases in energy intake results in severe energy deficits during cold-weather military operations. The severity of energy deficits has been proportionally linked to declines in body mass, negative protein balance, suppression of androgen hormones, increases in systemic inflammation and degraded physical performance. Food availability does not appear to be the predominant factor causing energy deficits; providing additional rations or supplement snack bars does not reduce the severity of the energy deficits. Nutrition interventions that allow greater energy intake could be effective for reducing energy deficits during cold-weather military operations. One potential intervention is to increase energy density (i.e. energy per unit mass of food) by increasing dietary fat. Our laboratory recently reported that self-selected higher energy intakes and reductions in energy deficits were primarily driven by fat intake (r = 0.891, r2 = 0.475), which, of the three macronutrients. Further, soldiers who ate more fat lost less body mass, had lower inflammation, and maintained net protein balance compared to those who ate less fat. These data suggest that consuming high-fat energy-dense foods may be a viable nutritional intervention that mitigates the negative physiological effects of energy deficit and sustains physical performance during cold-weather military operations.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Stefan M Pasiakos
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
12
|
Karpęcka-Gałka E, Mazur-Kurach P, Szyguła Z, Frączek B. Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions. Nutrients 2023; 15:4219. [PMID: 37836503 PMCID: PMC10574574 DOI: 10.3390/nu15194219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Appropriate nutritional preparation for a high-mountain expedition can contribute to the prevention of nutritional deficiencies affecting the deterioration of health and performance. The aim of the study was to analyze the dietary habits, supplementation and nutritional value of diets of high mountain climbers. The study group consisted of 28 men (average age 33.12 ± 5.96 years), taking part in summer mountaineering expeditions at an altitude above 3000 m above sea level, lasting at least 3 weeks. Food groups consumed with low frequency during the expedition include vegetables, fruits, eggs, milk and milk products, butter and cream, fish and meat. The energy demand of the study participants was 4559.5 ± 425 kcal, and the energy supply was 2776.8 ± 878 kcal. The participants provided 79.6 ± 18.5 g of protein (1.1 ± 0.3 g protein/kg bw), 374.0 ± 164.5 g of carbohydrates (5.3 ± 2.5 g/kg bw) and 110.7 ± 31.7 g of fat (1.6 ± 0.5 g/kg bw) in the diet. The climbers' diet was low in calories, the protein supply was too low, and the fat supply was too high. There is a need to develop nutritional and supplementation recommendations that would serve as guidelines for climbers, improving their well-being and exercise capacity in severe high-mountain conditions, which would take their individual taste preferences into account.
Collapse
Affiliation(s)
- Ewa Karpęcka-Gałka
- Doctoral School of Physical Culture Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland
| | - Paulina Mazur-Kurach
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (P.M.-K.); (Z.S.); (B.F.)
| | - Zbigniew Szyguła
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (P.M.-K.); (Z.S.); (B.F.)
| | - Barbara Frączek
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education in Krakow, Jana Pawla II 78, 31-571 Krakow, Poland; (P.M.-K.); (Z.S.); (B.F.)
| |
Collapse
|
13
|
Karl JP, Armstrong NJ, Player RA, Rood JC, Soares JW, McClung HL. The Fecal Metabolome Links Diet Composition, Foacidic positive ion conditions, chromatographicallyod Processing, and the Gut Microbiota to Gastrointestinal Health in a Randomized Trial of Adults Consuming a Processed Diet. J Nutr 2022; 152:2343-2357. [PMID: 36774101 DOI: 10.1093/jn/nxac161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Food processing alters diet digestibility and composition, thereby influencing interactions between host biology, diet, and the gut microbiota. The fecal metabolome offers insight into those relations by providing a readout of diet-microbiota interactions impacting host health. OBJECTIVES The aims were to determine the effects of consuming a processed diet on the fecal metabolome and to explore relations between changes in the fecal metabolome with fecal microbiota composition and gastrointestinal health markers. METHODS This was a secondary analysis of a randomized controlled trial wherein healthy adults [94% male; 18-61 y; BMI (kg/m2): 26 ± 3] consumed their usual diet [control (CON), n = 27] or a Meal, Ready-to-EatTM (Ameriqual Packaging) military ration diet composed of processed, shelf-stable, ready-to-eat items for 21 d (MRE; n = 27). Fecal metabolite profiles, fecal microbiota composition, biomarkers of intestinal barrier function, and gastrointestinal symptoms were measured before and after the intervention. Between-group differences and associations were assessed using nonparametric t tests, partial least-squares discriminant analysis, correlation, and redundancy analysis. RESULTS Fecal concentrations of multiple dipeptides [Mann-Whitney effect size (ES) = 0.27-0.50] and long-chain SFAs (ES = 0.35-0.58) increased, whereas plant-derived compounds (ES = 0.31-0.60) decreased in MRE versus CON (P < 0.05; q < 0.20). Changes in dipeptides correlated positively with changes in fecal concentrations of Maillard-reaction products (ρ = 0.29-0.70; P < 0.05) and inversely with changes in serum prealbumin (ρ = -0.30 to -0.48; P ≤ 0.03). Multiple bile acids, coffee and caffeine metabolites, and plant-derived compounds were associated with both fecal microbiota composition and gastrointestinal health markers, with changes in fecal microbiota composition explaining 26% of the variability within changes in gastrointestinal health-associated fecal metabolites (P = 0.001). CONCLUSIONS Changes in the fecal metabolomes of adults consuming a Meal, Ready-to-EatTM diet implicate interactions between diet composition, diet digestibility, and the gut microbiota as contributing to variability within gastrointestinal responses to the diet. Findings underscore the need to consider both food processing and nutrient composition when investigating the impact of diet-gut microbiota interactions on health outcomes. This trial was registered at www. CLINICALTRIALS gov as NCT02423551.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.
