1
|
Zhu H, Bruck-Haimson R, Zaretsky A, Cohen I, Falk R, Achache H, Tzur YB, Cohen E. A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling. Nat Cell Biol 2025; 27:87-102. [PMID: 39753948 DOI: 10.1038/s41556-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases. Yet the identification of proteostasis regulators is needed to assess the feasibility of this approach. Here we report that knocking down the activity of the nucleolar FIB-1-NOL-56 complex protects model nematodes from proteotoxicity of the Alzheimer's disease-causing amyloid-β peptide and of abnormally long poly-glutamine stretches. This mechanism promotes proteostasis across tissues by modulating the activity of TGFβ signalling and by enhancing proteasome activity. Our findings point at research avenues towards the development of proteostasis-promoting therapies for neurodegenerative maladies.
Collapse
Affiliation(s)
- Huadong Zhu
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam Zaretsky
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Falk
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Achache
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Siddiqui AA, Merquiol E, Bruck-Haimson R, Hirbawi J, Boocholez H, Cohen I, Yan Y, Dong MQ, Blum G, Cohen E. Cathepsin B promotes Aβ proteotoxicity by modulating aging regulating mechanisms. Nat Commun 2024; 15:8564. [PMID: 39362844 PMCID: PMC11450018 DOI: 10.1038/s41467-024-52540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
While the activities of certain proteases promote proteostasis and prevent neurodegeneration-associated phenotypes, the protease cathepsin B (CTSB) enhances proteotoxicity in Alzheimer's disease (AD) model mice, and its levels are elevated in brains of AD patients. How CTSB exacerbates the toxicity of the AD-causing Amyloid β (Aβ) peptide is controversial. Using an activity-based probe, aging-altering interventions and the nematode C. elegans, we discovered that the CTSB CPR-6 promotes Aβ proteotoxicity but mitigates the toxicity of polyQ stretches. While the knockdown of cpr-6 does not affect lifespan, it alleviates Aβ toxicity by reducing the expression of swsn-3 and elevating the level of the protein SMK-1, both involved in the regulation of aging. These observations unveil a mechanism by which CTSB aggravates Aβ-mediated toxicity, indicate that it plays opposing roles in the face of distinct proteotoxic insults and highlight the importance of tailoring specific remedies for distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Emmanuelle Merquiol
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Joud Hirbawi
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Yonghong Yan
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Meng Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Galia Blum
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel.
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel.
| |
Collapse
|
3
|
Elsana H, Bruck‐Haimson R, Zhu H, Siddiqui AA, Zaretsky A, Cohen I, Boocholez H, Roitenberg N, Moll L, Plaschkes I, Naor D, Cohen E. A short peptide protects from age-onset proteotoxicity. Aging Cell 2023; 22:e14013. [PMID: 37897137 PMCID: PMC10726816 DOI: 10.1111/acel.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Aberrant protein aggregation jeopardizes cellular functionality and underlies the development of a myriad of late-onset maladies including Alzheimer's disease (AD) and Huntington's disease (HD). Accordingly, molecules that mitigate the toxicity of hazardous protein aggregates are of great interest as potential future therapeutics. Here we asked whether a small peptide, composed of five amino acids (5MER peptide) that was derived from the human pro-inflammatory CD44 protein, could protect model nematodes from the toxicity of aggregative proteins that underlie the development of neurodegenerative disorders in humans. We found that the 5MER peptide mitigates the toxicity that stems from both; the AD-causing Aβ peptide and a stretch of poly-glutamine that is accountable for the development of several disorders including HD, while minimally affecting lifespan. This protection was dependent on the activity of aging-regulating transcription factors and associated with enhanced Aβ and polyQ35-YFP aggregation. A transcriptomic analysis unveiled that the peptide modifies signaling pathways, thereby modulating the expression of various genes, including these, which are known as protein homeostasis (proteostasis) regulators such as txt-13 and modifiers of proteasome activity. The knockdown of txt-13 protects worms from proteotoxicity to the same extent as the 5MER peptide, suggesting that the peptide activates the transcellular chaperone signaling to promote proteostasis. Together, our results propose that the 5MER peptide should be considered as a component of future therapeutic cocktails for the treatment of neurodegenerative maladies.
