1
|
Hayward JA, Tian S, Tachedjian G. GALV-KoRV-related retroviruses in diverse Australian and African rodent species. Virus Evol 2024; 10:veae061. [PMID: 39175839 PMCID: PMC11341202 DOI: 10.1093/ve/veae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
The enigmatic origins and transmission events of the gibbon ape leukemia virus (GALV) and its close relative the koala retrovirus (KoRV) have been a source of enduring debate. Bats and rodents are each proposed as major reservoirs of interspecies transmission, with ongoing efforts to identify additional animal hosts of GALV-KoRV-related retroviruses. In this study, we identified nine rodent species as novel hosts of GALV-KoRV-related retroviruses. Included among these hosts are two African rodents, revealing the first appearance of this clade beyond the Australian and Southeast Asian region. One of these African rodents, Mastomys natalensis, carries an endogenous GALV-KoRV-related retrovirus that is fully intact and potentially still infectious. Our findings support the hypothesis that rodents are the major carriers of GALV-KoRV-related retroviruses.
Collapse
Affiliation(s)
- Joshua A Hayward
- Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, Wellington Rd, Clayton, VIC 3168, Australia
| | - Shuoshuo Tian
- Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Gilda Tachedjian
- Life Sciences Discipline, Burnet Institute, 85 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Microbiology, Monash University, Wellington Rd, Clayton, VIC 3168, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Lillie M, Pettersson M, Jern P. Contrasting segregation patterns among endogenous retroviruses across the koala population. Commun Biol 2024; 7:350. [PMID: 38514810 PMCID: PMC10957985 DOI: 10.1038/s42003-024-06049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Koalas (Phascolarctos cinereus) have experienced a history of retroviral epidemics leaving their trace as heritable endogenous retroviruses (ERVs) in their genomes. A recently identified ERV lineage, named phaCin-β, shows a pattern of recent, possibly current, activity with high insertional polymorphism in the population. Here, we investigate geographic patterns of three focal ERV lineages of increasing estimated ages, from the koala retrovirus (KoRV) to phaCin-β and to phaCin-β-like, using the whole-genome sequencing of 430 koalas from the Koala Genome Survey. Thousands of ERV loci were found across the population, with contrasting patterns of polymorphism. Northern individuals had thousands of KoRV integrations and hundreds of phaCin-β ERVs. In contrast, southern individuals had higher phaCin-β frequencies, possibly reflecting more recent activity and a founder effect. Overall, our findings suggest high ERV burden in koalas, reflecting historic retrovirus-host interactions. Importantly, the ERV catalogue supplies improved markers for conservation genetics in this endangered species.
Collapse
Affiliation(s)
- Mette Lillie
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-752 36, Uppsala, Sweden.
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
3
|
Van Brussel K, Mahar JE, Hall J, Bender H, Ortiz-Baez AS, Chang WS, Holmes EC, Rose K. Gammaretroviruses, novel viruses and pathogenic bacteria in Australian bats with neurological signs, pneumonia and skin lesions. Virology 2023; 586:43-55. [PMID: 37487325 DOI: 10.1016/j.virol.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
More than 70 bat species are found in mainland Australia. While most studies of bat viromes focus on sampling seemingly healthy individuals, little is known about the viruses and bacteria associated with diseased bats. We performed traditional diagnostic techniques and metatranscriptomic sequencing on tissue samples from 43 Australian bats, comprising three flying fox (Pteropodidae) and two microbat species experiencing a range of disease syndromes, including mass mortality, neurological signs, pneumonia and skin lesions. Of note, we identified the recently discovered Hervey pteropid gammaretrovirus in a bat with lymphoid leukemia, with evidence of replication consistent with an exogenous virus. The possible association of Hervey pteropid gammaretrovirus with lymphoid leukemia clearly merits additional investigation. One novel picornavirus and at least three new astroviruses and bat pegiviruses were also identified in a variety of tissue types, as well as a number of likely bacterial pathogens or opportunistic infections, most notably Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Kate Van Brussel
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Hannah Bender
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Wei-Shan Chang
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia.