| | - Nicholes J Armstrong
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Robert A Player
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Jason W Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Holly L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
14
|
Bubnis MA, Hulsopple C. Human Performance and Injury Prevention in Cold Weather Environments. Curr Sports Med Rep 2022; 21:112-116. [PMID: 35394951 DOI: 10.1249/jsr.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT This article serves as a primer for those practitioners who serve as subject matter experts in cold weather medicine, whether it be medical planning for an outdoor event, making the determination "it is too cold to exercise," or investigating why an athlete is struggling to compete in a frigid environment. Cold weather exercise physiology is reviewed, and medical conditions that may impact performance at cold temperatures are briefly examined. Guidelines for cold weather risk assessment, injury prevention, and performance optimization also are discussed.
Collapse
Affiliation(s)
- Matthew A Bubnis
- National Capital Consortium Military Primary Care Sports Medicine Fellowship, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD
| | | |
Collapse
|
15
|
Liu F, Li M, Wang Q, Yan J, Han S, Ma C, Ma P, Liu X, McClements DJ. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit Rev Food Sci Nutr 2022; 63:6423-6444. [PMID: 35213241 DOI: 10.1080/10408398.2022.2033683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | |
Collapse
|
16
|
Nykänen T, Ojanen T, Heikkinen R, Fogelholm M, Kyröläinen H. Changes in Body Composition, Energy Metabolites and Electrolytes During Winter Survival Training in Male Soldiers. Front Physiol 2022; 13:797268. [PMID: 35250611 PMCID: PMC8889070 DOI: 10.3389/fphys.2022.797268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to examine changes in body composition, energy metabolites and electrolytes during a 10-day winter survival training period. Two groups of male soldiers were examined: the REC group (n = 26; age 19.7 ± 1.2 years; BMI 23.9 ± 2.7) had recovery period between days 6 and 8 in the survival training, whereas the EXC group (n = 42; age 19.6 ± 0.8 years; BMI 23.1 ± 2.8) did not. The following data were collected: body composition (bioimpedance), energy balance (food diaries, heart rate variability measurements), and biomarkers (blood samples). In survival training, estimated energy balance was highly negative: −4,323 ± 1,515 kcal/d (EXC) and −4,635 ± 1,742 kcal/d (REC). Between days 1 and 10, body mass decreased by 3.9% (EXC) and 3.0% (REC). On day 6, free fatty acid and urea levels increased, whereas leptin, glucose and potassium decreased in all. Recovery period temporarily reversed some of the changes (body mass, leptin, free fatty acids, and urea) toward baseline levels. Survival training caused a severe energy deficit and reductions in body mass. The early stage of military survival training seems to alter energy, hormonal and fluid metabolism, but these effects disappear after an active recovery period.