Collapse
Affiliation(s)
- Hassan Elsana
- The Lautenberg Center of Immunology and Cancer ResearchThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Reut Bruck‐Haimson
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Huadong Zhu
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Adam Zaretsky
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Irit Cohen
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Hana Boocholez
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Noa Roitenberg
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Lorna Moll
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Inbar Plaschkes
- Info‐COREBioinformatics Unit of the I‐CORE, The Hebrew UniversityJerusalemIsrael
| | - David Naor
- The Lautenberg Center of Immunology and Cancer ResearchThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| | - Ehud Cohen
- Department of Biochemistry and Molecular BiologyThe Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University School of MedicineJerusalemIsrael
| |
Collapse
|
4
|
Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Rep 2022; 38:110350. [PMID: 35139369 DOI: 10.1016/j.celrep.2022.110350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
The protein homeostasis (proteostasis) network (PN) encompasses mechanisms that maintain proteome integrity by controlling various biological functions. Loss of proteostasis leads to toxic protein aggregation (proteotoxicity), which underlies the manifestation of neurodegeneration. How the PN responds to dissimilar proteotoxic challenges and how these responses are regulated at the organismal level are largely unknown. Here, we report that, while torsin chaperones protect from the toxicity of neurodegeneration-causing polyglutamine stretches, they exacerbate the toxicity of the Alzheimer's disease-causing Aβ peptide in neurons and muscles. These opposing effects are accompanied by differential modulations of gene expression, including that of three neuropeptides that are involved in tailoring the organismal response to dissimilar proteotoxic insults. This mechanism is regulated by insulin/IGF signaling and the transcription factor SKN-1/NRF. Our work delineates a mechanism by which the PN orchestrates differential responses to dissimilar proteotoxic challenges and points at potential targets for therapeutic interventions.
Collapse
|
5
|
Grushko D, Boocholez H, Levine A, Cohen E. Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS One 2021; 16:e0243522. [PMID: 34197476 PMCID: PMC8248617 DOI: 10.1371/journal.pone.0243522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Lowering the activity of the Insulin/IGF-1 Signaling (IIS) cascade results in elevated stress resistance, enhanced protein homeostasis (proteostasis) and extended lifespan of worms, flies and mice. In the nematode Caenorhabditis elegans (C. elegans), the longevity phenotype that stems from IIS reduction is entirely dependent upon the activities of a subset of transcription factors including the Forkhead factor DAF-16/FOXO (DAF-16), Heat Shock Factor-1 (HSF-1), SKiNhead/Nrf (SKN-1) and ParaQuat Methylviologen responsive (PQM-1). While DAF-16 determines lifespan exclusively during early adulthood and governs proteostasis in early adulthood and midlife, HSF-1 executes these functions foremost during development. Despite the central roles of SKN-1 as a regulator of lifespan and proteostasis, the temporal requirements of this transcription factor were unknown. Here we employed conditional knockdown techniques and discovered that in C. elegans, SKN-1 is primarily important for longevity and proteostasis during late larval development through early adulthood. Our findings indicate that events that occur during late larval developmental through early adulthood affect lifespan and proteostasis and suggest that subsequent to HSF-1, SKN-1 sets the conditions, partially overlapping temporally with DAF-16, that enable IIS reduction to promote longevity and proteostasis. Our findings raise the intriguing possibility that HSF-1, SKN-1 and DAF-16 function in a coordinated and sequential manner to promote healthy aging.
Collapse
Affiliation(s)
- Danielle Grushko
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| | - Amir Levine
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
6
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
7
|
Dakik P, Rodriguez MEL, Junio JAB, Mitrofanova D, Medkour Y, Tafakori T, Taifour T, Lutchman V, Samson E, Arlia-Ciommo A, Rukundo B, Simard É, Titorenko VI. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Oncotarget 2020; 11:2182-2203. [PMID: 32577164 PMCID: PMC7289529 DOI: 10.18632/oncotarget.27615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply. We show that each of these longevity-extending plant extracts is a geroprotector that decreases the rate of yeast chronological aging and promotes a hormetic stress response. We also show that each of the fifteen geroprotective plant extracts mimics the longevity-extending, stress-protecting, metabolic and physiological effects of a caloric restriction diet but if added to yeast cultured under non-caloric restriction conditions. We provide evidence that the fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct set of longevity-defining cellular processes. These effects include a rise in coupled mitochondrial respiration, an altered age-related chronology of changes in reactive oxygen species abundance, protection of cellular macromolecules from oxidative damage, and an age-related increase in the resistance to long-term oxidative and thermal stresses.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Eugenie Samson
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Belise Rukundo
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
8
|
Induction of Heat Shock Protein 70 in Mouse RPE as an In Vivo Model of Transpupillary Thermal Stimulation. Int J Mol Sci 2020; 21:ijms21062063. [PMID: 32192227 PMCID: PMC7139698 DOI: 10.3390/ijms21062063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The induction of heat shock response in the macula has been proposed as a useful therapeutic strategy for retinal neurodegenerative diseases by promoting proteostasis and enhancing protective chaperone mechanisms. We applied transpupillary 1064 nm long-duration laser heating to the mouse (C57Bl/6J) fundus to examine the heat shock response in vivo. The intensity and spatial distribution of heat shock protein (HSP) 70 expression along with the concomitant probability for damage were measured 24 h after laser irradiation in the mouse retinal pigment epithelium (RPE) as a function of laser power. Our results show that the range of heating powers for producing heat shock response while avoiding damage in the mouse RPE is narrow. At powers of 64 and 70 mW, HSP70 immunostaining indicates 90 and 100% probability for clearly elevated HSP expression while the corresponding probability for damage is 20 and 33%, respectively. Tunel staining identified the apoptotic regions, and the estimated 50% damaging threshold probability for the heating (ED50) was ~72 mW. The staining with Bestrophin1 (BEST1) demonstrated RPE cell atrophy with the most intense powers. Consequently, fundus heating with a long-duration laser provides an approachable method to develop heat shock-based therapies for the RPE of retinal disease model mice.