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia.
| |
Collapse
|
4
|
Stricker E, Peckham-Gregory EC, Scheurer ME. CancerHERVdb: Human Endogenous Retrovirus (HERV) Expression Database for Human Cancer Accelerates Studies of the Retrovirome and Predictions for HERV-Based Therapies. J Virol 2023; 97:e0005923. [PMID: 37255431 PMCID: PMC10308937 DOI: 10.1128/jvi.00059-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
In this study, we sought to create a database summarizing the expression of human endogenous retroviruses (HERVs) in various human cancers. HERVs are suitable therapeutic targets due to their abundance in the human genome, overexpression in various malignancies, and involvement in various cancer pathways. We identified articles on HERVs from PubMed and then prescreened and automatically categorized them using the portable document format (PDF) data extractor (PDE) R package. We discovered 196 primary research articles with HERV expression data from cancer tissues or cancer cell lines. HERV RNA and protein expression was reported in brain, breast, cervical, colorectal, endocrine, gastrointestinal, kidney/renal/pelvis, liver, lung, genital, oral cavity, pharynx, ovary, pancreas, prostate, skin, testicular, urinary/bladder, and uterus cancers, leukemias, lymphomas, and myelomas. Additionally, we discovered reports of HERV RNA-only overexpression in soft tissue cancers including heart, thyroid, bone, and joint cancers. The CancerHERVdb database is hosted in the form of interactive visualizations of the expression data and a summary data table at https://erikstricker.shinyapps.io/cancerHERVdb/. The user can filter the findings according to cancer type, HERV family, HERV gene, or a combination thereof and easily export the results with the corresponding reference list. In our report, we provide examples of potential uses of the CancerHERVdb, such as identification of cancers suitable for off-target treatment with the multiple sclerosis-associated retrovirus (MSRV)-Env-targeting antibody GNbAC1 (now named temelimab) currently in phase 2b clinical trials for multiple sclerosis or the discovery of cancers overexpressing HERV-H long terminal repeat-associating 2 (HHLA2), a newly emerging immune checkpoint. In summary, the CancerHERVdb allows cross-study comparisons, encourages data exploration, and informs about potential off-target effects of HERV-targeting treatments. IMPORTANCE Human endogenous retroviruses (HERVs), which in the past have inserted themselves in various regions of the human genome, are to various degrees activated in virtually every cancer type. While a centralized naming system and resources summarizing HERV levels in cancers are lacking, the CancerHERVdb database provides a consolidated resource for cross-study comparisons, data exploration, and targeted searches of HERV activation. The user can access data extracted from hundreds of articles spanning 25 human cancer categories. Therefore, the CancerHERVdb database can aid in the identification of prognostic and risk markers, drivers of cancer, tumor-specific targets, multicancer spanning signals, and targets for immune therapies. Consequently, the CancerHERVdb database is of direct relevance for clinical as well as basic research.
Collapse
Affiliation(s)
- Erik Stricker
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Houston, Texas, USA
- Baylor College of Medicine, Department of Pediatrics, Houston, Texas, USA
| | | | | |
Collapse
|
5
|
Casseb J, Lopes LR. Reflection About the Ancient Emergence of HTLV-2 Infection. AIDS Res Hum Retroviruses 2022; 38:933-938. [PMID: 35833459 DOI: 10.1089/aid.2022.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During millions of years, viruses have emerged and reemerged, with imbalance of photogenicity and transmissivity overtime. This letter describes that sometimes the nomenclature is uncertain what may actually happen during retrovirus evolution nowadays. This article discusses a possibility that human T-lymphotropic virus type 2 (HTLV-2) has been processed to incorporate the human genome in the last millions of years. Persistent viruses such as human immunodeficiency virus type 1 (HIV-1), HIV-2, and human T cell lymphotropic type 2 may also have potential of endogenization instead of a cytolytic process in a long time.
Collapse
Affiliation(s)
- Jorge Casseb
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, Brazil/Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Bioinformatics and Biomedical Data Science Division, Health Informatics Department, Federal University of Sao Paulo-Unifesp, São Paulo, Brazil
| |
Collapse
|
6
|
Abstract
Retroviruses have left their legacy in host genomes over millions of years as endogenous retroviruses (ERVs), and their structure, diversity, and prevalence provide insights into the historical dynamics of retrovirus-host interactions. In bioinformatic analyses of koala (Phascolarctos cinereus) whole-genome sequences, we identify a recently expanded ERV lineage (phaCin-β) that is related to the New World squirrel monkey retrovirus. This ERV expansion shares many parallels with the ongoing koala retrovirus (KoRV) invasion of the koala genome, including highly similar and mostly intact sequences, and polymorphic ERV loci in the sampled koala population. The recent phaCin-β ERV colonization of the koala genome appears to predate the current KoRV invasion, but polymorphic ERVs and divergence comparisons between these two lineages predict a currently uncharacterized, possibly still extant, phaCin-β retrovirus. The genomics approach to ERV-guided discovery of novel retroviruses in host species provides a strong incentive to search for phaCin-β retroviruses in the Australasian fauna.
