1
|
Chinta S, Pluta SR. Whisking and locomotion are jointly represented in superior colliculus neurons. PLoS Biol 2025; 23:e3003087. [PMID: 40193391 PMCID: PMC12005515 DOI: 10.1371/journal.pbio.3003087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Active sensation requires the brain to interpret external stimuli against an ongoing estimate of body position. While internal estimates of body position are often ascribed to the cerebral cortex, we examined the midbrain superior colliculus (SC), due to its close relationship with the sensory periphery as well as higher, motor-related brain regions. Using high-density electrophysiology and movement tracking, we discovered that the on-going kinematics of whisker motion and locomotion speed accurately predict the firing rate of mouse SC neurons. Neural activity was best predicted by movements occurring either in the past, present, or future, indicating that the SC population continuously estimates a trajectory of self-motion. A combined representation of slow and fast whisking features predicted absolute whisker angle at high temporal resolution. Sensory reafference played at least a partial role in shaping this feature tuning. Taken together, these data indicate that the SC contains a joint representation of whisking and locomotor features that is potentially useful in guiding complex orienting movements involving the face and limbs.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R. Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Chu YW, Chinta S, Keri HVS, Beri S, Pluta SR. Stimulus selection enhances value-modulated somatosensory processing in the superior colliculus. PLoS Biol 2025; 23:e3003057. [PMID: 40163544 DOI: 10.1371/journal.pbio.3003057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/08/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
A fundamental trait of intelligent behavior is the ability to respond selectively to stimuli with higher value. Where along the neural hierarchy does somatosensory processing transition from a map of stimulus location to a map of stimulus value? To address this question, we recorded single-unit activity from populations of neurons in somatosensory cortex (S1) and midbrain superior colliculus (SC) in mice conditioned to respond to a positive-valued stimulus and withhold responses to an adjacent, negative-valued stimulus. The stimulus preference of the S1 population was equally weighted towards either stimulus, in line with a somatotopic map. Surprisingly, we discovered a large population of SC neurons that were disproportionately biased towards the positive stimulus. This disproportionate bias was largely driven by enhanced spike suppression for the negative stimulus. Removing the opportunity for mice to behaviorally select the positive stimulus reduced positive stimulus bias and spontaneous firing rates in SC but not S1, suggesting that neural selectivity was augmented by task readiness. Similarly, the spontaneous firing rates of SC but not S1 neurons predicted reaction times, suggesting that SC neurons played a persistent role in perceptual decision-making. Taken together, these data indicate that the somatotopic map in S1 is transformed into a value-based map in SC that encodes stimulus priority.
Collapse
Affiliation(s)
- Yun Wen Chu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Hayagreev V S Keri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shreya Beri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Fooken J, Balalaie P, Park K, Flanagan JR, Scott SH. Rapid eye and hand responses in an interception task are differentially modulated by context-dependent predictability. J Vis 2024; 24:10. [PMID: 39556082 DOI: 10.1167/jov.24.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
When catching a falling ball or avoiding a collision with traffic, humans can quickly generate eye and limb responses to unpredictable changes in their environment. Mechanisms of limb and oculomotor control when responding to sudden changes in the environment have mostly been investigated independently. Here, we investigated eye-hand coordination in a rapid interception task where human participants used a virtual paddle to intercept a moving target. The target moved vertically down a computer screen and could suddenly jump to the left or right. In high-certainty blocks, the target always jumped; in low-certainty blocks, the target only jumped in a portion of the trials. Further, we manipulated response urgency by varying the time of target jumps, with early jumps requiring less urgent responses and late jumps requiring more urgent responses. Our results highlight differential effects of certainty and urgency on eye-hand coordination. Participants initiated both eye and hand responses earlier for high-certainty compared with low-certainty blocks. Hand reaction times decreased and response vigor increased with increasing urgency levels. However, eye reaction times were lowest for medium-urgency levels and eye vigor was unaffected by urgency. Across all trials, we found a weak positive correlation between eye and hand responses. Taken together, these results suggest that the limb and oculomotor systems use similar early sensorimotor processing; however, rapid responses are modulated differentially to attain system-specific sensorimotor goals.
