1
|
Tarasova ES, Shurupova OV, Rzhevskiy SA, Minaeva LI, Topchiy MA, Asachenko AF. A simple route to 2,3-benzodiazepines from substituted indenes. Org Biomol Chem 2025. [PMID: 40237087 DOI: 10.1039/d5ob00361j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Herein, we present a two-step approach for synthesizing 2,3-benzodiazepines from substituted indenes. This process involves oxidation of indenes to 1,5-diketones followed by their cyclocondensation with hydrazine hydrate. The optimized conditions for a wide range of substituted 2,3-benzodiazepines, including the well-known anxiolytic tofisopam, were investigated. A detailed mechanism for the cyclization of 1,5-diketones with hydrazine hydrate was established using 1H NMR kinetic experiments.
Collapse
Affiliation(s)
- Ekaterina S Tarasova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Olga V Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Sergey A Rzhevskiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Lidiya I Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Maxim A Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Andrey F Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Yoshikawa A, Li J, Alliey-Rodriguez N, Meltzer HY. Genetic markers of early response to lurasidone in acute schizophrenia. THE PHARMACOGENOMICS JOURNAL 2025; 25:3. [PMID: 39979276 PMCID: PMC11842270 DOI: 10.1038/s41397-024-00360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 02/22/2025]
Abstract
Prediction of treatment response by genetic biomarkers has potential for clinical use and contributes to the understanding of pathophysiology and drug mechanism of action. The purpose of this study is to detect genetic biomarkers possibly associated with response to lurasidone, during the first four weeks of treatment. One-hundred and seventy-one acutely psychotic patients from two placebo-controlled clinical trials of lurasidone were included. Genetic associations with changes in Positive and Negative Syndrome Scale total score at weeks one, two, and four were examined. Genotyping was done with the Affymetrix 6.0 microarray and associations were computed using PLINK regression model. Although genome-wide significance was not reached with a limited sample size, signals of potential interest for further studies were with genes important for neurogenesis. Possible week one marker, rs6459950 (p = 7.05 × 10-7), was close to the sonic hedgehog gene (SHH), involved in neuronal differentiation and neurogenesis. Possible week two marker, rs7435958, was a SNP of GABRB1, encoding the GABAA Receptor β1. Notably, possible week four signals included a SNP within PTCH1, a specific receptor for the SHH, the possible week one marker. Pathway analysis supported the possibility that neurogenesis might be involved in early antipsychotic response. Tissue enrichment analysis suggested that potential signals were enriched in anterior cingulate cortex, reported to be relevant in antipsychotic action. This is the first study to examine genes possibly associated with very early response to lurasidone. Further replication studies in larger sample size should be required.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Department of Psychiatry and Behavioral Science Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo, 113-8421, Japan.
| | - Jiang Li
- Molecular and functional genomics, Geisinger Healthcare System, Danville, PA, 17822, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, 78550, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Islam MT, Al Hasan MS, Ferdous J, Mia E, Yana NT, Ansari IA, Ansari SA, Islam MA, Coutinho HDM. Gaba Aergic sedative prospection of sclareol-linalool co-treatment: An antagonistic intervention through in vivo and in silico studies. Neurosci Lett 2025; 845:138060. [PMID: 39586457 DOI: 10.1016/j.neulet.2024.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Sleep disturbance causes many health problems in humans worldwide. This study evaluated the effects and possible mechanisms of sclareol (SCL) and/or linalool (LIN) through in vivo and in silico studies. For this, young chicks SCL (5, 10, and 20 mg/kg) and/or LIN (50 mg/kg) were orally administered thirty minutes before to the thiopental sodium (TS)-induced chicks with or without the standard drug diazepam (DZP: 3 mg/kg). Incidence, onset, and duration of sleep were then noted. The results suggest that SCL dose-dependently increased the onset and decreased the duration of sleep in animals. In contrast, LIN50 significantly (p < 0.05) decreased onset and increased sleep duration. SCL20 combined with LIN50 and/or DZP3 modulated the sleep parameters in animals. In combination, LIN50 showed better effects with DZP3, where the percentage decrease in latency and increase in sleep duration were 54.20 and 168.65 %, respectively. SCL20 when combined with LIN50 + DZP3 also modulated the onset and duration of sleep in animals. Further, in silico studies suggest that SCL and LIN have binding affinities with the 6X3X protein of the GABAA receptor (α1 and β2 subunits) of -6.9 and -6.8 kcal/mol, respectively. The standard drug DZP showed a binding affinity of -5.0 kcal/mol. Taken together, SCL may exert an angiogenic-like effect and antagonize LIN and/or DZP-mediated sedative effects in TS-induced chicks, possibly through the GABAA receptor α1 and β2 subunits interaction pathway.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Jannatul Ferdous
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh; Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin 10124, Italy
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, East West University, Dhaka 1212, Bangladesh
| | | |
Collapse
|
4
|
Islam MT, Bhuia MS, Mostakim MS, Chowdhury R, Hasan R, Sheikh S, Ansari SA, Ansari IA, Eity TA, Islam MT. Synergistic Anxiolytic Effects of Linalool and Sesamol Co-Treatment on Swiss Albino Mice: A Potential GABAergic Intervention. Synapse 2025; 79:e70003. [PMID: 39729049 DOI: 10.1002/syn.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Sesamol (SES) and linalool (LIN) are aromatic compounds that have neuroprotective effects. The main purpose of this study is to evaluate the anxiolytic activity of LIN and SES co-treatment on Swiss albino mice and analyze its possible mechanism through in silico study. In this sense, the mice were given the gamma-aminobutyric acid type A receptors (GABAA) agonist diazepam (DZP; 3 mg/kg, p.o.) as a positive control. A vehicle (10 mL/kg) was served as control. The tested chemicals, single-dose LIN (50 mg/kg) and SES (50 mg/kg), as well as a combination (LIN + SES) and (DZP + LIN + SES), were administered orally in order to conduct several behavioral tests, including open-field, swings box, hole-crossing, and dark-resident time tests. Further, molecular docking studies of LIN, SES, and DZP were carried out through different software. The results showed that LIN and SES individually have significant anxiolytic-like activity in mice. Further, when LIN was combined with SES and with (SES + DZP), it exhibited a relatively lower locomotor activity in mice compared to individual treatment groups, indicating a synergistic action. In addition, the molecular docking analysis revealed that LIN and SES have a moderate binding affinity (-5.0 and -5.1 kcal/mol) toward the GABAA receptor α3 subunit. In conclusion, our findings suggest that LIN and SES exerted synergistic anxiolytic activity on Swiss albino mice, possibly through the GABAergic interaction pathways.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Md Shadin Mostakim
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Salehin Sheikh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Tanzila Akter Eity
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tohidul Islam
- Department of Biochemistry & Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
5
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Cerne R, Smith JL, Chrzanowska A, Lippa A. Nonsedating anxiolytics. Pharmacol Biochem Behav 2024; 245:173895. [PMID: 39461622 DOI: 10.1016/j.pbb.2024.173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Anxiety disorders are the most prevalent psychiatric pathology with substantial cost to society, but the existing treatments are often inadequate. This has rekindled the interest in the GABAA-receptor (GABAAR) positive allosteric modulator (PAM) compounds, which have a long history in treatment of anxiety beginning with diazepam, chlordiazepoxide, and alprazolam. While the GABAAR PAMs possess remarkable anxiolytic efficacy, they have fallen out of favor due to a host of adverse effects including sedation, motor impairment, addictive potential and tolerance development. A substantial effort was thus devoted to the design of GABAAR PAMs as anxiolytics with reduced sedative liabilities. Several non-benzodiazepine (BZD) GABAAPAMs progressed to clinical trials (bretazenil, abecarnil, alpidem, and ocinaplon) with alpidem obtaining regulatory approval as anxiolytic, but later withdrawn from market due to hepatotoxicity. Advances in molecular biology gave birth to a host of subtype selective GABAAR-PAMs which suffered from signs of sedation and motor impairment and only three compounds progressed to proof-of-concept studies (TPA-023, AZD7325 and PF-06372865). TPA-023 was terminated due to toxicity in preclinical species while AZD7325 and PF-06372865 did not achieve efficacy endpoints in patients. We highlight a new compound, KRM-II-81, that is an imidazodiazepine selective for GABAAR containing α2/3 and β3 proteins. In preclinical studies KRM-II-81 produced anxiolytic-like effects but with minimal sedation, respiratory depression, and abuse liability. Thus, KRM-II-81 is a newly discovered, non- BZD anxiolytic compound, which targets a selective population of GABAAR for improved therapeutic gain and reduced side effects.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
7
|