Collapse
|
7
|
Tarlinton RE, Legione AR, Sarker N, Fabijan J, Meers J, McMichael L, Simmons G, Owen H, Seddon JM, Dick G, Ryder JS, Hemmatzedah F, Trott DJ, Speight N, Holmes N, Loose M, Emes RD. Differential and defective transcription of koala retrovirus indicates the complexity of host and virus evolution. J Gen Virol 2022; 103. [PMID: 35762858 DOI: 10.1099/jgv.0.001749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Koala retrovirus (KoRV) is unique amongst endogenous (inherited) retroviruses in that its incorporation to the host genome is still active, providing an opportunity to study what drives this fundamental process in vertebrate genome evolution. Animals in the southern part of the natural range of koalas were previously thought to be either virus-free or to have only exogenous variants of KoRV with low rates of KoRV-induced disease. In contrast, animals in the northern part of their range universally have both endogenous and exogenous KoRV with very high rates of KoRV-induced disease such as lymphoma. In this study we use a combination of sequencing technologies, Illumina RNA sequencing of 'southern' (south Australian) and 'northern' (SE QLD) koalas and CRISPR enrichment and nanopore sequencing of DNA of 'southern' (South Australian and Victorian animals) to retrieve full-length loci and intregration sites of KoRV variants. We demonstrate that koalas that tested negative to the KoRV pol gene qPCR, used to detect replication-competent KoRV, are not in fact KoRV-free but harbour defective, presumably endogenous, 'RecKoRV' variants that are not fixed between animals. This indicates that these populations have historically been exposed to KoRV and raises questions as to whether these variants have arisen by chance or whether they provide a protective effect from the infectious forms of KoRV. This latter explanation would offer the intriguing prospect of being able to monitor and selectively breed for disease resistance to protect the wild koala population from KoRV-induced disease.
Collapse
Affiliation(s)
- R E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - A R Legione
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - N Sarker
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - J Fabijan
- Longleat Safari Park, Durrel Wildlife Conservation Trust, UK
| | - J Meers
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - L McMichael
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - G Simmons
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - H Owen
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - J M Seddon
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - G Dick
- Longleat Safari Park, Durrel Wildlife Conservation Trust, UK
| | - J S Ryder
- Garston Veterinary Group, Somerset, UK
| | - F Hemmatzedah
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - N Holmes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - M Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Abstract
Retroviruses are widely distributed in all vertebrates, as are their endogenous forms, endogenous retroviruses (ERV), which serve as "fossil" evidence to trace the ancient origins and history of virus-host interactions over millions of years. The retroviral envelope (Env) plays a significant role in host range determination, but major information on their genetic diversification and evolution in anamniotes is lacking. Here, by incorporating multiple-round in silico similarity search and phylogenomic analysis, more than 30,000 copies of ERV lineages with gamma-type Env (GTE), covalently associated Env, were discovered by searching against all fish and amphibian genomes and transcriptomic assemblies, but no beta-type Env (BTE), noncovalently associated Env, was found. Furthermore, a nine-type classification system of anamniote GTE was proposed by combining phylogenetic and domain/motif analyses. The elastic genomic organization and overall phylogenetic incongruence between anamniotic Env and its neighboring polymerase (Pol) implied that early retroviral diversification in anamniotic vertebrates was facilitated by frequent recombination. At last, host cellular opioid growth factor receptor (OGFr) gene capturing by anamniotic ERVs with GTE was reported for the first time. Overall, our findings overturn traditional Pol genotyping and reveal a complex evolutionary history of anamniotic retroviruses inferred by Env evolution. IMPORTANCE Although the retroviral envelope (Env) protein in amniotes has been well studied, its evolutionary history in anamniotic vertebrates is ambiguous. By analyzing more than 30,000 copies of ERV lineages with gamma-type Env (GTE) in anamniotes, several important evolutionary features were identified. First, GTE was found to be widely distributed among different amphibians and fish. Second, nine types of GTE were discovered and defined, revealing their great genetic diversity. Third, the incongruence between the Env and Pol phylogenies suggested that frequent recombination shaped the early evolution of anamniote retroviruses. Fourth, an ancient horizontal gene transfer event was discovered from anamniotes to ERVs with GTE. These findings reveal a complex evolution pattern for retroviral Env in anamniotes.