Collapse
Affiliation(s)
- Tarja Nykänen
- Army Academy, Finnish Defence Forces, Lappeenranta, Finland
- *Correspondence: Tarja Nykänen,
| | - Tommi Ojanen
- Finnish Defence Research Agency, Finnish Defence Forces, Tuusula, Finland
| | - Risto Heikkinen
- Statistical Analysis Services, Analyysitoimisto Statisti Oy, Jyväskylä, Finland
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Finnish Defence Forces, National Defence University, Helsinki, Finland
| |
Collapse
|
17
|
KHAN MAF, SOHAIB M, IQBAL S, ALI A, CHAUDHRY M. Revision of ration scale for Pakistani servicemen according to geographical deployment and physical activity level. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.37521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Ahmad ALI
- University of Veterinary and Animal Sciences, Pakistan
| | | |
Collapse
|
18
|
Pasiakos SM, Karl JP, Margolis LM. Challenging traditional carbohydrate intake recommendations for optimizing performance at high altitude. Curr Opin Clin Nutr Metab Care 2021; 24:483-489. [PMID: 34284412 DOI: 10.1097/mco.0000000000000782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To highlight emerging evidence challenging traditional recommendations to increase carbohydrate intake to optimize performance at high altitude. RECENT FINDINGS Several studies have now clearly demonstrated that, compared with sea level, exogenous carbohydrate oxidation during aerobic exercise is blunted in lowlanders during initial exposure to high altitude. There is also no apparent ergogenic effect of ingesting carbohydrate during aerobic exercise on subsequent performance at high altitude, either initially after arriving or even after up to 22 days of acclimatization. The inability to oxidize and functionally benefit from exogenous carbohydrate intake during exercise after arriving at high altitude coincides with hyperinsulinemia, accelerated glycogenolysis, and reduced peripheral glucose uptake. Collectively, these responses are consistent with a hypoxia-mediated metabolic dysregulation reflective of insulin resistance. Parallel lines of evidence have also recently demonstrated roles for the gut microbiome in host metabolism, bioenergetics, and physiologic responses to high altitude, implicating the gut microbiome as one potential mediator of hypoxia-mediated metabolic dysregulation. SUMMARY Identification of novel and well tolerated nutrition and/or pharmacological approaches for alleviating hypoxia-mediated metabolic dysregulation and enhancing exogenous carbohydrate oxidation may be more effective for optimizing performance of lowlanders newly arrived at high altitude than traditional carbohydrate recommendations.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Millet J, Siracusa J, Tardo-Dino PE, Thivel D, Koulmann N, Malgoyre A, Charlot K. Effects of Acute Heat and Cold Exposures at Rest or during Exercise on Subsequent Energy Intake: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13103424. [PMID: 34684424 PMCID: PMC8538265 DOI: 10.3390/nu13103424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
The objective of this meta-analysis was to assess the effect of acute heat/cold exposure on subsequent energy intake (EI) in adults. We searched the following sources for publications on this topic: PubMed, Ovid Medline, Science Direct and SPORTDiscus. The eligibility criteria for study selection were: randomized controlled trials performed in adults (169 men and 30 women; 20–52 years old) comparing EI at one or more meals taken ad libitum, during and/or after exposure to heat/cold and thermoneutral conditions. One of several exercise sessions could be realized before or during thermal exposures. Two of the thirteen studies included examined the effect of heat (one during exercise and one during exercise and at rest), eight investigated the effect of cold (six during exercise and two at rest), and three the effect of both heat and cold (two during exercise and one at rest). The meta-analysis revealed a small increase in EI in cold conditions (g = 0.44; p = 0.019) and a small decrease in hot conditions (g = −0.39, p = 0.022) for exposure during both rest and exercise. Exposures to heat and cold altered EI in opposite ways, with heat decreasing EI and cold increasing it. The effect of exercise remains unclear.
Collapse
Affiliation(s)
- Juliette Millet
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Julien Siracusa
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Pierre-Emmanuel Tardo-Dino
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - David Thivel
- Laboratory AME2P, University of Clermont Auvergne, 63170 Aubière, France;
| | - Nathalie Koulmann
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
- Ecole du Val-de-Grâce, 1, Place Alphonse Laveran, 75230 Paris, France
| | - Alexandra Malgoyre
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Keyne Charlot
- Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, 91223 Bretigny-Sur-Orge, France; (J.M.); (J.S.); (P.-E.T.-D.); (N.K.); (A.M.)