Sagi R, Chakraborty M, Bogdanovic M, Asraf H, Sekler I, Kofman O, Cohen H, Hershfinkel M. Loss of the zinc receptor ZnR/GPR39 in mice enhances anxiety-related behavior and motor deficits, and modulates KCC2 expression in the amygdala. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:31. [PMID: 39581978 PMCID: PMC11587656 DOI: 10.1186/s12993-024-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Mood disorders, particularly depression and anxiety, are associated with zinc dyshomeostasis and aberrant GABAergic signaling. Activation of ZnR/GPR39 by synaptic zinc in the hippocampus triggers phosphorylation of extracellular regulated kinase (ERK1/2), which regulates the K+/Cl- cotransporter (KCC2) and thereby GABAergic inhibitory neurotransmission and seizure activity. Therefore, we studied whether impaired ZnR/GPR39 signaling is linked to anxiety-related behavior in male or female mice. RESULTS Using the acoustic startle response, elevated plus maze, and open field test, we found increased anxiety-related behavior in ZnR/GPR39 knockout (KO) mice. Despite a well-established sex difference, where females are typically more prone to anxiety, both male and female ZnR/GPR39 KO mice exhibited increased anxiety-related behavior compared to wildtype (WT) mice. Additionally, ZnR/GPR39 KO mice displayed impaired motor coordination in the pole and rotarod tests but did not show reduced muscle strength, as indicated by a grip test. Finally, we found intrinsic alterations in the expression level of KCC2, a major Cl- transporter regulating GABAergic signaling, in the amygdala of naïve ZnR/GPR39 KO mice compared to controls. CONCLUSIONS Our findings indicate that loss of ZnR/GPR39 enhances anxiety-related behavior in both male and female mice. Moreover, ZnR/GPR39 KO mice exhibit impaired motor coordination, which may be associated with increased anxiety. Finally, we demonstrate that loss of ZnR/GPR39 modulates the expression of KCC2 in the amygdala. Thus, we propose that ZnR/GPR39 can serve as a target for regulating GABAergic signaling in anxiety treatment.
Collapse
Affiliation(s)
- Romi Sagi
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel.
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Moumita Chakraborty
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Milos Bogdanovic
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Ora Kofman
- Psychology Department, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
| | - Hagit Cohen
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, POB 653, Beer-Sheva, 84105, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, School of Biomedical Research, Faculty of Health Sciences, Zelman Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel.
| |
Collapse
|
8
|
Islam MT, Ferdous J, Hasan MSA, Hashem A, Bappi MH, Ansari SA, Islam MA, Saifuzzaman M. Phytol exerts sedative-like effects and modulates the diazepam and flumazenil's action, possibly through the GABA A receptor interaction pathway. Neurosci Lett 2024; 842:138007. [PMID: 39357640 DOI: 10.1016/j.neulet.2024.138007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
This study aimed at the evaluation of the sedative effect of phytol (PHY) with possible molecular mechanisms through in vivo and in silico studies. For this, adult male mice were randomly divided into six individual groups, namely control (vehicle), two standards (DZP: diazepam at 2 m/kg, FLU: flumazenil at 0.1 mg/kg), three test groups (PHY at 25, 50, and 75 mg/kg), and three combined groups with the DZP-2 and/or FLU-0.1 with PHY-75 mg/kg. After thirty minutes, each animal was treated with thiopental sodium (TS) at 40 mg/kg to produce sedation and observed for latency and duration of sleep up to 4 h. In silico studies were performed with the 6X3X protein of the GABAA receptor α1 and β2 subunits. The results demonstrate that PHY dose-dependently enhanced sleep duration in animals. However, it produced an insignificant sleep duration compared to the control and standard groups. It also significantly (p < 0.05) decreased the latency and increased the duration of sleep with DZP-2, while reducing these parameters with FLU-0.1. In in silico studies, DZP and FLU exhibited binding affinities with 6X3X by -6.8 and -6.9 kcal/mol, respectively, while PHY exhibited -6.9 kcal/mol. Taken together, PHY may exert a sedative-like effect in TS-induced sleeping mice and modulate the effects of DZP and FLU, possibly through interacting with the 6X3X protein of the GABAA receptor. PHY may be one of the good candidates for the management of sleep disturbances, such as insomnia.
Collapse
Affiliation(s)
- Md Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh.
| | - Jannatul Ferdous
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Mehedi Hasan Bappi
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh 11451, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, East West University, Dhaka 1212, Bangladesh
| | - Md Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
9
|
Moraru MV, Stoleru S, Zugravu A, Coman OA, Fulga I. New Insights Into Pharmacology of GABAA Receptor Alpha Subunits-Selective Modulators. Am J Ther 2024; 31:e669-e676. [PMID: 39240716 DOI: 10.1097/mjt.0000000000001810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
BACKGROUND Benzodiazepines have long held a leading position in medical therapeutics, known for their multiple common therapeutic properties and primarily being prescribed for anxiety and insomnia. However, their lack of specificity and various side effects have led to a reevaluation of their long-term use, resulting in a rapid growth in the literature focusing on targeted therapies. AREAS OF UNCERTAINTY Despite many efforts, uncertainties persist and there are heterogeneous findings across studies regarding the pharmacological effects attributed to gamma-aminobutyric acid type A (GABAA) receptor subunits. Selective compounds targeting GABAA receptor alpha subunits are currently under active research and definitive conclusions have not been reached yet. Some compounds have not progressed to clinical trials, while others, if advanced, have been halted. These challenges emphasize the difficulty in translating preclinical findings into clinical use. DATA SOURCES A literature review was conducted using the PubMed database, searching for articles discussing GABAA receptor subunits. The search was refined by including only selective compounds with potential anxiolytic and cognitive enhancement properties. RESULTS Findings reveal compounds with promising anxiolytic and antidepressant effects with minimal sedation and absence of tolerance development. Moreover, some compounds show potential in alleviating cognitive dysfunction. There is a broad spectrum of potential therapeutic applications for selective compounds, ranging from neurological disorders such as epilepsy and neuropathic pain to cognitive dysfunction-related conditions. Currently, the leading selective compounds with the most promising results in ongoing clinical trials are basmisanil and darigabat. Basmisanil holds further exploration potential in the treatment of cognitive impairment and related conditions, while darigabat shows progress in the advancement of adjunctive therapy of focal onset seizures and for the treatment of panic disorder, respectively. CONCLUSIONS Future drug discovery efforts are encouraged to focus on positive allosteric modulators that selectively target the α2, α3 subunits and negative/positive allosteric modulators that target the α5 subunit of the GABAA receptor. The pursuit of ligands possessing only anxiolytic effects or those enhancing cognition continues to be an important focus for future research, with promising advancements depicted in recent studies.
Collapse
|
10
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
11
|
Liang D, Zhou L, Zhou H, Zhang F, Fang G, Leng J, Wu Y, Zhang Y, Yang A, Liu Y, Chen YH. A GABAergic system in atrioventricular node pacemaker cells controls electrical conduction between the atria and ventricles. Cell Res 2024; 34:556-571. [PMID: 38849501 PMCID: PMC11291642 DOI: 10.1038/s41422-024-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Physiologically, the atria contract first, followed by the ventricles, which is the prerequisite for normal blood circulation. The above phenomenon of atrioventricular sequential contraction results from the characteristically slow conduction of electrical excitation of the atrioventricular node (AVN) between the atria and the ventricles. However, it is not clear what controls the conduction of electrical excitation within AVNs. Here, we find that AVN pacemaker cells (AVNPCs) possess an intact intrinsic GABAergic system, which plays a key role in electrical conduction from the atria to the ventricles. First, along with the discovery of abundant GABA-containing vesicles under the surface membranes of AVNPCs, key elements of the GABAergic system, including GABA metabolic enzymes, GABA receptors, and GABA transporters, were identified in AVNPCs. Second, GABA synchronously elicited GABA-gated currents in AVNPCs, which significantly weakened the excitability of AVNPCs. Third, the key molecular elements of the GABAergic system markedly modulated the conductivity of electrical excitation in the AVN. Fourth, GABAA receptor deficiency in AVNPCs accelerated atrioventricular conduction, which impaired the AVN's protective potential against rapid ventricular frequency responses, increased susceptibility to lethal ventricular arrhythmias, and decreased the cardiac contractile function. Finally, interventions targeting the GABAergic system effectively prevented the occurrence and development of atrioventricular block. In summary, the endogenous GABAergic system in AVNPCs determines the slow conduction of electrical excitation within AVNs, thereby ensuring sequential atrioventricular contraction. The endogenous GABAergic system shows promise as a novel intervention target for cardiac arrhythmias.