Collapse
|
9
|
Lu TF, Sun B, Yu TY, Wu YJ, Zhou J, Wu SG. Porcine Endogenous Retroviruses: Quantification of the Viral Copy Number for the Four Miniature Pig Breeds in China. Front Microbiol 2022; 13:840347. [PMID: 35369498 PMCID: PMC8965148 DOI: 10.3389/fmicb.2022.840347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic pigs has served not only as one of the most important economy livestock but also as ideal organ-source animals owing to similarity in anatomy, physiology, and organ size to humans. Howerer, the barrier of the cross-species transmission risk of porcine endogenous retrovirus (PERVs) blocked the pig-to-human xenotransplantation. PERVs are integrated into pigs’ genomes and cannot be eliminated by designated or specified pathogen-free breeding. PERVs are an important biosafety issue in xenotransplantation because they can be released from normal pig cells and infect human cells in vitro under certain conditions. Screening and analyzing the presence of PERVs in pig genome will provide essential parameters for pig breed sources. In China, four miniature pig breeds, such as Guizhou miniature pig (GZ), Bama miniature pig (BM), Wuzhishan miniature pig (WZS), and Juema miniature pig (JM), were the main experimental miniature pig breeds, which were widely used. In this study, PCR was performed to amplify env-A, env-B, and env-C for all individuals from the four breeds. The results revealed that PERV env-A and env-B were detected in all individuals and the lowest ratios of PERV env-C was 17.6% (3/17) in the GZ breed. Then, PERV pol and GAPDH were detected using the droplet digital PCR (ddPCR) method. As the reference of GAPDH copy number, the copy numbers of PERVs were at the median of 12, 16, 14, and 16 in the four miniature pig breeds (GZ, BM, WZS, and JM), respectively. Furthermore, the copy number of the PERV pol gene in many organs from the GZ breed was analyzed using ddPCR. The copy numbers of PERV pol gene were at the median of 7 copies, 8 copies, 8 copies, 11 copies, 5 copies, 6 copies, and 7 copies in heart, liver, spleen, lung, kidney, muscle, and skin, and the maximum number was 11 copies in the lung. The minimum number was 5 copies in the kidney as the reference of GAPDH. These data suggest that GZ breed has the lower PERVs copy number in the genome, and may be an ideal organ-source miniature pig breed for the study of the pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Tao-Feng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bo Sun
- The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Tai-Yong Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan-Jun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Shu-Guang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
10
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor and Cytokine Responses to Infection with Endogenous and Exogenous Koala Retrovirus, and Vaccination as a Control Strategy. Curr Issues Mol Biol 2021; 43:52-64. [PMID: 33946297 PMCID: PMC8928999 DOI: 10.3390/cimb43010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
11
|
Koala Retrovirus in Northern Australia Shows a Mixture of Stable Endogenization and Exogenous Lineage Diversification within Fragmented Koala Populations. J Virol 2021; 95:JVI.02084-20. [PMID: 33472936 PMCID: PMC8092702 DOI: 10.1128/jvi.02084-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The koala population in northern Australia has become increasingly fragmented due to natural and man-made barriers and interventions. This situation has created a unique opportunity to study both endogenous and exogenous koala retrovirus (KoRV). To determine the impact that population isolation has had on KoRV diversity in Queensland, 272 koalas from six fragmented koala populations were profiled for their KoRV provirus across two natural biogeographical barriers (the St Lawrence Gap and the Brisbane Valley Barrier), one man-made geographical barrier (the city of Brisbane) and two translocation events (the single movement of koalas to an island and the repeated movement of koalas into a koala sanctuary). Analysis revealed that all koalas tested were KoRV-A positive, with 90 - 96% of the detected KoRV provirus from each koala representing a single, likely endogenous, KoRV-A strain. The next most abundant proviral sequence was a defective variant of the dominant KoRV-A strain, accounting for 3 - 10% of detected provirus. The remaining KoRV provirus represented expected exogenous strains of KoRV and included geographically localized patterns of KoRV-B, -C, -D, -F, -G, and -I. These results indicate that lineage diversification of exogenous KoRV is actively ongoing. In addition, comparison of KoRV provirus within known dam-sire-joey family groups from the koala sanctuary revealed that joeys consistently had KoRV proviral patterns more similar to their dams than their sires in KoRV-B, -C and -D provirus composition. Collectively, this