Collapse
Affiliation(s)
- Jolande Fooken
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Psychology and Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Parsa Balalaie
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Kayne Park
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
6
|
Caziot B, Cooper B, Harwood MR, McPeek RM. Physiological correlates of a simple saccadic-decision task to extended objects in superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584223. [PMID: 38559019 PMCID: PMC10979857 DOI: 10.1101/2024.03.09.584223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Our vision is best only in the center of our gaze, and we use saccadic eye movements to direct gaze to objects and features of interest. We make more than 180,000 saccades per day, and accurate and efficient saccades are crucial for most visuo-motor tasks. Saccades are typically studied using small point stimuli, despite the fact that most real-world visual scenes are composed of extended objects. Recent studies in humans have shown that the initiation latency of saccades is strongly dependent on the size of the target (the "size-latency effect"), perhaps reflecting a tradeoff between the cost of making a saccade to a target and the expected information gain that would result. Here, we investigate the neuronal correlates of the size-latency effect in the macaque superior colliculus. We analyzed the latency variations of saccades to different size targets within a stochastic accumulator model framework. The model predicted a steeper increase in activity for smaller targets compared to larger ones. Surprisingly, the model also predicted an increase in saccade initiation threshold for larger targets. We found that the activity of intermediate-layer SC visuomotor neurons is in close agreement with the model predictions. We also found evidence that these effects may be a consequence of the visual responses of SC neurons to targets of different sizes. These results shed new light on the sources of delay within the saccadic system, a system that we heavily depend upon in the performance of most visuo-motor tasks.
Collapse
Affiliation(s)
- B. Caziot
- Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA
- Neurophysics Department, Philipps-Universität Marburg, 8A Karl-von-Frisch-Straße, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus–Liebig–Universität Gießen, Gießen, Germany
| | - B. Cooper
- Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA
| | - M. R. Harwood
- Department of Psychological Sciences, University of East London, London, UK
| | - R. M. McPeek
- Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA
| |
Collapse
|
7
|
Hu G, Chen A, Ye J, Liu Q, Wang J, Fan C, Wang X, Huang M, Dai M, Shi X, Gu Y. A developmental critical period for ocular dominance plasticity of binocular neurons in mouse superior colliculus. Cell Rep 2024; 43:113667. [PMID: 38184852 DOI: 10.1016/j.celrep.2023.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Detecting visual features in the environment is crucial for animals' survival. The superior colliculus (SC) is implicated in motion detection and processing, whereas how the SC integrates visual inputs from the two eyes remains unclear. Using in vivo electrophysiology, we show that mouse SC contains many binocular neurons that display robust ocular dominance (OD) plasticity in a critical period during early development, which is similar to, but not dependent on, the primary visual cortex. NR2A- and NR2B-containing N-methyl-D-aspartate (NMDA) receptors play an essential role in the regulation of SC plasticity. Blocking NMDA receptors can largely prevent the impairment of predatory hunting caused by monocular deprivation, indicating that maintaining the binocularity of SC neurons is required for efficient hunting behavior. Together, our studies reveal the existence and function of OD plasticity in SC, which broadens our understanding of the development of subcortical visual circuitry relating to motion detection and predatory hunting.
Collapse
Affiliation(s)
- Guanglei Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; School of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Ailin Chen
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jingjing Ye
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qiong Liu
- School of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Jiafeng Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Cunxiu Fan
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China
| | - Xiaoqing Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mengqi Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuefeng Shi
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Institute of Ophthalmology, Nankai University, Tianjin 300020, China.