Collapse
|
9
|
Direito I, Fardilha M, Helguero LA. Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 2019; 40:203-215. [PMID: 30596981 DOI: 10.1093/carcin/bgy182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022] Open
Abstract
Resistant breast and prostate cancers remain a major clinical problem, new therapeutic approaches and better predictors of therapeutic response are clearly needed. Because of the involvement of the unfolded protein response (UPR) in cell proliferation and apoptosis evasion, an increasing number of publications support the hypothesis that impairments in this network trigger and/or exacerbate cancer. Moreover, UPR activation could contribute to the development of drug resistance phenotypes in both breast and prostate cancers. Therefore, targeting this pathway has recently emerged as a promising strategy in anticancer therapy. This review addresses the contribution of UPR to breast and prostate tissues homeostasis and its significance to cancer endocrine response with focus on the current progress on UPR research related to cancer biology, detection, prognosis and treatment.
Collapse
Affiliation(s)
| | - Margarida Fardilha
- Signal Transduction Laboratory, Department of Medical Sciences, Institute for Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | | |
Collapse
|
10
|
Levine A, Grushko D, Cohen E. Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis. Aging Cell 2019; 18:e13047. [PMID: 31576648 PMCID: PMC6826161 DOI: 10.1111/acel.13047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023] Open
Abstract
Cellular mechanisms that act in concert to maintain protein homeostasis (proteostasis) are vital for organismal functionality and survival. Nevertheless, subsets of aggregation-prone proteins form toxic aggregates (proteotoxicity) that in some cases, underlie the development of neurodegenerative diseases. Proteotoxic aggregates are often deposited in the vicinity of the nucleus, a process that is cytoskeleton-dependent. Accordingly, cytoskeletal dysfunction contributes to pathological hallmarks of various neurodegenerative diseases. Here, we asked whether the linker of nucleoskeleton and cytoskeleton (LINC) complex, which bridges these filaments across the nuclear envelope, is needed for the maintenance of proteostasis. Employing model nematodes, we discovered that knocking down LINC components impairs the ability of the worm to cope with proteotoxicity. Knocking down anc-1, which encodes a key component of the LINC complex, modulates the expression of transcription factors and E3 ubiquitin ligases, thereby affecting the rates of protein ubiquitination and impairing proteasome-mediated protein degradation. Our results establish a link between the LINC complex, protein degradation, and neurodegeneration-associated proteotoxicity.
Collapse
Affiliation(s)
- Amir Levine
- Department of Biochemistry and Molecular Biology The Institute for Medical Research Israel‐Canada The Hebrew University of Jerusalem Jerusalem Israel
| | - Danielle Grushko
- Department of Biochemistry and Molecular Biology The Institute for Medical Research Israel‐Canada The Hebrew University of Jerusalem Jerusalem Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology The Institute for Medical Research Israel‐Canada The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
11
|
Roitenberg N, Cohen E. Lipid Assemblies at the Crossroads of Aging, Proteostasis, and Neurodegeneration. Trends Cell Biol 2019; 29:954-963. [PMID: 31669295 DOI: 10.1016/j.tcb.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
The proteostasis network (PN) is a nexus of mechanisms that act in concert to maintain the integrity of the proteome. Efficiency of the PN declines with age, resulting in the accumulation of misfolded proteins, and in some cases in the development of neurodegenerative disorders. Thus, maintaining an active and efficient PN through the late stages of life could delay or prevent neurodegeneration. Indeed, altering the activity of aging-regulating pathways protects model organisms from neurodegeneration-linked toxic protein aggregation. Here, we delineate evidence that the formation and integrity of lipid assemblies are affected by aging-regulating pathways, and describe the roles of these structures in proteostasis maintenance. We also highlight future research directions and discuss the possibility that compounds which modulate lipid assemblies could be used for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Noa Roitenberg
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the Hebrew University School of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
12
|
Kumar Chaudhary M, Rizvi SI. Invertebrate and vertebrate models in aging research. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:114-121. [PMID: 30837761 DOI: 10.5507/bp.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Therapeutic interventions that can delay age associated diseases and ensure a longer health-span is a major goal of aging research. Consequent to understanding that aging is a modifiable trait, a large number of studies are currently being undertaken to elucidate the mechanism(s) of the aging process. Research on human aging and longevity is difficult, due to longer time frame, ethical concerns and environmental variables. Most of the present day understanding about the aging process comes through studies conducted on model organisms. These provide suitable platforms for understanding underlying mechanism(s) which control aging and have led to major discoveries that emphasize the evolutionarily conserved molecular pathways as key players that respond to extra and intracellular signals. This is a review of various invertebrate and vertebrate models including yeast, Drosophila, C. elegans, rodents, naked mole rat, and birds, currently used in aging research with emphasis on how well they can mimic aging in higher animals and humans.