study highlights both the consistency of endogenous KoRV and the diversity of exogenous KoRV across the fragmented koala populations in northern Australia.IMPORTANCE KoRV infection has become a permanent part of koalas in northern Australia. With KoRV presence and abundance linked to more severe chlamydial disease and neoplasia in these koalas, understanding how KoRV exists throughout an increasingly fragmented koala population is a key first step in designing conservation and management strategies. This survey of KoRV provirus in Queensland koalas indicates that endogenous KoRV provirus is ubiquitous and consistent throughout the state while exogenous KoRV provirus is diverse and distinct in fragmented koala populations. Understanding the prevalence and impact of both endogenous and exogenous KoRV will be needed to ensure a future for all koala populations.
Collapse
|
12
|
Quigley BL, Wedrowicz F, Hogan F, Timms P. Phylogenetic and geographical analysis of a retrovirus during the early stages of endogenous adaptation and exogenous spread in a new host. Mol Ecol 2020; 30:2626-2640. [PMID: 33219558 PMCID: PMC8246579 DOI: 10.1111/mec.15735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
Most retroviral endogenization and host adaptation happened in the distant past, with the opportunity to study these processes as they occurred lost to time. An exception exists with the discovery that koala retrovirus (KoRV) has recently begun its endogenization into the koala (Phascolarctos cinereus) genome. What makes this opportunity remarkable is the fact that Northern Australian koalas appear to be undergoing endogenization with one KoRV subtype (KoRV‐A), while all subtypes (KoRV‐A‐I) coexist exogenously, and Southern Australian koalas appear to carry all KoRV subtypes as an exogenous virus. To understand the distribution and relationship of all KoRV variants in koalas, the proviral KoRV envelope gene receptor binding domain was assessed across the koala's natural range. Examination of KoRV subtype‐specific proviral copy numbers per cell found that KoRV‐A proviral integration levels were consistent with endogenous incorporation in Northern Australia (southeast Queensland and northeast New South Wales) while revealing lower levels of KoRV‐A proviral integration (suggestive of exogenous incorporation) in southern regions (southeast New South Wales and Victoria). Phylogeographical analysis indicated that several major KoRV‐A variants were distributed uniformly across the country, while non‐KoRV‐A variants appeared to have undergone lineage diversification in geographically distinct regions. Further analysis of the major KoRV‐A variants revealed a distinct shift in variant proportions in southeast New South Wales, suggesting this as the geographical region where KoRV‐A transitions from being predominantly endogenous to exogenous in Australian koalas. Collectively, these findings advance both our understanding of KoRV in koalas and of retroviral endogenization and diversification in general. see also the Perspective by Elliott S. Chiu and Roderick B. Gagne.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Faye Wedrowicz
- School of Science, Psychology and Sport, Federation University Australia, Churchill, Vic., Australia
| | - Fiona Hogan
- School of Science, Psychology and Sport, Federation University Australia, Churchill, Vic., Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
13
|
Chiu ES, VandeWoude S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu Rev Anim Biosci 2020; 9:225-248. [PMID: 33290087 DOI: 10.1146/annurev-animal-050620-101416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV-XRV interactions have been documented and include (a) recombination to result in ERV-XRV chimeras, (b) ERV induction of immune self-tolerance to XRV antigens, (c) ERV antigen interference with XRV receptor binding, and (d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV-XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA; ,
| |
Collapse
|
14
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Koala retrovirus epidemiology, transmission mode, pathogenesis, and host immune response in koalas (Phascolarctos cinereus): a review. Arch Virol 2020; 165:2409-2417. [PMID: 32770481 PMCID: PMC7413838 DOI: 10.1007/s00705-020-04770-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Health, Chattogram City Corporation, Chattogram, 4000, Bangladesh
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
15
|
Zheng H, Pan Y, Tang S, Pye GW, Stadler CK, Vogelnest L, Herrin KV, Rideout BA, Switzer WM. Koala retrovirus diversity, transmissibility, and disease associations. Retrovirology 2020; 17:34. [PMID: 33008414 PMCID: PMC7530975 DOI: 10.1186/s12977-020-00541-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. Results All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. Conclusions Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.