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Prabhu NG, Knodel N, Himmelbach M. The superior colliculus motor region does not respond to finger tapping movements in humans. Sci Rep 2024; 14:1769. [PMID: 38243013 PMCID: PMC10798994 DOI: 10.1038/s41598-024-51835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Electrophysiological studies in macaques and functional neuroimaging in humans revealed a motor region in the superior colliculus (SC) for upper limb reaching movements. Connectivity studies in macaques reported direct connections between this SC motor region and cortical premotor arm, hand, and finger regions. These findings motivated us to investigate if the human SC is also involved in sequential finger tapping movements. We analyzed fMRI task data of 130 subjects executing finger tapping from the Human Connectome Project. While we found strong signals in the SC for visual cues, we found no signals related to simple finger tapping. In subsequent experimental measurements, we searched for responses in the SC corresponding to complex above simple finger tapping sequences. We observed expected signal increases in cortical motor and premotor regions for complex compared to simple finger tapping, but no signal increases in the motor region of the SC. Despite evidence for direct anatomical connections of the SC motor region and cortical premotor hand and finger areas in macaques, our results suggest that the SC is not involved in simple or complex finger tapping in humans.
Collapse
Affiliation(s)
- Nikhil G Prabhu
- Division of Neuropsychology, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- International Max Planck Research School in Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicole Knodel
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- International Max Planck Research School in Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marc Himmelbach
- Division of Neuropsychology, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
9
|
Prabhu NG, Himmelbach M. Activity in the human superior colliculus associated with reaching for tactile targets. Neuroimage 2023; 280:120322. [PMID: 37586443 DOI: 10.1016/j.neuroimage.2023.120322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
The superior colliculus (SC) plays a major role in orienting movements of eyes and the head and in the allocation of attention. Functions of the SC have been mostly investigated in animal models, including non-human primates. Differences in the SC's anatomy and function between different species question extrapolations of these studies to humans without further validation. Few electrophysiological and neuroimaging studies in animal models and humans have reported a role of the SC in visually guided reaching movements. Using BOLD fMRI imaging, we sought to decipher if the SC is also active during reaching movements guided by tactile stimulation. Participants executed reaching movements to visual and tactile target positions. When contrasted against visual and tactile stimulation without reaching, we found increased SC activity with reaching not only for visual but also for tactile targets. We conclude that the SC's involvement in reaching does not rely on visual inputs. It is also independent from a specific sensory modality. Our results indicate a general involvement of the human SC in upper limb reaching movements.
Collapse
Affiliation(s)
- Nikhil G Prabhu
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany; International Max Planck Research School in Cognitive and Systems Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Marc Himmelbach
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Ayar EC, Heusser MR, Bourrelly C, Gandhi NJ. Distinct context- and content-dependent population codes in superior colliculus during sensation and action. Proc Natl Acad Sci U S A 2023; 120:e2303523120. [PMID: 37748075 PMCID: PMC10556644 DOI: 10.1073/pnas.2303523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Sensorimotor transformation is the process of first sensing an object in the environment and then producing a movement in response to that stimulus. For visually guided saccades, neurons in the superior colliculus (SC) emit a burst of spikes to register the appearance of stimulus, and many of the same neurons discharge another burst to initiate the eye movement. We investigated whether the neural signatures of sensation and action in SC depend on context. Spiking activity along the dorsoventral axis was recorded with a laminar probe as Rhesus monkeys generated saccades to the same stimulus location in tasks that require either executive control to delay saccade onset until permission is granted or the production of an immediate response to a target whose onset is predictable. Using dimensionality reduction and discriminability methods, we show that the subspaces occupied during the visual and motor epochs were both distinct within each task and differentiable across tasks. Single-unit analyses, in contrast, show that the movement-related activity of SC neurons was not different between tasks. These results demonstrate that statistical features in neural activity of simultaneously recorded ensembles provide more insight than single neurons. They also indicate that cognitive processes associated with task requirements are multiplexed in SC population activity during both sensation and action and that downstream structures could use this activity to extract context. Additionally, the entire manifolds associated with sensory and motor responses, respectively, may be larger than the subspaces explored within a certain set of experiments.
