1
|
Cowley BR, Calhoun AJ, Rangarajan N, Ireland E, Turner MH, Pillow JW, Murthy M. Mapping model units to visual neurons reveals population code for social behaviour. Nature 2024; 629:1100-1108. [PMID: 38778103 PMCID: PMC11136655 DOI: 10.1038/s41586-024-07451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different conclusion: combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.
Collapse
Affiliation(s)
- Benjamin R Cowley
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Elise Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Maxwell H Turner
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Guo Y, Lv M, Wang C, Ma J. Energy controls wave propagation in a neural network with spatial stimuli. Neural Netw 2024; 171:1-13. [PMID: 38091753 DOI: 10.1016/j.neunet.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 01/29/2024]
Abstract
Nervous system has distinct anisotropy and some intrinsic biophysical properties enable neurons present various firing modes in neural activities. In presence of realistic electromagnetic fields, non-uniform radiation activates these neurons with energy diversity. By using a feasible model, energy function is obtained to predict the growth of synaptic connections of these neurons. Distribution of average value of the Hamilton energy function vs. intensity of noisy disturbance can predict the occurrence of coherence resonance, which the neural activities show high regularity by applying noisy disturbance with moderate intensity. From physical viewpoint, the average energy value has similar role average power for the neuron. Non-uniform spatial disturbance is applied and energy is injected into the neural network, statistical synchronization factor is calculated to predict the network synchronization stability and wave propagation. The intensity for field coupling is adaptively controlled by energy diversity between adjacent neurons. Local energy balance will terminate further growth of the coupling intensity; otherwise, heterogeneity is formed in the network due to energy diversity. Furthermore, memristive channel current is introduced into the neuron model for perceiving the effect of electromagnetic induction and radiation, and a memristive neuron is obtained. The circuit implement of memristive circuit depends on the connection to a magnetic flux-controlled memristor into the mentioned neural circuit in an additive branch circuit. The connection and activation of this memristive neural network are controlled under external spatial electromagnetic radiation by capturing enough field energy. Continuous energy collection and exchange generate energy diversity and synaptic connection is created to regulate the synchronous firing patterns and energy balance.
Collapse
Affiliation(s)
- Yitong Guo
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China
| | - Mi Lv
- Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, Xinjiang, PR China
| | - Chunni Wang
- Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China.
| | - Jun Ma
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China; Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China
| |
Collapse
|
3
|
Pennington JR, David SV. A convolutional neural network provides a generalizable model of natural sound coding by neural populations in auditory cortex. PLoS Comput Biol 2023; 19:e1011110. [PMID: 37146065 DOI: 10.1371/journal.pcbi.1011110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 05/17/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Convolutional neural networks (CNNs) can provide powerful and flexible models of neural sensory processing. However, the utility of CNNs in studying the auditory system has been limited by their requirement for large datasets and the complex response properties of single auditory neurons. To address these limitations, we developed a population encoding model: a CNN that simultaneously predicts activity of several hundred neurons recorded during presentation of a large set of natural sounds. This approach defines a shared spectro-temporal space and pools statistical power across neurons. Population models of varying architecture performed consistently and substantially better than traditional linear-nonlinear models on data from primary and non-primary auditory cortex. Moreover, population models were highly generalizable. The output layer of a model pre-trained on one population of neurons could be fit to data from novel single units, achieving performance equivalent to that of neurons in the original fit data. This ability to generalize suggests that population encoding models capture a complete representational space across neurons in an auditory cortical field.