Collapse
Affiliation(s)
- Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, China
| | - Liping Zhou
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huixing Zhou
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fulei Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junwei Leng
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yahan Wu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuemei Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anqi Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Chojnacka W, Teng J, Kim JJ, Jensen AA, Hibbs RE. Structural insights into GABA A receptor potentiation by Quaalude. Nat Commun 2024; 15:5244. [PMID: 38898000 PMCID: PMC11187190 DOI: 10.1038/s41467-024-49471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Methaqualone, a quinazolinone marketed commercially as Quaalude, is a central nervous system depressant that was used clinically as a sedative-hypnotic, then became a notorious recreational drug in the 1960s-80s. Due to its high abuse potential, medical use of methaqualone was eventually prohibited, yet it persists as a globally abused substance. Methaqualone principally targets GABAA receptors, which are the major inhibitory neurotransmitter-gated ion channels in the brain. The restricted status and limited accessibility of methaqualone have contributed to its pharmacology being understudied. Here, we use cryo-EM to localize the GABAA receptor binding sites of methaqualone and its more potent derivative, PPTQ, to the same intersubunit transmembrane sites targeted by the general anesthetics propofol and etomidate. Both methaqualone and PPTQ insert more deeply into subunit interfaces than the previously-characterized modulators. Binding of quinazolinones to this site results in widening of the extracellular half of the ion-conducting pore, following a trend among positive allosteric modulators in destabilizing the hydrophobic activation gate in the pore as a mechanism for receptor potentiation. These insights shed light on the underexplored pharmacology of quinazolinones and further elucidate the molecular mechanisms of allosteric GABAA receptor modulation through transmembrane binding sites.
Collapse
Affiliation(s)
- Weronika Chojnacka
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
| | - Jeong Joo Kim
- Protein Structure and Function, Loxo@Lilly, Louisville, CO, USA
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ryan E Hibbs
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Wang DS, Ju L, Pinguelo AG, Kaneshwaran K, Haffey SC, Lecker I, Gohil H, Wheeler MB, Kaustov L, Ariza A, Yu M, Volchuk A, Steinberg BE, Goldenberg NM, Orser BA. Crosstalk between GABA A receptors in astrocytes and neurons triggered by general anesthetic drugs. Transl Res 2024; 267:39-53. [PMID: 38042478 DOI: 10.1016/j.trsl.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1β and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1β and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Ju
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arsène G Pinguelo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirusanthy Kaneshwaran
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean C Haffey
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irene Lecker
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Ariza
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - MeiFeng Yu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada
| | - Neil M Goldenberg
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada.
| |
Collapse
|
14
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
Dong P, Voloudakis G, Fullard JF, Hoffman GE, Roussos P. Convergence of the dysregulated regulome in schizophrenia with polygenic risk and evolutionarily constrained enhancers. Mol Psychiatry 2024; 29:782-792. [PMID: 38145985 PMCID: PMC11153027 DOI: 10.1038/s41380-023-02370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Enhancers play an essential role in the etiology of schizophrenia; however, the dysregulation of enhancer activity and its impact on the regulome in schizophrenia remains understudied. To address this gap in our knowledge, we assessed enhancer and gene expression in 1,382 brain samples comprising cases with schizophrenia and unaffected controls. Dysregulation of enhancer expression was concordant with changes in gene expression, and was more closely associated with schizophrenia polygenic risk, suggesting that enhancer dysregulation is proximal to the genetic etiology of the disease. Modeling the shared variance of cis-coordinated genes and enhancers revealed a gene regulatory program that was highly associated with genetic vulnerability to schizophrenia. By integrating coordinated factors with evolutionary constraints, we found that enhancers acquired during human evolution are more likely to regulate genes that are implicated in neuropsychiatric disorders and, thus, hold potential as therapeutic targets. Our analysis provides a systematic view of regulome dysregulation in schizophrenia and highlights its convergence with schizophrenia polygenic risk and human-gained enhancers.
Collapse
Affiliation(s)
- Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, 10468, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
16
|
Bojić MG, Treven M, Pandey KP, Tiruveedhula VVNPB, Santrač A, Đukanović Đ, Vojinović N, Amidžić L, Škrbić R, Scholze P, Ernst M, Cook JM, Savić MM. Vascular effects of midazolam, flumazenil, and a novel imidazobenzodiazepine MP-III-058 on isolated rat aorta. Can J Physiol Pharmacol 2024; 102:206-217. [PMID: 37909404 DOI: 10.1139/cjpp-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5β3γ2 over other αxβ3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Marco Treven
- Neurology Department, Medical University of Vienna, Vienna, Austria
| | - Kamal P Pandey
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - V V N Phani Babu Tiruveedhula
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Anja Santrač
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| | - Đorđe Đukanović
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Nataša Vojinović
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Ljiljana Amidžić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Ranko Škrbić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Petra Scholze
- Department of Pathobiology of the Nervous SystemCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous SystemCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
17
|
Sieghart W. Why Can Modulation of α6-Containing GABA A Receptors Reduce the Symptoms of Multiple Neuropsychiatric Disorders? ARCHIVES OF PHARMACOLOGY AND THERAPEUTICS 2024; 6:047. [PMID: 38283799 PMCID: PMC7615572 DOI: 10.33696/pharmacol.6.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
α6-containing GABAA receptors (α6GABAARs) are strongly expressed in cerebellar granule cells, where they mediate a correctly timed and precise coordination of all muscle groups that execute behavior and protect the brain from information overflow. Recently, it was demonstrated that positive modulators with a high selectivity for α6GABAARs (α6-modulators) can reduce the symptoms of multiple neuropsychiatric disorders in respective animal models to an extent comparable with established clinical therapeutics. Here, these incredible findings are discussed and explained. So far, the beneficial actions of α6-modulators and their lack of side effects have only been demonstrated in animal models of the respective disorders. Preclinical studies have demonstrated their suitability for further drug development. Future human studies have to investigate their safety and possible side effects, and to clarify to which extent individual symptoms of the respective disorders can be reduced by α6-modulators in patients during acute and chronic dosing. Due to their broad therapeutic potential, α6-modulators might become a valuable new treatment option for multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
18
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
19
|
Torres-López C, Cuartero MI, García-Culebras A, de la Parra J, Fernández-Valle ME, Benito M, Vázquez-Reyes S, Jareño-Flores T, de Castro-Millán FJ, Hurtado O, Buckwalter MS, García-Segura JM, Lizasoain I, Moro MA. Ipsilesional Hippocampal GABA Is Elevated and Correlates With Cognitive Impairment and Maladaptive Neurogenesis After Cortical Stroke in Mice. Stroke 2023; 54:2652-2665. [PMID: 37694402 DOI: 10.1161/strokeaha.123.043516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Cognitive dysfunction is a frequent stroke sequela, but its pathogenesis and treatment remain unresolved. Involvement of aberrant hippocampal neurogenesis and maladaptive circuitry remodeling has been proposed, but their mechanisms are unknown. Our aim was to evaluate potential underlying molecular/cellular events implicated. METHODS Stroke was induced by permanent occlusion of the middle cerebral artery occlusion in 2-month-old C57BL/6 male mice. Hippocampal metabolites/neurotransmitters were analyzed longitudinally by in vivo magnetic resonance spectroscopy. Cognitive function was evaluated with the contextual fear conditioning test. Microglia, astrocytes, neuroblasts, interneurons, γ-aminobutyric acid (GABA), and c-fos were analyzed by immunofluorescence. RESULTS Approximately 50% of mice exhibited progressive post-middle cerebral artery occlusion cognitive impairment. Notably, immature hippocampal neurons in the impaired group displayed more severe aberrant phenotypes than those from the nonimpaired group. Using magnetic resonance spectroscopy, significant bilateral changes in hippocampal metabolites, such as myo-inositol or N-acetylaspartic acid, were found that correlated, respectively, with numbers of glia and immature neuroblasts in the ischemic group. Importantly, some metabolites were specifically altered in the ipsilateral hippocampus suggesting its involvement in aberrant hippocampal neurogenesis and remodeling processes. Specifically, middle cerebral artery occlusion animals with higher hippocampal GABA levels displayed worse cognitive outcome. Implication of GABA in this setting was supported by the amelioration of ischemia-induced memory deficits and aberrant hippocampal neurogenesis after blocking pharmacologically GABAergic neurotransmission, an intervention which was ineffective when neurogenesis was inhibited. These data suggest that GABA exerts its detrimental effect, at least partly, by affecting morphology and integration of newborn neurons into the hippocampal circuits. CONCLUSIONS Hippocampal GABAergic neurotransmission could be considered a novel diagnostic and therapeutic target for poststroke cognitive impairment.