Collapse
Affiliation(s)
- HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA
| | - Yi Pan
- Quantitative Sciences and Data Management Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Shaohua Tang
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA
| | - Geoffrey W Pye
- San Diego Zoo Global, San Diego, CA, 92112, USA.,Disney's Animals, Science, and Environment, Bay Lake, FL, 32830, USA
| | | | - Larry Vogelnest
- Taronga Conservation Society Australia, Taronga Zoo, Mosman, NSW, 2088, Australia
| | | | | | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA.
| |
Collapse
|
16
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
17
|
Courtier‐Orgogozo V, Danchin A, Gouyon P, Boëte C. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol Appl 2020; 13:1888-1905. [PMID: 32908593 PMCID: PMC7463340 DOI: 10.1111/eva.12939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The probability D that a given clustered regularly interspaced short palindromic repeats (CRISPR)-based gene drive element contaminates another, nontarget species can be estimated by the following Drive Risk Assessment Quantitative Estimate (DRAQUE) Equation: D = h y b + t r a n s f × e x p r e s s × c u t × f l a n k × i m m u n e × n o n e x t i n c t with hyb = probability of hybridization between the target species and a nontarget species; transf = probability of horizontal transfer of a piece of DNA containing the gene drive cassette from the target species to a nontarget species (with no hybridization); express = probability that the Cas9 and guide RNA genes are expressed; cut = probability that the CRISPR-guide RNA recognizes and cuts at a DNA site in the new host; flank = probability that the gene drive cassette inserts at the cut site; immune = probability that the immune system does not reject Cas9-expressing cells; nonextinct = probability of invasion of the drive within the population. We discuss and estimate each of the seven parameters of the equation, with particular emphasis on possible transfers within insects, and between rodents and humans. We conclude from current data that the probability of a gene drive cassette to contaminate another species is not insignificant. We propose strategies to reduce this risk and call for more work on estimating all the parameters of the formula.
Collapse
Affiliation(s)
| | - Antoine Danchin
- Institut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris DescartesParisFrance
| | - Pierre‐Henri Gouyon
- Institut de Systématique, Évolution, BiodiversitéMuséum National d'Histoire NaturelleCNRSSorbonne UniversitéEPHEUAParisFrance
| | | |
Collapse
|
18
|
Changes in Endogenous and Exogenous Koala Retrovirus Subtype Expression over Time Reflect Koala Health Outcomes. J Virol 2019; 93:JVI.00849-19. [PMID: 31243137 DOI: 10.1128/jvi.00849-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023] Open
Abstract
Koala retrovirus (KoRV) is unique in that it exists as both an exogenous and actively endogenizing gamma retrovirus of koalas. While nine subtypes of KoRV have been recognized, focused study of these subtypes in koalas over time and with different health outcomes has been lacking. Therefore, in this study, three wild koala cohorts were established and monitored to examine KoRV proviral and expression data from koalas that either remained healthy over time, began healthy before developing chlamydial cystitis, or presented with chlamydial cystitis and were treated with antibiotics. Deep sequencing of the proviral KoRV envelope gene revealed KoRV-A, -B, -D, and -F to be the major subtypes in this population and allowed for subtype-specific assays to be created. Quantification of KoRV transcripts revealed that KoRV-D expression mirrored the total KoRV expression levels (106 copies/ml of plasma), with KoRV-A and KoRV-F expression being ∼10-fold less and KoRV-B expression being ∼100-fold less, when detected. Strikingly, there was significantly higher expression of KoRV-D in healthy koalas than in koalas that developed chlamydial cystitis, with healthy koalas expressing a major KoRV-D/minor KoRV-A profile, whereas koalas that developed cystitis had variable KoRV expression profiles. Total anti-KoRV IgG antibody levels were found not to correlate with the expression of total KoRV or any individual KoRV subtype. Finally, KoRV expression was consistent between systemic and mucosal body sites and during antibiotic treatment. Collectively, this gives a comprehensive picture of KoRV dynamics during several important koala health states.IMPORTANCE The long-term survival of the koala is under serious threat, with this iconic marsupial being declared "vulnerable" by the Australian Government and officially listed as a threatened species. KoRV is clearly contributing to the overall health status of koalas, and research into this virus has been lacking detailed study of the multiple subtypes at both the proviral and expressed viral levels over time. By designing new subtype-specific assays and following well-defined koala cohorts over time, this study has generated a new more complete picture of KoRV and its relationship to koala health outcomes in the wild. Only by building a comprehensive picture of KoRV during both koala health and disease can we bring meaningful koala health interventions into better focus.