- LBEPS, Univ Evry, IRBA, Université Paris Saclay, 91025 Evry, France
- Correspondence: ; Tel.: +33-(1)78-65-13-03
| |
Collapse
|
20
|
Karl JP, Margolis LM, Fallowfield JL, Child RB, Martin NM, McClung JP. Military nutrition research: Contemporary issues, state of the science and future directions. Eur J Sport Sci 2021; 22:87-98. [PMID: 33980120 DOI: 10.1080/17461391.2021.1930192] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The importance of diet and nutrition to military readiness and performance has been recognized for centuries as dietary nutrients sustain health, protect against illness, and promote resilience, performance and recovery. Contemporary military nutrition research is increasingly inter-disciplinary with emphasis often placed on the broad topics of (1) determining operational nutrition requirements in all environments, (2) characterizing nutritional practices of military personnel relative to the required (role/environment) standards, and (3) developing strategies for improving nutrient delivery and individual choices. This review discusses contemporary issues shared internationally by military nutrition research programmes, and highlights emerging topics likely to influence future military nutrition research and policy. Contemporary issues include improving the diet quality of military personnel, optimizing operational rations, and increasing understanding of biological factors influencing nutrient requirements. Emerging areas include the burgeoning field of precision nutrition and its technological enablers.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Joanne L Fallowfield
- Environmental Medicine and Science Division, Institute of Naval Medicine, Alverstoke, Hampshire, UK
| | - Robert B Child
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Nicola M Martin
- New Zealand Army, New Zealand Defence Force, Upper Hutt, New Zealand
| | - James P McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
21
|
Briguglio M. Nutritional Orthopedics and Space Nutrition as Two Sides of the Same Coin: A Scoping Review. Nutrients 2021; 13:483. [PMID: 33535596 PMCID: PMC7912880 DOI: 10.3390/nu13020483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Since the Moon landing, nutritional research has been charged with the task of guaranteeing human health in space. In addition, nutrition applied to Orthopedics has developed in recent years, driven by the need to improve the efficiency of the treatment path by enhancing the recovery after surgery. As a result, nutritional sciences have specialized into two distinct fields of research: Nutritional Orthopedics and Space Nutrition. The former primarily deals with the nutritional requirements of old patients in hospitals, whereas the latter focuses on the varied food challenges of space travelers heading to deep space. Although they may seem disconnected, they both investigate similar nutritional issues. This scoping review shows what these two disciplines have in common, highlighting the mutual features between (1) pre-operative vs. pre-launch nutritional programs, (2) hospital-based vs. space station nutritional issues, and (3) post-discharge vs. deep space nutritional resilience. PubMed and Google Scholar were used to collect documents published from 1950 to 2020, from which 44 references were selected on Nutritional Orthopedics and 44 on Space Nutrition. Both the orthopedic patient and the astronaut were found to suffer from food insecurity, malnutrition, musculoskeletal involution, flavor/pleasure issues, fluid shifts, metabolic stresses, and isolation/confinement. Both fields of research aid the planning of demand-driven food systems and advanced nutritional approaches, like tailored diets with nutrients of interest (e.g., vitamin D and calcium). The nutritional features of orthopedic patients on Earth and of astronauts in space are undeniably related. Consequently, it is important to initiate close collaborations between orthopedic nutritionists and space experts, with the musculoskeletal-related dedications playing as common fuel.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Via Riccardo Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|
22
|
Feeding Your Himalayan Expedition: Nutritional Signatures and Body Composition Adaptations of Trekkers and Porters. Nutrients 2021; 13:nu13020460. [PMID: 33573243 PMCID: PMC7911656 DOI: 10.3390/nu13020460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
High-altitude exposure leads to many physiological challenges, such as weight loss and dehydration. However, little attention has been posed to the role of nutrition and ethnic differences. Aiming to fulfill this gap, five Italian trekkers and seven Nepalese porters, all males, recorded their diet in diaries during a Himalayan expedition (19 days), and the average daily intake of micro and macro-nutrients were calculated. Bioimpedance analysis was performed five times during the trek; muscle ultrasound was performed before and after the expedition, only for the Italians. The Nepalese group consumed a lot of rice and only Italians consumed cheese. Water intake was slightly over 3000 g/d for both groups. Nepalese diet had a higher density of dietary fibre and lower density of riboflavin, vitamins A, K, and B12. Intake of calcium was lower than recommended levels. Body mass index, waist circumference, fat-free mass, and total body water decreased in both groups, whereas resistance (Rz) increased. Italians reactance (Xc) increased at day 9, whereas that of Nepalese occurred at days 5, 9, and 16. The cross-sectional area of the Vastus lateralis was reduced after the expedition. Specific nutritional and food-related risk factors guidance is needed for diverse expedition groups. Loss of muscle mass and balance of fluids both deserve a particular focus as concerns altitude expeditions.
Collapse
|
23
|
Gwin JA, Church DD, Wolfe RR, Ferrando AA, Pasiakos SM. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Deficit. Nutrients 2020; 12:nu12082457. [PMID: 32824200 PMCID: PMC7469068 DOI: 10.3390/nu12082457] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.
Collapse
Affiliation(s)
- Jess A. Gwin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - David D. Church
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Robert R. Wolfe
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Arny A. Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, Center for Translational Research in Aging & Longevity, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.D.C); (R.R.W.); (A.A.F.)
| | - Stefan M. Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
- Correspondence: ; Tel.: +1-508-206-2353
| |
Collapse
|