Collapse
Affiliation(s)
- Cristina Torres-López
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Maria I Cuartero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Alicia García-Culebras
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Departamento de Biología Celular, Facultad de Medicina (A.G.-C.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - Juan de la Parra
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - María E Fernández-Valle
- Infraestructura Científica y Técnica Singular (ICTS) Centro de Bioimagen Complutense (M.E.F.-V., J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
| | - Marina Benito
- Hospital Nacional de Parapléjicos de Toledo, Spain (M.B.)
| | - Sandra Vázquez-Reyes
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Tania Jareño-Flores
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Francisco J de Castro-Millán
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
| | - Olivia Hurtado
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA (M.S.B.)
| | - Juan M García-Segura
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Infraestructura Científica y Técnica Singular (ICTS) Centro de Bioimagen Complutense (M.E.F.-V., J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
- Departamento de Bioquímica y Biología Molecular (J.M.G.-S.), Universidad Complutense de Madrid (UCM), Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto Universitario de Investigación en Neuroquímica (C.T.-L., M.I.C., A.G.-C., J.M.G.-S., I.L.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| | - María A Moro
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., S.V.-R., T.J.-F., F.J.d.C.-M., O.H., M.A.M.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina (C.T.-L., M.I.C., A.G.-C., J.d.l.P., S.V.-R., T.J.-F., F.J.d.C.-M., I.L., M.A.M.), Universidad Complutense de Madrid (UCM), Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (C.T.-L., M.I.C., A.G.-C., I.L., M.A.M.)
| |
Collapse
|
20
|
Gao Q, Hao J, Kang X, Yuan F, Liu Y, Chen R, Liu X, Li R, Jiang W. EEG dynamics induced by zolpidem forecast consciousness evolution in prolonged disorders of consciousness. Clin Neurophysiol 2023; 153:46-56. [PMID: 37454563 DOI: 10.1016/j.clinph.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To explore whether the EEG dynamics induced by zolpidem can predict consciousness evolution in patients with prolonged disorders of consciousness (PDOC). METHODS We conducted a prospective explorative analysis on thirty-six patients with PDOC and eleven healthy controls. The EEG power spectrum was analyzed and categorized into 'ABCD' patterns at baseline and one hour after zolpidem administration at 10 mg. The clinical outcome was defined as consciousness improvement and no improvement six months after enrollment using the Coma Recovery Scale-Revised (CRS-R) score. RESULTS Zolpidem administration significantly increased the EEG power in the delta & theta bands and decreased EEG power in the beta bands in healthy controls. Further follow-up studies indicated that the increased EEG beta-band power induced by zolpidem can predict an improved consciousness six months after enrollment with an area under the receiver operating characteristic curve (AUC) of 0.829, the sensitivity of 94.38% and an accuracy of 81.48%. CONCLUSIONS Our work revealed that the specific EEG responses to zolpidem can predict consciousness recovery in PDOC patients. SIGNIFICANCE The zolpidem-induced specific EEG responses could potentially predict the recovery of PDOC patients, which may help clinicians and patients' families in their decision-making process.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaogang Kang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fang Yuan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Yu Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuyun Liu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Rui Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
21
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Zahedi E, Sadr SS, Sanaeierad A, Roghani M. Valproate-induced murine autism spectrum disorder is associated with dysfunction of amygdala parvalbumin interneurons and downregulation of AMPK/SIRT1/PGC1α signaling. Metab Brain Dis 2023; 38:2093-2103. [PMID: 37184727 DOI: 10.1007/s11011-023-01227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that is characterized by difficulty in social behavior and restricted behaviors. Also, in ASD, several accompanying disorders such as anxiety are observed. Considering the important role of amygdala in the pathophysiology of ASD, the present study focused on the neuronal changes and it possible signaling pathway in amygdala. After prenatal exposure to valproate (VPA; 600 mg/kg, i.p, on embryonic day 12.5), amount of ROS, MMP, caspase-3 activity, AMPK, SIRT1 and PGC1α proteins, and parvalbumin interneurons in the amygdala were assessed following evaluation of ASD and anxiety-like behaviors. Amygdala analysis revealed ROS accumulation and decreased MMP in autistic rats. In addition, caspase-3 activation elevated and immunoreactivity for parvalbumin interneurons decreased. These were accompanied by anxiety and autistic-like behaviors in open field test, elevated zero maze and U-Shaped 2 Choice Field maze. Also, our data showed that in the valproate group, protein levels of AMPK, SIRT1 and PGC1α reduced. Collectively, our results indicate that prenatal exposure to valproate leads to anxiety and autistic-like behaviors, partly through its targeting amygdala parvalbumin interneurons dysfunction and this might be affected by disturbed AMPK/SIRT1/PGC1α signaling pathway.
Collapse
Affiliation(s)
- Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ashkan Sanaeierad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
23
|
Alldred MJ, Pidikiti H, Heguy A, Roussos P, Ginsberg SD. Basal forebrain cholinergic neurons are vulnerable in a mouse model of Down syndrome and their molecular fingerprint is rescued by maternal choline supplementation. FASEB J 2023; 37:e22944. [PMID: 37191946 PMCID: PMC10292934 DOI: 10.1096/fj.202202111rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Adriana Heguy
- Genome Technology Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Panos Roussos
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Departments of Genetics and Genomic Sciences and Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Departments of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
24
|
Abdulzahir A, Klein S, Lor C, Perkins MG, Frelka A, Pearce RA. Changes in Memory, Sedation, and Receptor Kinetics Imparted by the β2-N265M and β3-N265M GABA A Receptor Point Mutations. Int J Mol Sci 2023; 24:5637. [PMID: 36982709 PMCID: PMC10053577 DOI: 10.3390/ijms24065637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation and β3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the β3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the β2-N265M and β3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both β2-N265M and β3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in β2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. β2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert A. Pearce
- Department of Anesthesiology, University Wisconsin, Madison, WI 53705, USA; (A.A.)
| |
Collapse
|
25
|
Xue B, Meng X, Kao JPY, Kanold PO. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hear Res 2023; 429:108685. [PMID: 36701895 PMCID: PMC9928889 DOI: 10.1016/j.heares.2022.108685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission, and changes in excitatory (NMDA and AMPA) synapses in the auditory cortex (ACtx). However, the circuits affected by these synaptic changes remain unknown. Mice of the C57Bl/6J strain show premature age-related hearing loss and changes in functional responses in ACtx. We thus investigated how auditory cortical microcircuits change with age by comparing young (∼ 6 weeks) and aged (>1 year old) C57Bl/6J mice. We performed laser scanning photostimulation (LSPS) combined with whole-cell patch clamp recordings from Layer (L) 2/3 cells in primary auditory cortex (A1) of young adult and aged C57Bl/6J mice. We found that L2/3 cells in aged C57Bl/6J mice display functional hypoconnectivity of both excitatory and inhibitory circuits. Compared to cells from young C57Bl/6 mice, cells from aged C57Bl/6J mice have fewer excitatory connections with weaker connection strength. Whereas young adult and aged C57Bl/6J mice have similar amounts of inhibitory connections, the strength of local inhibition is weaker in the aged group. We confirmed these results by recording miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs). Our results suggest a specific reduction in excitatory and inhibitory intralaminar cortical circuits in aged C57Bl/6J mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss.