Collapse
Affiliation(s)
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
13
|
Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 2019; 10:313-338. [PMID: 30719227 PMCID: PMC6349451 DOI: 10.18632/oncotarget.26553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
14
|
Moll L, Roitenberg N, Bejerano-Sagie M, Boocholez H, Carvalhal Marques F, Volovik Y, Elami T, Siddiqui AA, Grushko D, Biram A, Lampert B, Achache H, Ravid T, Tzur YB, Cohen E. The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in Caenorhabditis elegans. eLife 2018; 7:38635. [PMID: 30403374 PMCID: PMC6277199 DOI: 10.7554/elife.38635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/02/2022] Open
Abstract
Although aging-regulating pathways were discovered a few decades ago, it is not entirely clear how their activities are orchestrated, to govern lifespan and proteostasis at the organismal level. Here, we utilized the nematode Caenorhabditis elegans to examine whether the alteration of aging, by reducing the activity of the Insulin/IGF signaling (IIS) cascade, affects protein SUMOylation. We found that IIS activity promotes the SUMOylation of the germline protein, CAR-1, thereby shortening lifespan and impairing proteostasis. In contrast, the expression of mutated CAR-1, that cannot be SUMOylated at residue 185, extends lifespan and enhances proteostasis. A mechanistic analysis indicated that CAR-1 mediates its aging-altering functions, at least partially, through the notch-like receptor glp-1. Our findings unveil a novel regulatory axis in which SUMOylation is utilized to integrate the aging-controlling functions of the IIS and of the germline and provide new insights into the roles of SUMOylation in the regulation of organismal aging. Aging may seem inescapable, but there are many factors, from diet to genetic mutations, that can affect this process. In fact, scientists have started to uncover the mechanisms that control and influence this slow decline. For example, in the small worm Caenorhabditis elegans, removing the germs cells – which give rise to eggs – extends the lifespan. Similarly, interfering with the activity of the Insulin/IGF-1 signaling (IIS) pathway leads to a longer life for the animals. However, it is unclear whether these two mechanisms work together, or if they operate in parallel. To explore this, Moll, Roitenberg et al. first looked at how the IIS pathway regulates a type of protein modification known as SUMOylation in C. elegans. Reducing the activity of the IIS pathway slowed down aging in the worms. It also decreased the levels of SUMOylation of certain proteins, including CAR-1, which is found in the structures that produce germ cells. Further experiments showed that stopping the SUMOylation of CAR-1 extended the lifespan of the animals. In fact, replacing the protein with a mutated version of CAR-1 that cannot accept the SUMO element makes the worms live longer and resist a toxic protein that causes Alzheimer’s disease in humans. These results therefore show that, in C. elegans, the IIS pathway and a mechanism that involves CAR-1 in germ cells work together to determine the pace of aging. Further studies are now needed to dissect how the IIS pathway influences SUMOylation, and whether the findings hold true in mammals.
Collapse
Affiliation(s)
- Lorna Moll
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Noa Roitenberg
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Yuli Volovik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Tayir Elami
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Danielle Grushko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Adi Biram
- Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bar Lampert
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hana Achache
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tommer Ravid
- Departments of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Departments of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
15
|
Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods 2018; 463:21-26. [PMID: 30114401 DOI: 10.1016/j.jim.2018.08.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
The world is witnessing a rapid demographic shift towards an older population, a trend with major medical, social, economic and political implications. Aging is a multifaceted process, involving numerous molecular and cellular mechanisms in the context of different organ systems. A crucial component of aging is a set of functional and structural alterations in the immune system that can manifest as a decreased ability to fight infection, diminished response to vaccination, increased incidence of cancer, higher prevalence of autoimmunity and constitutive low-grade inflammation, among others. In addition to cell-intrinsic changes in both innate and adaptive immune cells, alterations in the stromal microenvironment in primary and secondary lymphoid organs play an important role in age-associated immune dysfunction. This article will provide a broad overview of these phenomena and point out some of their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States.