Collapse
|
19
|
Rigogliuso G, Biniossek ML, Goodier JL, Mayer B, Pereira GC, Schilling O, Meese E, Mayer J. A human endogenous retrovirus encoded protease potentially cleaves numerous cellular proteins. Mob DNA 2019; 10:36. [PMID: 31462935 PMCID: PMC6707001 DOI: 10.1186/s13100-019-0178-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background A considerable portion of the human genome derives from retroviruses inherited over millions of years. Human endogenous retroviruses (HERVs) are usually severely mutated, yet some coding-competent HERVs exist. The HERV-K(HML-2) group includes evolutionarily young proviruses that encode typical retroviral proteins. HERV-K(HML-2) has been implicated in various human diseases because transcription is often upregulated and some of its encoded proteins are known to affect cell biology. HERV-K(HML-2) Protease (Pro) has received little attention so far, although it is expressed in some disease contexts and other retroviral proteases are known to process cellular proteins. Results We set out to identify human cellular proteins that are substrates of HERV-K(HML-2) Pro employing a modified Terminal Amine Isotopic Labeling of Substrates (TAILS) procedure. Thousands of human proteins were identified by this assay as significantly processed by HERV-K(HML-2) Pro at both acidic and neutral pH. We confirmed cleavage of a majority of selected human proteins in vitro and in co-expression experiments in vivo. Sizes of processing products observed for some of the tested proteins coincided with product sizes predicted by TAILS. Processed proteins locate to various cellular compartments and participate in diverse, often disease-relevant cellular processes. A limited number of HERV-K(HML-2) reference and non-reference loci appears capable of encoding active Pro. Conclusions Our findings from an approach combining TAILS with experimental verification of candidate proteins in vitro and in cultured cells suggest that hundreds of cellular proteins are potential substrates of HERV-K(HML-2) Pro. It is therefore conceivable that even low-level expression of HERV-K(HML-2) Pro affects levels of a diverse array of proteins and thus has a functional impact on cell biology and possible relevance for human diseases. Further studies are indicated to elucidate effects of HERV-K(HML-2) Pro expression regarding human substrate proteins, cell biology, and disease. The latter also calls for studies on expression of specific HERV-K(HML-2) loci capable of encoding active Pro. Endogenous retrovirus-encoded Pro activity may also be relevant for disease development in species other than human. Electronic supplementary material The online version of this article (10.1186/s13100-019-0178-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Rigogliuso
- 1Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Martin L Biniossek
- 2Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - John L Goodier
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Bettina Mayer
- 2Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Gavin C Pereira
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Oliver Schilling
- 4Institute of Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany.,5German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eckart Meese
- 1Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jens Mayer
- 1Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| |
Collapse
|
20
|
Ashman KR, Watchorn DJ, Whisson DA. Prioritising research efforts for effective species conservation: a review of 145 years of koala research. Mamm Rev 2019. [DOI: 10.1111/mam.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kita R. Ashman
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin University Geelong Victoria 3216 Australia
| | - Darcy J. Watchorn
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin University Geelong Victoria 3216 Australia
| | - Desley A. Whisson
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin University Burwood New South Wales 3215 Australia
| |
Collapse
|
21
|
Abstract
Cancer is ubiquitous in wildlife, affecting animals from bivalves to pachyderms and cetaceans. Reports of increasing frequency demonstrate that neoplasia is associated with substantial mortality in wildlife species. Anthropogenic activities and global weather changes are shaping new geographical limitations for many species, and alterations in living niches are associated with visible examples of genetic bottlenecks, toxin exposures, oncogenic pathogens, stress and immunosuppression, which can all contribute to cancers in wild species. Nations that devote resources to monitoring the health of wildlife often do so for human-centric reasons, including for the prediction of the potential for zoonotic disease, shared contaminants, chemicals and medications, and for observing the effect of exposure from crowding and loss of habitat. Given the increasing human footprint on land and in the sea, wildlife conservation should also become a more important motivating factor. Greater attention to the patterns of the emergence of wildlife cancer is imperative because growing numbers of species are existing at the interface between humans and the environment, making wildlife sentinels for both animal and human health. Therefore, monitoring wildlife cancers could offer interesting and novel insights into potentially unique non-age-related mechanisms of carcinogenesis across species.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael K Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