Collapse
Affiliation(s)
- Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States; Department of Biology, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
26
|
Makarov M, Sysoev YI, Agafonova O, Prikhodko VA, Korkotian E, Okovityi SV. Color-Coding Method Reveals Enhancement of Stereotypic Locomotion by Phenazepam in Rat Open Field Test. Brain Sci 2023; 13:brainsci13030408. [PMID: 36979218 PMCID: PMC10046075 DOI: 10.3390/brainsci13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
One of the most important tasks in neuroscience is the search for theoretical foundations for the development of methods for diagnosing and treating neurological pathology, and for assessing the effect of pharmacological drugs on the nervous system. Specific behavioral changes associated with exposure to systemic influences have been invisible to the human eye for a long time. A similar pattern of changes is characteristic of phenazepam, a drug with a wide range of effects on the brain. In this study, we used a color-coding method, which consists of combining three time positions in one image, the present (0 s), the near future (0.33 s) and the far future (1.6 s). This method made it possible to identify movement patterns, such as the initialization of ahead movements, side turns and 180° turns (back), and also to determine the degree of predictability of future movements. The obtained data revealed a decrease in the number of turns to the sides while maintaining ahead movement, as well as an increase in the predictability of movements in rats under the influence of phenazepam. Thus, sedative doses of phenazepam do not exhibit general depression of brain functions, but the inhibition of specific centers, including the medial prefrontal cortex and postsubiculum, which are involved in stereotypic locomotive behavior.
Collapse
Affiliation(s)
- Mark Makarov
- Faculty of Biology, Perm State University, 614068 Perm, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | | | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence:
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
27
|
Kaplan A, Nash AI, Freeman AAH, Lewicki LG, Rye DB, Trotti LM, Brandt AL, Jenkins A. Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA AR Activation. Biomolecules 2023; 13:biom13020365. [PMID: 36830736 PMCID: PMC9953295 DOI: 10.3390/biom13020365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
GABAA receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABAA receptor negative allosteric modulators (GABAARNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABAARNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator-receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance.
Collapse
Affiliation(s)
- Anling Kaplan
- Department of Anesthesiology, Emory University, Atlanta, GA 30322, USA
| | - Abigail I. Nash
- Department of Medical Affairs, Janssen Scientific Affairs LLC, Titusville, NJ 08560, USA
| | | | - Lauren G. Lewicki
- School of Pharmacy, University of Saint Joseph, West Hartford, CT 06117, USA
| | - David B. Rye
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | | | - Asher L. Brandt
- Department of Chemistry, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Andrew Jenkins
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
- Correspondence:
| |
Collapse
|
28
|
Maresh K, Papageorgiou A, Ridout D, Harrison NA, Mandy W, Skuse D, Muntoni F. Startle responses in Duchenne muscular dystrophy: a novel biomarker of brain dystrophin deficiency. Brain 2023; 146:252-265. [PMID: 35136951 PMCID: PMC9825594 DOI: 10.1093/brain/awac048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 01/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by loss of dystrophin in muscle, however patients also have variable degree of intellectual disability and neurobehavioural co-morbidities. In contrast to muscle, in which a single full-length dystrophin isoform (Dp427) is produced, multiple isoforms are produced in the brain, and their deficiency accounts for the variability of CNS manifestations, with increased risk of comorbidities in patients carrying mutations affecting the 3' end of the gene, which disrupt expression of shorter Dp140 and Dp71 isoforms. A mouse model (mdx mouse) lacks Dp427 in muscle and CNS and exhibits exaggerated startle responses to threat, linked to the deficiency of dystrophin in limbic structures such as the amygdala, which normalize with postnatal brain dystrophin-restoration therapies. A pathological startle response is not a recognized feature of DMD, and its characterization has implications for improved clinical management and translational research. To investigate startle responses in DMD, we used a novel fear-conditioning task in an observational study of 56 males aged 7-12 years (31 affected boys, mean age 9.7 ± 1.8 years; 25 controls, mean age 9.6 ± 1.4 years). Trials of two neutral visual stimuli were presented to participants: one 'safe' cue presented alone; one 'threat' cue paired with an aversive noise to enable conditioning of physiological startle responses (skin conductance response and heart rate). Retention of conditioned physiological responses was subsequently tested by presenting both cues without the aversive noise in an 'Extinction' phase. Primary outcomes were the initial unconditioned skin conductance and change in heart rate responses to the aversive 'threat' and acquisition and retention of conditioned responses after conditioning. Secondary and exploratory outcomes were neuropsychological measures and genotype associations. The mean unconditioned skin conductance response was greater in the DMD group than controls [mean difference 3.0 µS (1.0, 5.1); P = 0.004], associated with a significant threat-induced bradycardia only in the patient group [mean difference -8.7 bpm (-16.9, -0.51); P = 0.04]. Participants with DMD found the task more aversive than controls, with increased early termination rates during the Extinction phase (26% of DMD group versus 0% of controls; P = 0.007). This study provides the first evidence that boys with DMD show similar increased unconditioned startle responses to threat to the mdx mouse, which in the mouse respond to brain dystrophin restoration. Our study provides new insights into the neurobiology underlying the complex neuropsychiatric co-morbidities in DMD and defines an objective measure of this CNS phenotype, which will be valuable for future CNS-targeted dystrophin-restoration studies.
Collapse
Affiliation(s)
- Kate Maresh
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Queen Square Centre for Neuromuscular Diseases, University College London, London WC1N 3BG, UK
| | - Andriani Papageorgiou
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Deborah Ridout
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Neil A Harrison
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - William Mandy
- Department of Clinical, Educational and Health Psychology, University College London, London WC1E 6BT, UK
| | - David Skuse
- Department of Behavioural and Brain Sciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Queen Square Centre for Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
29
|
Tolu-Bolaji OO, Sojinu SO, Okedere AP, Ajani OO. A review on the chemistry and pharmacological properties of benzodiazepine motifs in drug design. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1080/25765299.2022.2117677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Olayinka O. Tolu-Bolaji
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Samuel O. Sojinu
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Adebola P. Okedere
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
30
|
Zhang M, Kou L, Qin Y, Chen J, Bai D, Zhao L, Lin H, Jiang G. A bibliometric analysis of the recent advances in diazepam from 2012 to 2021. Front Pharmacol 2022; 13:1042594. [PMID: 36438847 PMCID: PMC9686836 DOI: 10.3389/fphar.2022.1042594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2024] Open
Abstract
Background: Diazepam is a classic benzodiazepine drug that has been widely used for disorders such as anxiety, sleep disorders, and epilepsy, over the past 59 years. The study of diazepam has always been an important research topic. However, there are few bibliometric analyses or systematic studies in this field. This study undertook bibliometric and visual analysis to ascertain the current status of diazepam research, and to identify research hotspots and trends in the past 10 years, to better understand future developments in basic and clinical research. Methods: Articles and reviews of diazepam were retrieved from the Web of Science core collection. Using CiteSpace, VOSviewer, and Scimago Graphica software, countries, institutions, authors, journals, references, and keywords in the field were visually analyzed. Results: A total of 3,870 publications were included. Diazepam-related literature had high volumes of publications and citations. The majority of publications were from the USA and China. The highest number of publications and co-citations, among the authors, was by James M Cook. Epilepsia and the Latin American Journal of Pharmacy were the journals with the most publications on diazepam and Epilepsia was the most frequently cited journal. Through a comprehensive analysis of keywords and references, we found that current research on diazepam has focused on its mechanism of action, application in disease, pharmacokinetics, risk, assessment, and management of use, status epilepticus, gamma-aminobutyric acid receptors (GABAR), intranasal formulation, gephyrin, and that ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is the current research hotspot. Conclusion: Research on diazepam is flourishing. We identified research hotspots and trends in diazepam research using bibliometric and visual analytic methods. The clinical applications, mechanisms of action, pharmacokinetics, and assessment and management of the use of diazepam are the focus of current research and the development trend of future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
31
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
32
|
Bhattacharya D, Bartley AF, Li Q, Dobrunz LE. Bicuculline restores frequency-dependent hippocampal I/E ratio and circuit function in PGC-1ɑ null mice. Neurosci Res 2022; 184:9-18. [PMID: 35842011 PMCID: PMC10865982 DOI: 10.1016/j.neures.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022]
Abstract
Altered inhibition/excitation (I/E) balance contributes to various brain disorders. Dysfunctional GABAergic interneurons enhance or reduce inhibition, resulting in I/E imbalances. Differences in short-term plasticity between excitation and inhibition cause frequency-dependence of the I/E ratio, which can be altered by GABAergic dysfunction. However, it is unknown whether I/E imbalances can be rescued pharmacologically using a single dose when the imbalance magnitude is frequency-dependent. Loss of PGC-1α (peroxisome proliferator activated receptor γ coactivator 1α) causes transcriptional dysregulation in hippocampal GABAergic interneurons. PGC-1α-/- slices have enhanced baseline inhibition onto CA1 pyramidal cells, causing increased I/E ratio and impaired circuit function. High frequency stimulation reduces the I/E ratio and recovers circuit function in PGC-1α-/- slices. Here we tested if using a low dose of bicuculline that can restore baseline I/E ratio can also rescue the frequency-dependent I/E imbalances in these mice. Remarkably, bicuculline did not reduce the I/E ratio below that of wild type during high frequency stimulation. Interestingly, bicuculline enhanced the paired-pulse ratio (PPR) of disynaptic inhibition without changing the monosynaptic inhibition PPR, suggesting that bicuculline modifies interneuron recruitment and not GABA release. Bicuculline improved CA1 output in PGC-1α-/- slices, enhancing EPSP-spike coupling to wild type levels at high and low frequencies. Our results show that it is possible to rescue frequency-dependent I/E imbalances in an animal model of transcriptional dysregulation with a single treatment.