| |
Collapse
|
16
|
Ramos de Carvalho JE, Verwoert MT, Vogels IM, Reits EA, Van Noorden CJ, Klaassen I, Schlingemann RO. Involvement of the ubiquitin-proteasome system in the expression of extracellular matrix genes in retinal pigment epithelial cells. Biochem Biophys Rep 2018; 13:83-92. [PMID: 29387813 PMCID: PMC5789218 DOI: 10.1016/j.bbrep.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/06/2023] Open
Abstract
Emerging evidence suggests that dysfunction of the ubiquitin-proteasome system is involved in the pathogenesis of numerous senile degenerative diseases including retinal disorders. The aim of this study was to assess whether there is a link between proteasome regulation and retinal pigment epithelium (RPE)-mediated expression of extracellular matrix genes. For this purpose, human retinal pigment epithelial cells (ARPE-19) were treated with different concentrations of transforming growth factor-β (TGFβ), connective tissue growth factor (CTGF), interferon-γ (IFNγ) and the irreversible proteasome inhibitor epoxomicin. First, cytotoxicity and proliferation assays were carried out. The expression of proteasome-related genes and proteins was assessed and proteasome activity was determined. Then, expression of fibrosis-associated factors fibronectin (FN), fibronectin EDA domain (FN EDA), metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated receptor-γ (PPARγ) was assessed. The proteasome inhibitor epoxomicin strongly arrested cell cycle progression and down-regulated TGFβ gene expression, which in turn was shown to induce expression of pro-fibrogenic genes in ARPE-19 cells. Furthermore, epoxomicin induced a directional shift in the balance between MMP-2 and TIMP-1 and was associated with down-regulation of transcription of extracellular matrix genes FN and FN-EDA and up-regulation of the anti-fibrogenic factor PPARγ. In addition, both CTGF and TGFβ were shown to affect expression of proteasome-associated mRNA and protein levels. Our results suggest a link between proteasome activity and pro-fibrogenic mechanisms in the RPE, which could imply a role for proteasome-modulating agents in the treatment of retinal disorders characterized by RPE-mediated fibrogenic responses.
Collapse
Key Words
- AMD, age-related macular degeneration
- ARPE-19, human retinal pigment epithelial cells
- CNV, choroidal neovascularization
- CTGF
- CTGF, connective tissue growth factor
- ECM, extracellular matrix
- EMT, epithelial-mesenchymal transition
- Epoxomicin
- FN EDA, fibronectin EDA domain
- FN, fibronectin
- Fibrosis
- IFNγ, interferon-γ
- MMP-2, matrix metalloproteinase-2
- PPARγ
- PPARγ, peroxisome proliferator-associated receptor-γ
- Proteasome
- RPE
- RPE, retinal pigment epithelium
- Retina
- TGFβ
- TGFβ, transforming growth factor-β
- TIMP-1, tissue inhibitor of metalloproteinases-1
- UPS, ubiquitin-proteasome system
- nAMD, neovascular age-related macular degeneration
Collapse
Affiliation(s)
- J. Emanuel Ramos de Carvalho
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Milan T. Verwoert
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilse M.C. Vogels
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J.F. Van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Lutchman V, Dakik P, McAuley M, Cortes B, Ferraye G, Gontmacher L, Graziano D, Moukhariq FZ, Simard É, Titorenko VI. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget 2018; 7:50845-50863. [PMID: 27447556 PMCID: PMC5239441 DOI: 10.18632/oncotarget.10689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.
Collapse
Affiliation(s)
- Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - George Ferraye
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Leonid Gontmacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - David Graziano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
18
|
Pan I, Roitenberg N, Cohen E. Vesicle-mediated secretion of misfolded prion protein molecules from cyclosporin A-treated cells. FASEB J 2018; 32:1479-1492. [PMID: 29127190 DOI: 10.1096/fj.201700598rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loss of protein homeostasis is a hazardous situation that jeopardizes cellular functionality and viability. Cells have developed mechanisms that supervise protein integrity and direct misfolded molecules for degradation. Nevertheless, subsets of aggregation-prone proteins escape degradation and form aggregates that can underlie the development of neurodegenerative disorders. In some cases, cells deposit hazardous protein aggregates in designated sites, like aggresomes, or secrete them with vesicles. The prion protein (PrP) is an aggregation-prone, membrane-anchored glycoprotein, whose aggregation causes familial and sporadic, fatal, neurodegenerative diseases. The proper maturation of PrP is assisted by cyclophilin B, an endoplasmic reticulum-resident foldase. Accordingly, the inhibition of cyclophilins by the drug cyclosporin A (CsA) leads to the accumulation of aggregated PrP and to its deposition in aggresomes. In this study, we asked whether secretion is an alternative strategy that cells adopt to get rid of misfolded PrP molecules and found that, upon treatment with CsA, cells secrete PrP by exosomes, a subtype of secretion vesicles, and by additional types of vesicles. CsA-induced, PrP-containing exosomes originate from the endoplasmic reticulum in a Golgi-independent manner. These findings divulge a new cellular response that is activated upon CsA treatment to secrete misfolded PrP species from the cell and may underlie the spreading of toxic prions among cells and across tissues.-Pan, I., Roitenberg, N., Cohen, E. Vesicle-mediated secretion of misfolded prion protein molecules from cyclosporin A-treated cells.