Collapse
Affiliation(s)
- Eve C. Ayar
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15213
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA15213
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
| | - Michelle R. Heusser
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA15213
| | - Clara Bourrelly
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA15213
| | - Neeraj J. Gandhi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15213
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA15213
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA15213
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
11
|
Heusser MR, Jagadisan UK, Gandhi NJ. Drifting population dynamics with transient resets characterize sensorimotor transformation in the monkey superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522634. [PMID: 36711849 PMCID: PMC9881850 DOI: 10.1101/2023.01.03.522634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To produce goal-directed eye movements known as saccades, we must channel sensory input from our environment through a process known as sensorimotor transformation. The behavioral output of this phenomenon (an accurate eye movement) is straightforward, but the coordinated activity of neurons underlying its dynamics is not well understood. We searched for a neural correlate of sensorimotor transformation in the activity patterns of simultaneously recorded neurons in the superior colliculus (SC) of three male rhesus monkeys performing a visually guided, delayed saccade task. Neurons in the intermediate layers produce a burst of spikes both following the appearance of a visual (sensory) stimulus and preceding an eye movement command, but many also exhibit a sustained activity level during the intervening time ("delay period"). This sustained activity could be representative of visual processing or motor preparation, along with countless cognitive processes. Using a novel measure we call the Visuomotor Proximity Index (VMPI), we pitted visual and motor signals against each other by measuring the degree to which each session's population activity (as summarized in a low-dimensional framework) could be considered more visual-like or more motor-like. The analysis highlighted two salient features of sensorimotor transformation. One, population activity on average drifted systematically toward a motor-like representation and intermittently reverted to a visual-like representation following a microsaccade. Two, activity patterns that drift to a stronger motor-like representation by the end of the delay period may enable a more rapid initiation of a saccade, substantiating the idea that this movement initiation mechanism is conserved across motor systems.
Collapse
Affiliation(s)
- Michelle R Heusser
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uday K Jagadisan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neeraj J Gandhi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Bourrelly C, Massot C, Gandhi NJ. Rapid Input-Output Transformation between Local Field Potential and Spiking Activity during Sensation but not Action in the Superior Colliculus. J Neurosci 2023; 43:4047-4061. [PMID: 37127365 PMCID: PMC10255026 DOI: 10.1523/jneurosci.2318-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023] Open
Abstract
Sensorimotor transformation is the sequential process of registering a sensory signal in the environment and then responding with the relevant movement at an appropriate time. For visually guided eye movements, neural signatures in the form of spiking activity of neurons have been extensively studied along the dorsoventral axis of the superior colliculus (SC). In contrast, the local field potential (LFP), which represents the putative input to a region, remains largely unexplored in the SC. We therefore compared amplitude levels and onset times of both spike bursts and LFP modulations recorded simultaneously with a laminar probe along the dorsoventral axis of SC in 3 male monkeys performing the visually guided delayed saccade task. Both signals displayed a gradual transition from sensory activity in the superficial layers to a predominantly motor response in the deeper layers, although the transition from principally sensory to mostly motor response occurred ∼500 μm deeper for the LFP. For the sensory response, LFP modulation preceded spike burst onset by <5 ms in the superficial and intermediate layers and only when data were analyzed on a trial-by-trial basis. The motor burst in the spiking activity led LFP modulation by >25 ms in the deeper layers. The results reveal a fast and efficient input-output transformation between LFP modulation and spike burst in the visually responsive layers activity during sensation but not during action. The spiking pattern observed during the movement phase is likely dominated by intracollicular processing that is not captured in the LFP.SIGNIFICANCE STATEMENT What is the sequence of events between local field potential (LFP) modulation and spiking activity during sensorimotor transformation? A trial-by-trial analysis reveals that the LFP activity leads the spike burst in the superficial and intermediate layers of the superior colliculus during visual processing, while both trial-by-trial and the average analyses show that the spike burst leads the LFP modulation during movement generation. These results suggest an almost instantaneous LFP input, spike burst output transformation in the visually responsive layers of the superior colliculus when registering the stimulus. In contrast, substantial intracollicular processing likely results in a saccade-related spike burst that leads LFP modulation.