Collapse
Affiliation(s)
- Dwipayan Bhattacharya
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States.
| |
Collapse
|
33
|
Effects of Hyssopus Officinalis Hydroalcoholic Extract on Pentylenetetrazol-Induced Convulsive Seizures in Rat. Neurochem Res 2022; 47:3792-3804. [DOI: 10.1007/s11064-022-03759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
|
34
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Effects of estrogen receptor β or G protein-coupled receptor 30 activation on anxiety-like behaviors in relation to GABAergic transmission in stress-ovariectomized rats. Neurosci Lett 2022; 789:136885. [PMID: 36152742 DOI: 10.1016/j.neulet.2022.136885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
For mental disorders such as anxiety and depression, stress and stressful events are considered as precipitating causes that may be enhanced by estrogen variability. This condition is proven by the higher vulnerability of women than men. Despite the complexity of underlying mechanisms, the gamma-aminobutyric acid (GABA) system piques interest as its receptor contains multiple psychoactive modulatory sites including neurosteroids. Moreover, according to clinical and experimental reports, GABA-associated genes can be altered by stress and hormonal status. Therefore, this study investigated the effects of estrogen receptor β (ERβ) or G protein-coupled receptor 30 (GPR30) activation on anxiety/depression-like behaviors and the alterations in the GABA-associated gene of ovariectomized rats under chronic mild stress (CMS). Mild stressors were focused on because they represent a realistic simulation of daily life stress. In this study, ovariectomized rats were treated with vehicle, estradiol (E2), diarylpropionitrile (DPN; ERβ agonist) or G1 (GPR30 agonist) and exposed to 4-week CMS. The results showed that E2, DPN, and G1 treatments reduced anxiety-like behaviors without affecting depression-like behaviors. Concurrently, the GABA level and most GABA- and neurosteroid-associated mRNAs were altered by E2. Similar mRNA profiles were observed in DPN- and E2-administrations but not in G1 treatment. Collectively, these data suggest that estrogen exerts an anxiolytic-like action through either ERβ and/or GPR30 activation, and the modulatory effects of estrogen on GABAergic system are likely to be modulated through ERβ. The findings of this study therefore further provide insights into the roles of estrogen and daily mild stressors in GABA-related activity and behavioral responses, especially anxiety.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | | |
Collapse
|
35
|
Subunit-dependent interaction of propoxazepam and its metabolite with the -aminobuturic acid type A receptor. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Benzodiazepines (BDZ) are widely used in clinics in the treatment of psychiatric disorders, and their main action is considered to be determined by more selective binding with α1, α2, α3 or α5 subunits of GABA receptor.
The aim of this work was studying of the molecular mechanism of action of new analgesic – propoxazepam and its metabolite (3-hydroxypropoxazepam) on α1, α2, α3, α4 or α5 subunits containing GABAA channels.
Materials and methods GABA ha1b3g2, ha2b3g2, ha3b3g2, ha4b3g2 and ha5b3g2 ionotropic GABAARs expressed in HEK293 were used on the automated SP384PE Patch Clamp system. In addition, Propoxazepam, 3-hydroxypropoxazepam, diazepam (positive allosteric modulator) and GABA (positive control) were administered at concentrations 0.001–300 nM to determine the EC50 and Emax for corresponding substances.
Results The α subunit plays a significantl role in determining the receptor’s affinity for propoxazepam and 3-hydroxypropoxazepam. The rank order of decreasing EC50 are α1 = α5> α2 > α3 > α4 (propoxazepam) and α1> α2> α5 > α3 > α4 (3-hydroxypropoxazepam), and for Emax α3 > α2 >α5 > α1 > α4 (propoxazepam), α3 > α1 > α2> α5 > α4 (3-hydroxypropoxazepam).
The data, transformed to Emax/EC50, show that propoxazepam exhibits tenfold (compared to diazepam) activity (taking into account the magnitude of the maximum effect) to the α3 subunit, which distinguishes it from 3-hydroxypropoxazepam.
Conclusion Due to the determined selectivity of propoxazepam for binding with different α subunit-containing GABAA-receptors (mostly α3 and α2 types), it has the potential to provide analgesia with less sedation than non-selective BDZ.
Collapse
|
36
|
Voltage-clamp evidence of GABA A receptor subunit-specific effects: pharmacodynamic fingerprint of chlornordiazepam, the major active metabolite of mexazolam, as compared to alprazolam, bromazepam, and zolpidem. Pharmacol Rep 2022; 74:956-968. [PMID: 36097257 DOI: 10.1007/s43440-022-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Anxiolytic benzodiazepines, due to their clinical effectiveness, are one of the most prescribed drugs worldwide, despite being associated with sedative effects and impaired psychomotor and cognitive performance. Not every GABAA receptor functions in the same manner. Those containing α1 subunits are associated with sleep regulation and have a greater effect on the sedative-hypnotic benzodiazepines, whereas those containing α2 and/or α3 subunits are associated with anxiety phenomena and have a greater effect on the anxiolytic benzodiazepines. Therefore, characterization of the selectivity profile of anxiolytic drugs could translate into a significant clinical impact. METHODS The present study pharmacodynamically evaluated chlornordiazepam, the main active metabolite of mexazolam, upon GABAA receptors containing α2 and/or α3, anxiety-related, and those containing an α1 subunit, associated with sleep modulation. RESULTS As shown by whole-cell patch-clamp data, chlornordiazepam potentiated GABA-evoked current amplitude in α2 and α3 containing receptors without changing the current amplitude in α1 containing receptors. However, current decay time increased, particularly in GABAA receptors containing α1 subunits. In contrast, other anxiolytic benzodiazepines such as alprazolam, bromazepam, and zolpidem, all increased currents associated with GABAA receptors containing the α1 subunit. CONCLUSIONS This novel evidence demonstrates that mexazolam (through its main metabolite chlornordiazepam) has a "pharmacodynamic fingerprint" that correlates better with an anxiolytic profile and fewer sedative effects, when compared to alprazolam, bromazepam and zolpidem, explaining clinical trial outcomes with these drugs. This also highlights the relevance of the pharmacological selectivity over GABAA receptor subtypes in the selection of benzodiazepines, in addition to their clinical performance and pharmacokinetic characteristics.