Collapse
Affiliation(s)
- Ieshita Pan
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Noa Roitenberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
19
|
Epigenetic regulation in cell senescence. J Mol Med (Berl) 2017; 95:1257-1268. [DOI: 10.1007/s00109-017-1581-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
|
20
|
Sanders J, Scholz M, Merutka I, Biron D. Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues. BMC Biol 2017; 15:67. [PMID: 28844202 PMCID: PMC5572162 DOI: 10.1186/s12915-017-0407-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disrupting sleep during development leads to lasting deficits in chordates and arthropods. To address lasting impacts of sleep deprivation in Caenorhabditis elegans, we established a nonlethal deprivation protocol. RESULTS Deprivation triggered protective insulin-like signaling and two unfolded protein responses (UPRs): the mitochondrial (UPRmt) and the endoplasmic reticulum (UPRER) responses. While the latter is known to be triggered by sleep deprivation in rodent and insect brains, the former was not strongly associated with sleep deprivation previously. We show that deprivation results in a feeding defect when the UPRmt is deficient and in UPRER-dependent germ cell apoptosis. In addition, when the UPRER is deficient, deprivation causes excess twitching in vulval muscles, mirroring a trend caused by loss of egg-laying command neurons. CONCLUSIONS These data show that nonlethal deprivation of C. elegans sleep causes proteotoxic stress. Unless mitigated, distinct types of deprivation-induced proteotoxicity can lead to anatomically and genetically separable lasting defects. The relative importance of different UPRs post-deprivation likely reflects functional, developmental, and genetic differences between the respective tissues and circuits.
Collapse
Affiliation(s)
- Jarred Sanders
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Monika Scholz
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilaria Merutka
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - David Biron
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Physics, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
21
|
Hyttinen JMT, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2017; 36:64-77. [PMID: 28351686 DOI: 10.1016/j.arr.2017.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
In this review we will discuss the links between autophagy, a mechanism involved in the maintenance of cellular homeostasis and controlling cellular waste management, and the DNA damage response (DDR), comprising various mechanisms preserving the integrity and stability of the genome. A reduced autophagy capacity in retinal pigment epithelium has been shown to be connected in the pathogenesis of age-related macular degeneration (AMD), an eye disease. This degenerative disease is a major and increasing cause of vision loss in the elderly in developed countries, primarily due to the profound accumulation of intra- and extracellular waste: lipofuscin and drusen. An abundance of reactive oxygen species is produced in the retina since this tissue has a high oxygen demand and contains mitochondria-rich cells. The retina is exposed to light and it also houses many photoactive molecules. These factors are clearly reflected in both the autophagy and DNA damage rates, and in both nuclear and mitochondrial genomes. It remains to be revealed whether DNA damage and DDR capacity have a more direct role in the development of AMD.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Minna Niittykoski
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| |
Collapse
|
22
|
Itskovits E, Levine A, Cohen E, Zaslaver A. A multi-animal tracker for studying complex behaviors. BMC Biol 2017; 15:29. [PMID: 28385158 PMCID: PMC5383998 DOI: 10.1186/s12915-017-0363-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background Animals exhibit astonishingly complex behaviors. Studying the subtle features of these behaviors requires quantitative, high-throughput, and accurate systems that can cope with the often rich perplexing data. Results Here, we present a Multi-Animal Tracker (MAT) that provides a user-friendly, end-to-end solution for imaging, tracking, and analyzing complex behaviors of multiple animals simultaneously. At the core of the tracker is a machine learning algorithm that provides immense flexibility to image various animals (e.g., worms, flies, zebrafish, etc.) under different experimental setups and conditions. Focusing on C. elegans worms, we demonstrate the vast advantages of using this MAT in studying complex behaviors. Beginning with chemotaxis, we show that approximately 100 animals can be tracked simultaneously, providing rich behavioral data. Interestingly, we reveal that worms’ directional changes are biased, rather than random – a strategy that significantly enhances chemotaxis performance. Next, we show that worms can integrate environmental information and that directional changes mediate the enhanced chemotaxis towards richer environments. Finally, offering high-throughput and accurate tracking, we show that the system is highly suitable for longitudinal studies of aging- and proteotoxicity-associated locomotion deficits, enabling large-scale drug and genetic screens. Conclusions Together, our tracker provides a powerful and simple system to study complex behaviors in a quantitative, high-throughput, and accurate manner. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0363-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eyal Itskovits
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Amir Levine
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), School of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ehud Cohen
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), School of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alon Zaslaver
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
23
|
Dubnikov T, Ben-Gedalya T, Cohen E. Protein Quality Control in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023523. [PMID: 27864315 DOI: 10.1101/cshperspect.a023523] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Maintaining functional protein homeostasis (proteostasis) is a constant challenge in the face of limited protein-folding capacity, environmental threats, and aging. Cells have developed several quality-control mechanisms that assist nascent polypeptides to fold properly, clear misfolded molecules, respond to the accumulation of protein aggregates, and deposit potentially toxic conformers in designated sites. Proteostasis collapse can lead to the development of diseases known as proteinopathies. Here we delineate the current knowledge on the different layers of protein quality-control mechanisms at the organelle and cellular levels with an emphasis on the prion protein (PrP). We also describe how protein quality control is integrated at the organismal level and discuss future perspectives on utilizing proteostasis maintenance as a strategy to develop novel therapies for the treatment of proteinopathies.