Collapse
Affiliation(s)
- Jacob R Pennington
- Washington State University, Vancouver, Washington, United States of America
| | - Stephen V David
- Oregon Hearing Research Center, Oregon Health and Science University, Oregon, United States of America
| |
Collapse
|
4
|
Parker PRL, Abe ETT, Leonard ESP, Martins DM, Niell CM. Joint coding of visual input and eye/head position in V1 of freely moving mice. Neuron 2022; 110:3897-3906.e5. [PMID: 36137549 PMCID: PMC9742335 DOI: 10.1016/j.neuron.2022.08.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/16/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Visual input during natural behavior is highly dependent on movements of the eyes and head, but how information about eye and head position is integrated with visual processing during free movement is unknown, as visual physiology is generally performed under head fixation. To address this, we performed single-unit electrophysiology in V1 of freely moving mice while simultaneously measuring the mouse's eye position, head orientation, and the visual scene from the mouse's perspective. From these measures, we mapped spatiotemporal receptive fields during free movement based on the gaze-corrected visual input. Furthermore, we found a significant fraction of neurons tuned for eye and head position, and these signals were integrated with visual responses through a multiplicative mechanism in the majority of modulated neurons. These results provide new insight into coding in the mouse V1 and, more generally, provide a paradigm for investigating visual physiology under natural conditions, including active sensing and ethological behavior.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Elliott T T Abe
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Emmalyn S P Leonard
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Dylan M Martins
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA
| | - Cristopher M Niell
- Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
5
|
Bartsch F, Cumming BG, Butts DA. Model-based characterization of the selectivity of neurons in primary visual cortex. J Neurophysiol 2022; 128:350-363. [PMID: 35766377 PMCID: PMC9359659 DOI: 10.1152/jn.00416.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022] Open
Abstract
Statistical models are increasingly being used to understand the complexity of stimulus selectivity in primary visual cortex (V1) in the context of complex time-varying stimuli, replacing averaging responses to simple parametric stimuli. Although such models often can more accurately reflect the computations performed by V1 neurons in more natural visual environments, they do not by themselves provide insight into V1 neural selectivity to basic stimulus features such as receptive field size, spatial frequency tuning, and phase invariance. Here, we present a battery of analyses that can be directly applied to encoding models to link complex encoding models to more interpretable aspects of stimulus selectivity. We apply this battery to nonlinear models of V1 neurons recorded in awake macaque during random bar stimuli. In linking model properties to more classical measurements, we demonstrate several novel aspects of V1 selectivity not available to simpler experimental measurements. For example, this approach reveals that individual spatiotemporal elements of the V1 models often have a smaller spatial scale than the neuron as a whole, resulting in nontrivial tuning to spatial frequencies. In addition, we propose measures of nonlinear integration that suggest that classical classifications of V1 neurons into simple versus complex cells will be spatial-frequency dependent. In total, rather than obfuscate classical characterizations of V1 neurons, model-based characterizations offer a means to more fully understand their selectivity, and link their classical tuning properties to their roles in more complex, natural, visual processing.NEW & NOTEWORTHY Visual neurons are increasingly being studied with more complex, natural visual stimuli, and increasingly complex models are necessary to characterize their response properties. Here, we describe a battery of analyses that relate these more complex models to classical characterizations. Using such model-based characterizations of V1 neurons furthermore yields several new insights into V1 processing not possible to capture in more classical means to measure their visual selectivity.
Collapse
Affiliation(s)
- Felix Bartsch
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland
| | - Bruce G Cumming
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, Maryland
| | - Daniel A Butts
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Almasi A, Meffin H, Cloherty SL, Wong Y, Yunzab M, Ibbotson MR. Mechanisms of Feature Selectivity and Invariance in Primary Visual Cortex. Cereb Cortex 2020; 30:5067-5087. [PMID: 32368778 DOI: 10.1093/cercor/bhaa102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/14/2022] Open
Abstract
Visual object identification requires both selectivity for specific visual features that are important to the object's identity and invariance to feature manipulations. For example, a hand can be shifted in position, rotated, or contracted but still be recognized as a hand. How are the competing requirements of selectivity and invariance built into the early stages of visual processing? Typically, cells in the primary visual cortex are classified as either simple or complex. They both show selectivity for edge-orientation but complex cells develop invariance to edge position within the receptive field (spatial phase). Using a data-driven model that extracts the spatial structures and nonlinearities associated with neuronal computation, we quantitatively describe the balance between selectivity and invariance in complex cells. Phase invariance is frequently partial, while invariance to orientation and spatial frequency are more extensive than expected. The invariance arises due to two independent factors: (1) the structure and number of filters and (2) the form of nonlinearities that act upon the filter outputs. Both vary more than previously considered, so primary visual cortex forms an elaborate set of generic feature sensitivities, providing the foundation for more sophisticated object processing.
Collapse
Affiliation(s)
- Ali Almasi
- National Vision Research Institute, Australian College of Optometry, Carlton VIC 3053, Australia
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton VIC 3053, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Shaun L Cloherty
- School of Engineering, RMIT University, Melbourne VIC 3001, Australia
| | - Yan Wong
- Department of Electrical and Computer Systems Engineering and Department of Physiology, Monash University, Clayton VIC 3800, Australia
| | - Molis Yunzab
- National Vision Research Institute, Australian College of Optometry, Carlton VIC 3053, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton VIC 3053, Australia.,Department of Optometry and Vision Sciences, The University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|