Collapse
|
37
|
Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J, Sheng H, Wang X. Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Lab Invest 2022; 20:418. [PMID: 36088343 PMCID: PMC9463862 DOI: 10.1186/s12967-022-03625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are relevant to many neurodevelopmental disorders. They are differentially enriched at the postsynapse and interact with their presynaptic ligands, neurexins, whose differential binding to neuroligins has been shown to regulate synaptogenesis, transmission, and other synaptic properties. The proper functioning of functional networks in the brain depends on the proper connection between neuronal synapses. Impaired synaptogenesis or synaptic transmission results in synaptic dysfunction, and these synaptic pathologies are the basis for many neurodevelopmental disorders. Deletions or mutations in the neuroligins genes have been found in patients with both autism and schizophrenia. It is because of the important role of neuroligins in synaptic connectivity and synaptic dysfunction that studies on neuroligins in the past have mainly focused on their expression in neurons. As studies on the expression of genes specific to various cells of the central nervous system deepened, neuroligins were found to be expressed in non-neuronal cells as well. In the central nervous system, glial cells are the most representative non-neuronal cells, which can also express neuroligins in large amounts, especially astrocytes and oligodendrocytes, and they are involved in the regulation of synaptic function, as are neuronal neuroligins. This review examines the mechanisms of neuron neuroligins and non-neuronal neuroligins in the central nervous system and also discusses the important role of neuroligins in the development of the central nervous system and neurodevelopmental disorders from the perspective of neuronal neuroligins and glial neuroligins.
Collapse
|
38
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
39
|
Structural and dynamic mechanisms of GABA A receptor modulators with opposing activities. Nat Commun 2022; 13:4582. [PMID: 35933426 PMCID: PMC9357065 DOI: 10.1038/s41467-022-32212-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels abundant in the central nervous system and are prolific drug targets for treating anxiety, sleep disorders and epilepsy. Diverse small molecules exert a spectrum of effects on γ-aminobutyric acid type A (GABAA) receptors by acting at the classical benzodiazepine site. They can potentiate the response to GABA, attenuate channel activity, or counteract modulation by other ligands. Structural mechanisms underlying the actions of these drugs are not fully understood. Here we present two high-resolution structures of GABAA receptors in complex with zolpidem, a positive allosteric modulator and heavily prescribed hypnotic, and DMCM, a negative allosteric modulator with convulsant and anxiogenic properties. These two drugs share the extracellular benzodiazepine site at the α/γ subunit interface and two transmembrane sites at β/α interfaces. Structural analyses reveal a basis for the subtype selectivity of zolpidem that underlies its clinical success. Molecular dynamics simulations provide insight into how DMCM switches from a negative to a positive modulator as a function of binding site occupancy. Together, these findings expand our understanding of how GABAA receptor allosteric modulators acting through a common site can have diverging activities. GABAA receptors are important targets for anxiety, sedation and anesthesia. Here, the authors present structures bound by zolpidem (Ambien), the most prescribed hypnotic in the US, and DMCM, a negative modulator, providing insights into receptor modulation.
Collapse
|
40
|
Oh SJ, Lee N, Nam KR, Kang KJ, Han SJ, Lee KC, Lee YJ, Choi JY. Amyloid pathology induces dysfunction of systemic neurotransmission in aged APPswe/PS2 mice. Front Neurosci 2022; 16:930613. [PMID: 35992913 PMCID: PMC9389227 DOI: 10.3389/fnins.2022.930613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate how amyloid pathology affects the functional aspects of neurotransmitter systems in Alzheimer’s disease. APPswe/PS2 mice (21 months of age) and wild-type (WT) mice underwent positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). First, we obtained 18F-FDG and 18F-florbetaben PET scans to evaluate neuronal integrity and amyloid pathology. Second, 18F-FPEB and 18F-FMZ PET data were acquired to assess the excitatory-inhibitory neurotransmission. Third, to monitor the dopamine system, 18F-fallypride PET was performed. Amyloid PET imaging revealed that radioactivity was higher in the AD group than that in the WT group, which was validated by immunohistochemistry. In the cortical and limbic areas, the AD group showed a 25–27% decrease and 14–35% increase in the glutamatergic and GABAergic systems, respectively. The dopaminergic system in the AD group exhibited a 29% decrease in brain uptake compared with that in the WT group. A reduction in glutamate, N-acetylaspartate, and taurine levels was observed in the AD group using MRS. Our results suggest that dysfunction of the neurotransmitter system is associated with AD pathology. Among the systems, the GABAergic system was prominent, implying that the inhibitory neurotransmission system may be the most vulnerable to AD pathology.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Namhun Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Jae Yong Choi,
| |
Collapse
|
41
|
Wiera G, Brzdąk P, Lech AM, Lebida K, Jabłońska J, Gmerek P, Mozrzymas JW. Integrins Bidirectionally Regulate the Efficacy of Inhibitory Synaptic Transmission and Control GABAergic Plasticity. J Neurosci 2022; 42:5830-5842. [PMID: 35701161 PMCID: PMC9337602 DOI: 10.1523/jneurosci.1458-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 01/29/2023] Open
Abstract
For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by β1 or β3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of β3 integrin with fibrinogen induced a stable depression, whereas inhibition of β1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of β1 or β3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of β3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of β1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Maria Lech
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Przemysław Gmerek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
42
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
43
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Lukow PB, Martins D, Veronese M, Vernon AC, McGuire P, Turkheimer FE, Modinos G. Cellular and molecular signatures of in vivo imaging measures of GABAergic neurotransmission in the human brain. Commun Biol 2022; 5:372. [PMID: 35440709 PMCID: PMC9018713 DOI: 10.1038/s42003-022-03268-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Diverse GABAergic interneuron networks orchestrate information processing in the brain. Understanding the principles underlying the organisation of this system in the human brain, and whether these principles are reflected by available non-invasive in vivo neuroimaging methods, is crucial for the study of GABAergic neurotransmission. Here, we use human gene expression data and state-of-the-art imaging transcriptomics to uncover co-expression patterns between genes encoding GABAA receptor subunits and inhibitory interneuron subtype-specific markers, and their association with binding patterns of the gold-standard GABA PET radiotracers [11C]Ro15-4513 and [11C]flumazenil. We found that the inhibitory interneuron marker somatostatin covaries with GABAA receptor-subunit genes GABRA5 and GABRA2, and that their distribution followed [11C]Ro15-4513 binding. In contrast, the inhibitory interneuron marker parvalbumin covaried with GABAA receptor-subunit genes GABRA1, GABRB2 and GABRG2, and their distribution tracked [11C]flumazenil binding. Our findings indicate that existing PET radiotracers may provide complementary information about key components of the GABAergic system.