Collapse
Affiliation(s)
- Tatyana Dubnikov
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Tziona Ben-Gedalya
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem 91120, Israel
| |
Collapse
|
24
|
Sleep and Development in Genetically Tractable Model Organisms. Genetics 2017; 203:21-33. [PMID: 27183564 DOI: 10.1534/genetics.116.189589] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses.
Collapse
|
25
|
Dubnikov T, Cohen E. The Emerging Roles of Early Protein Folding Events in the Secretory Pathway in the Development of Neurodegenerative Maladies. Front Neurosci 2017; 11:48. [PMID: 28223916 PMCID: PMC5293786 DOI: 10.3389/fnins.2017.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 01/20/2023] Open
Abstract
Although, protein aggregation and deposition are unifying features of various neurodegenerative disorders, recent studies indicate that different mechanisms can lead to the development of the same malady. Among these, failure in early protein folding and maturation emerge as key mechanistic events that lead to the manifestation of a myriad of illnesses including Alzheimer's disease and prion disorders. Here we delineate the cascade of maturation steps that nascent polypeptides undergo in the secretory pathway to become functional proteins, and the chaperones that supervise and assist this process, focusing on the subgroup of proline cis/trans isomerases. We also describe the chaperones whose failure was found to be an underlying event that initiates the run-up toward neurodegeneration as well as chaperones whose activity impairs protein homeostasis (proteostasis) and thus, promotes the manifestation of these maladies. Finally, we discuss the roles of aggregate deposition sites in the cellular attempt to maintain proteostasis and point at potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Tatyana Dubnikov
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine Jerusalem, Israel
| |
Collapse
|
26
|
Meyer K, Kaspar BK. Glia-neuron interactions in neurological diseases: Testing non-cell autonomy in a dish. Brain Res 2017; 1656:27-39. [PMID: 26778174 PMCID: PMC4939136 DOI: 10.1016/j.brainres.2015.12.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
For the past century, research on neurological disorders has largely focused on the most prominently affected cell types - the neurons. However, with increasing knowledge of the diverse physiological functions of glial cells, their impact on these diseases has become more evident. Thus, many conditions appear to have more complex origins than initially thought. Since neurological pathologies are often sporadic with unknown etiology, animal models are difficult to create and might only reflect a small portion of patients in which a mutation in a gene has been identified. Therefore, reliable in vitro systems to studying these disorders are urgently needed. They might be a pre-requisite for improving our understanding of the disease mechanisms as well as for the development of potential new therapies. In this review, we will briefly summarize the function of different glial cell types in the healthy central nervous system (CNS) and outline their implication in the development or progression of neurological conditions. We will then describe different types of culture systems to model non-cell autonomous interactions in vitro and evaluate advantages and disadvantages. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Moll L, Ben-Gedalya T, Reuveni H, Cohen E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB J 2015; 30:1656-69. [PMID: 26722006 DOI: 10.1096/fj.15-281675] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022]
Abstract
The discovery that the alteration of aging by reducing the activity of the insulin/IGF-1 signaling (IIS) cascade protects nematodes and mice from neurodegeneration-linked, toxic protein aggregation (proteotoxicity) raises the prospect that IIS inhibitors bear therapeutic potential to counter neurodegenerative diseases. Recently, we reported that NT219, a highly efficient IGF-1 signaling inhibitor, protects model worms from the aggregation of amyloid β peptide and polyglutamine peptides that are linked to the manifestation of Alzheimer's and Huntington's diseases, respectively. Here, we employed cultured cell systems to investigate whether NT219 promotes protein homeostasis (proteostasis) in mammalian cells and to explore its underlying mechanisms. We found that NT219 enhances the aggregation of misfolded prion protein and promotes its deposition in quality control compartments known as "aggresomes." NT219 also elevates the levels of certain molecular chaperones but, surprisingly, reduces proteasome activity and impairs autophagy. Our findings show that IGF-1 signaling inhibitors in general and NT219 in particular can promote proteostasis in mammalian cells by hyperaggregating hazardous proteins, thereby bearing the potential to postpone the onset and slow the progression of neurodegenerative illnesses in the elderly.-Moll, L., Ben-Gedalya, T., Reuveni, H., Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition.