22
|
Madden D, Whaite A, Jones E, Belov K, Timms P, Polkinghorne A. Koala immunology and infectious diseases: How much can the koala bear? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:177-185. [PMID: 29382557 DOI: 10.1016/j.dci.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Infectious diseases are contributing to the decline of the iconic Australian marsupial, the koala (Phascolarctos cinereus). Infections with the obligate intracellular bacteria, Chlamydia pecorum, cause debilitating ocular and urogenital-tract disease while the koala-retrovirus (KoRV) has been implicated in host immunosuppression and exacerbation of chlamydial pathogenesis. Although histological studies have provided insight into the basic architecture of koala immune tissues, our understanding of the koala immune response to infectious disease has been limited, until recently, by a lack of species-specific immune reagents. Recent advances in the characterisation of key immune genes have focused on advancing our understanding of the immune response to Chlamydia infection, revealing commonalities in disease pathologies and immunity between koalas and other hosts and paving the way for the development of a koala Chlamydia vaccine. This review summarises these recent findings and highlights key aspects of the koala immune system requiring further attention with particular regard to their most prominent infectious diseases.
Collapse
Affiliation(s)
- Danielle Madden
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Alessandra Whaite
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Elizabeth Jones
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia.
| | - Peter Timms
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| | - Adam Polkinghorne
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs 4556, Australia.
| |
Collapse
|
23
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
24
|
Abstract
Viruses must establish an intimate relationship with their hosts and vectors in order to infect, replicate, and disseminate; hence, viruses can be considered as symbionts with their hosts. Symbiotic relationships encompass different lifestyles, including antagonistic (or pathogenic, the most well-studied lifestyle for viruses), commensal (probably the most common lifestyle), and mutualistic (important beneficial partners). Symbiotic relationships can shape the evolution of the partners in a holobiont, and placing viruses in this context provides an important framework for understanding virus-host relationships and virus ecology. Although antagonistic relationships are thought to lead to coevolution, this is not always clear in virus-host interactions, and impacts on evolution may be complex. Commensalism implies a hitchhiking role for viruses-selfish elements just along for the ride. Mutualistic relationships have been described in detail in the past decade, and they reveal how important viruses are in considering host ecology. Ultimately, symbiosis can lead to symbiogenesis, or speciation through fusion, and the presence of large amounts of viral sequence in the genomes of everything from bacteria to humans, including some important functional genes, illustrates the significance of viral symbiogenesis in the evolution of all life on Earth.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edelio R Bazán
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
25
|
Medina J, Perron H. [DNA sequences from mobile genetic elements, a hidden half of the human genome]. Med Sci (Paris) 2017; 33:151-158. [PMID: 28240206 DOI: 10.1051/medsci/20173302010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Current data estimate that mobile genetic elements represent more than one-half of the human genome. The literature is constantly updating data following the evolution of sequencing techniques and of algorithms for genome analyses. This review aims to provide an overview of the topic showing the complexity given by the various designations and classifications found in scientific papers. A particular focus is made on retrotransposons, including Endogenous RetroViruses (ERV), to introduce a second article focusing on their activation and their involvement in physiological functions and/or pathological mechanisms associated with diseases like multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Julie Medina
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France
| | - Hervé Perron
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France - GeNeuro, 18, chemin des Aulx, 1228 Plan-Les-Ouates, Genève, Suisse - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France
| |
Collapse
|