Collapse
Affiliation(s)
- Clara Bourrelly
- Departments of Bioengineering
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Corentin Massot
- Departments of Bioengineering
- Neurobiology
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Neeraj J Gandhi
- Departments of Bioengineering
- Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
13
|
Blumberg MS, Adolph KE. Protracted development of motor cortex constrains rich interpretations of infant cognition. Trends Cogn Sci 2023; 27:233-245. [PMID: 36681607 PMCID: PMC9957955 DOI: 10.1016/j.tics.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Cognition in preverbal human infants must be inferred from overt motor behaviors such as gaze shifts, head turns, or reaching for objects. However, infant mammals - including human infants - show protracted postnatal development of cortical motor outflow. Cortical control of eye, face, head, and limb movements is absent at birth and slowly emerges over the first postnatal year and beyond. Accordingly, the neonatal cortex in humans cannot generate the motor behaviors routinely used to support inferences about infants' cognitive abilities, and thus claims of developmental continuity between infant and adult cognition are suspect. Recognition of the protracted development of motor cortex should temper rich interpretations of infant cognition and motivate more serious consideration of the role of subcortical mechanisms in early cognitive development.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Karen E Adolph
- Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
14
|
Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-subcortical interactions in goal-directed behavior. Physiol Rev 2023; 103:347-389. [PMID: 35771984 PMCID: PMC9576171 DOI: 10.1152/physrev.00048.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022] Open
Abstract
Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks. In this review, we discuss the field's evolving understanding of how cortical and subcortical regions in placental mammals interact cooperatively, not only via top-down cortical-subcortical inputs but through bottom-up interactions, especially via the thalamus. We describe our current understanding of the circuitry of both the cortex and two exemplar subcortical structures, the superior colliculus and striatum, to identify which information is prioritized by which regions. We then describe the functional circuits these regions form with one another, and the thalamus, to create parallel loops and complex networks for brainwide information flow. Finally, we challenge the classic view that functional modules are contained within specific brain regions; instead, we propose that certain regions prioritize specific types of information over others, but the subnetworks they form, defined by their anatomical connections and functional dynamics, are the basis of true specialization.
Collapse
Affiliation(s)
- K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi Ning Leow
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nhat Minh Le
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rafiq Huda
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Duménieu M, Marquèze-Pouey B, Russier M, Debanne D. Mechanisms of Plasticity in Subcortical Visual Areas. Cells 2021; 10:3162. [PMID: 34831385 PMCID: PMC8621502 DOI: 10.3390/cells10113162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visual plasticity is classically considered to occur essentially in the primary and secondary cortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN) or the superior colliculus (SC) have long been held as basic structures responsible for a stable and defined function. In this model, the dLGN was considered as a relay of visual information travelling from the retina to cortical areas and the SC as a sensory integrator orienting body movements towards visual targets. However, recent findings suggest that both dLGN and SC neurons express functional plasticity, adding unexplored layers of complexity to their previously attributed functions. The existence of neuronal plasticity at the level of visual subcortical areas redefines our approach of the visual system. The aim of this paper is therefore to review the cellular and molecular mechanisms for activity-dependent plasticity of both synaptic transmission and cellular properties in subcortical visual areas.
Collapse
Affiliation(s)
| | | | | | - Dominique Debanne
- INSERM, Aix-Marseille Université, UNIS, 13015 Marseille, France; (M.D.); (B.M.-P.); (M.R.)
| |
Collapse
|