Collapse
Affiliation(s)
- Paulina Barbara Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
- NIHR Maudsley Biomedical Research Centre, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
- NIHR Maudsley Biomedical Research Centre, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo, 6, 35131, Padova, PD, Italy
| | - Anthony Christopher Vernon
- Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, Brixton, London, SE5 9RT, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
- NIHR Maudsley Biomedical Research Centre, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Federico Edoardo Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London, UK
| |
Collapse
|
45
|
Noori T, Sureda A, Sobarzo-Sánchez E, Shirooie S. The Role of Natural Products in Treatment of Depressive Disorder. Curr Neuropharmacol 2022; 20:929-949. [PMID: 34979889 PMCID: PMC9881107 DOI: 10.2174/1570159x20666220103140834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Depressive disorder is one of the most common psychiatric syndromes that, if left untreated, can cause many disturbances in a person's life. Numerous factors are involved in depression, including inflammation, brain-derived neurotrophic factor (BDNF), GABAergic system, hypothalamic- pituitary-adrenal (HPA) Axis, monoamine neurotransmitters (serotonin (5-HT), noradrenaline, and dopamine). Common treatments for depression are selective serotonin reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors, but these drugs have several side effects such as anxiety, diarrhea, constipation, weight loss, and sexual dysfunctions. These agents only reduce the symptoms and temporarily reduce the rate of cognitive impairment associated with depression. As a result, extensive research has recently been conducted on the potential use of antidepressant and sedative herbs. According to the available data, herbs used in traditional medicine can be significantly effective in reducing depression, depressive symptoms and improving patients' performance. The present study provides a summary of biomarkers and therapeutic goals of depression and shows that natural products such as saffron or genipin have antidepressant effects. Some of the useful natural products and their mechanisms were evaluated. Data on various herbs and natural isolated compounds reported to prevent and reduce depressive symptoms is also discussed.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile; Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
46
|
Midazolam at low nanomolar concentrations affects long-term potentiation and synaptic transmission predominantly via the α1-GABAA receptor subunit in mice. Anesthesiology 2022; 136:954-969. [PMID: 35285894 DOI: 10.1097/aln.0000000000004202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Midazolam amplifies synaptic inhibition via different GABAA receptor subtypes defined by the presence of α1, α2, α3 or α5-subunits in the channel complex. Midazolam blocks long-term potentiation and produces postoperative amnesia. The aims of this study were to identify the GABAA receptor subtypes targeted by midazolam responsible for affecting CA1-long-term potentiation and synaptic inhibition in neocortical neurons. METHODS The effects of midazolam on hippocampal CA1-long-term potentiation were studied in acutely prepared brain slices of male and female mice. Positive allosteric modulation on GABAA receptor-mediated miniature inhibitory postsynaptic currents was investigated in organotypic slice cultures of the mouse neocortex. In both experiments, wild-type mice and GABAA receptor knock-in mouse lines were compared in which α1-, α5-, α1/2/3-, α1/3/5- and α2/3/5-GABAA receptor subtypes had been rendered benzodiazepine-insensitive. RESULTS Midazolam 10nM completely blocked long-term potentiation (midazolam mean±SD 98±11%, n=14/8 (slices/mice) vs. control 156±19%, n=20/12; p<0.001). Experiments in slices of α1-, α5-, α1/2/3-, α1/3/5- and α2/3/5-knock-in mice revealed a dominant role for the α1-GABAA receptor subtype in the long-term potentiation suppressing effect.In slices from wild-type mice, midazolam increased (mean±SD) charge transfer of miniature synaptic events concentration-dependently, 50nM: 172±71% (n=10/6) vs. 500nM: 236±54% (n=6/6), p=0.041. In α2/3/5-knock-in mice, charge transfer of miniature synaptic events did not further enhance when applying 500nM midazolam, 50nM: 171±62% (n=8/6) vs. 500nM: 175±62% (n=6/6), p=0.454) indicating two different binding affinities for midazolam to α2/3/5- and α1-subunits. CONCLUSIONS These results demonstrate a predominant role of α1-GABAA receptors in the actions of midazolam at low nanomolar concentrations. At higher concentrations, midazolam also enhances other GABAA receptor subtypes. α1-GABAA receptors may already contribute at sedative doses to the phenomenon of postoperative amnesia that has been reported after midazolam administration.
Collapse
|
47
|
Kramer RH, Rajappa R. Interrogating the function of GABA A receptors in the brain with optogenetic pharmacology. Curr Opin Pharmacol 2022; 63:102198. [PMID: 35276498 DOI: 10.1016/j.coph.2022.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
To better understand neural circuits and behavior, microbial opsins have been developed as optogenetic tools for stimulating or inhibiting action potentials with high temporal and spatial precision. However, if we seek a more reductionist understanding of how neuronal circuits operate, we also need high-resolution tools for perturbing the function of synapses. By combining photochemical tools and molecular biology, a wide variety of light-regulated neurotransmitter receptors have been developed, enabling photo-control of excitatory, inhibitory, and modulatory synaptic transmission. Here we focus on photo-control of GABAA receptors, ligand-gated Cl- channels that underlie almost all synaptic inhibition in the mammalian brain. By conjugating a photoswitchable tethered ligand onto a genetically-modified subunit of the GABAA receptor, light-sensitivity can be conferred onto specific isoforms of the receptor. Through gene editing, this attachment site can be knocked into the genome, enabling photocontrol of endogenous GABAA receptors. This strategy can be employed to explore the cell biology and neurophysiology of GABAA receptors. This includes investigating how specific isoforms contribute to synaptic and tonic inhibition and understanding the roles they play in brain development, long-term synaptic plasticity, and learning and memory.
Collapse
Affiliation(s)
- Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Rajit Rajappa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
48
|
Janach GMS, Böhm M, Döhne N, Kim HR, Rosário M, Strauss U. Interferon-γ enhances neocortical synaptic inhibition by promoting membrane association and phosphorylation of GABA A receptors in a protein kinase C-dependent manner. Brain Behav Immun 2022; 101:153-164. [PMID: 34998939 DOI: 10.1016/j.bbi.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Interferon-γ (IFN-γ), an important mediator of the antiviral immune response, can also act as a neuromodulator. CNS IFN-γ levels rise acutely in response to infection and therapeutically applied IFN-γ provokes CNS related side effects. Moreover, IFN-γ plays a key role in neurophysiological processes and a variety of chronic neurological and neuropsychiatric conditions. To close the gap between basic research, behavioral implications and clinical applicability, knowledge of the mechanism behind IFN-γ related changes in brain function is crucial. Here, we studied the underlying mechanism of acutely augmented neocortical inhibition by IFN-γ (1.000 IU ml-1) in layer 5 pyramidal neurons of male Wistar rats. We demonstrate postsynaptic mediation of IFN-γ augmented inhibition by pressure application of GABA and analysis of paired pulse ratios. IFN-γ increases membrane presence of GABAAR γ2, as quantified by cell surface biotinylation and functional synaptic GABAAR number, as determined by peak-scaled non-stationary noise analysis. The increase in functional receptor number was comparable to the increase in underlying miniature inhibitory postsynaptic current (mIPSC) amplitudes. Blockage of putative intracellular mediators, namely phosphoinositide 3-kinase and protein kinase C (PKC) by Wortmannin and Calphostin C, respectively, revealed PKC-dependency of the pro-inhibitory IFN-γ effect. This was corroborated by increased serine phosphorylation of P-serine PKC motifs on GABAAR γ2 upon IFN-γ application. GABAAR single channel conductance, intracellular chloride levels and GABAAR driving force are unlikely to contribute to the effect, as shown by single channel recordings and chloride imaging. The effect of IFN-γ on mIPSC amplitudes was similar in female and male rats, suggesting a gender-independent mechanism of action. Collectively, these results indicate a novel mechanism for the regulation of inhibition by IFN-γ, which could impact on neocortical function and therewith behavior.
Collapse
Affiliation(s)
- Gabriel M S Janach
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maximilian Böhm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Noah Döhne
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ha-Rang Kim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Cell Biology and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
49
|
The Case for Clinical Trials with Novel GABAergic Drugs in Diabetes Mellitus and Obesity. Life (Basel) 2022; 12:life12020322. [PMID: 35207609 PMCID: PMC8876029 DOI: 10.3390/life12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and diabetes mellitus have become the surprising menaces of relative economic well-being worldwide. Gamma amino butyric acid (GABA) has a prominent role in the control of blood glucose, energy homeostasis as well as food intake at several levels of regulation. The effects of GABA in the body are exerted through ionotropic GABAA and metabotropic GABAB receptors. This treatise will focus on the pharmacologic targeting of GABAA receptors to reap beneficial therapeutic effects in diabetes mellitus and obesity. A new crop of drugs selectively targeting GABAA receptors has been under investigation for efficacy in stroke recovery and cognitive deficits associated with schizophrenia. Although these trials have produced mixed outcomes the compounds are safe to use in humans. Preclinical evidence is summarized here to support the rationale of testing some of these compounds in diabetic patients receiving insulin in order to achieve better control of blood glucose levels and to combat the decline of cognitive performance. Potential therapeutic benefits could be achieved (i) By resetting the hypoglycemic counter-regulatory response; (ii) Through trophic actions on pancreatic islets, (iii) By the mobilization of antioxidant defence mechanisms in the brain. Furthermore, preclinical proof-of-concept work, as well as clinical trials that apply the novel GABAA compounds in eating disorders, e.g., olanzapine-induced weight-gain, also appear warranted.
Collapse
|
50
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|