Collapse
Affiliation(s)
- Lorna Moll
- *Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, Jerusalem, Israel; and TyrNovo Limited, Herzliya Pituach, Israel
| | - Tziona Ben-Gedalya
- *Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, Jerusalem, Israel; and TyrNovo Limited, Herzliya Pituach, Israel
| | - Hadas Reuveni
- *Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, Jerusalem, Israel; and TyrNovo Limited, Herzliya Pituach, Israel
| | - Ehud Cohen
- *Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University School of Medicine, Jerusalem, Israel; and TyrNovo Limited, Herzliya Pituach, Israel
| |
Collapse
|
28
|
Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res 2015; 51:69-89. [PMID: 26344735 DOI: 10.1016/j.preteyeres.2015.09.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Maintenance of protein homeostasis, also referred to as "Proteostasis", integrates multiple pathways that regulate protein synthesis, folding, translocation, and degradation. Failure in proteostasis may be one of the underlying mechanisms responsible for the cascade of events leading to age-related macular degeneration (AMD). This review covers the major degradative pathways (ubiquitin-proteasome and lysosomal involvement in phagocytosis and autophagy) in the retinal pigment epithelium (RPE) and summarizes evidence of their involvement in AMD. Degradation of damaged and misfolded proteins via the proteasome occurs in coordination with heat shock proteins. Evidence of increased content of proteasome and heat shock proteins in retinas from human donors with AMD is consistent with increased oxidative stress and extensive protein damage with AMD. Phagocytosis and autophagy share key molecules in phagosome maturation as well as degradation of their cargo following fusion with lysosomes. Phagocytosis and degradation of photoreceptor outer segments ensures functional integrity of the neural retina. Autophagy rids the cell of toxic protein aggregates and defective mitochondria. Evidence suggesting a decline in autophagic flux includes the accumulation of autophagic substrates and damaged mitochondria in RPE from AMD donors. An age-related decrease in lysosomal enzymatic activity inhibits autophagic clearance of outer segments, mitochondria, and protein aggregates, thereby accelerating the accumulation of lipofuscin. This cumulative damage over a person's lifetime tips the balance in RPE from a state of para-inflammation, which strives to restore cell homeostasis, to the chronic inflammation associated with AMD.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland.
| |
Collapse
|
29
|
Moussavi Nik SH, Newman M, Wilson L, Ebrahimie E, Wells S, Musgrave I, Verdile G, Martins RN, Lardelli M. Alzheimer's disease-related peptide PS2V plays ancient, conserved roles in suppression of the unfolded protein response under hypoxia and stimulation of γ-secretase activity. Hum Mol Genet 2015; 24:3662-78. [PMID: 25814654 DOI: 10.1093/hmg/ddv110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for γ-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimer's disease (FAD) only the K115Efx10 mutation of PSEN2 causes truncation of the open reading frame. If translated, the truncated product would resemble a naturally occurring isoform of PSEN2 named PS2V that is induced by hypoxia and found at elevated levels in late onset Alzheimer's disease (AD) brains. The function of PS2V is largely unexplored. We show that zebrafish possess a PS2V-like isoform, PS1IV, produced from the fish's PSEN1 rather than PSEN2 orthologous gene. The molecular mechanism controlling formation of PS2V/PS1IV was probably present in the ancient common ancestor of the PSEN1 and PSEN2 genes. Human PS2V and zebrafish PS1IV have highly divergent structures but conserved abilities to stimulate γ-secretase activity and to suppress the unfolded protein response (UPR) under hypoxia. The putative protein truncation caused by K115Efx10 resembles PS2V in its ability to increase γ-secretase activity and suppress the UPR. This supports increased Aβ levels as a common link between K115Efx10 early onset AD and sporadic, late onset AD. The ability of mutant variants of PS2V to stimulate γ-secretase activity partially correlates with their ability to suppress the UPR. The cytosolic, transmembrane and luminal domains of PS2V are all critical to its γ-secretase and UPR-suppression activities. Our data support a model in which chronic hypoxia in aged brains promotes excessive Notch signalling and accumulation of Aβ that contribute to AD pathogenesis.
Collapse
Affiliation(s)
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences
| | - Lachlan Wilson
- Department of Genetics and Evolution, School of Biological Sciences
| | | | - Simon Wells
- Department of Genetics and Evolution, School of Biological Sciences
| | - Ian Musgrave
- Clinical and Experimental Pharmacology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, School of Biological Sciences,
| |
Collapse
|