1
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2025; 70:423-444. [PMID: 38876192 PMCID: PMC11976419 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
VanderGiessen M, Jamiu A, Heath B, Akhrymuk I, Kehn-Hall K. Cellular takeover: How new world alphaviruses impact host organelle function. Virology 2025; 603:110365. [PMID: 39733515 DOI: 10.1016/j.virol.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Alphavirus replication is dependent on host cell organelles to facilitate multiple steps of the viral life cycle. New world alphaviruses (NWA) consisting of eastern, western and Venezuelan equine encephalitis viruses are a subgroup of alphaviruses associated with central nervous system disease. Despite differing morbidity and mortality amongst these viruses, all are important human pathogens due to their transmission through viral aerosolization and mosquito transmission. In this review, we summarize the utilization of host organelles for NWA replication and the subversion of the host innate immune responses. The impact of viral proteins and replication processes on organelle function is also discussed. Literature involving old world alphaviruses (OWA), such as chikungunya virus and Sindbis virus, is included to compare and contrast between OWA and NWA and highlight gaps in knowledge for NWA. Finally, potential targets for therapeutics or vaccine candidates are highlighted with a focus on host-directed therapeutics.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Abdullahi Jamiu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Brittany Heath
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Riaz Z, Richardson GS, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Kanthasamy AG. Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson's and other related neurodegenerative diseases. Mol Neurodegener 2024; 19:87. [PMID: 39578912 PMCID: PMC11585115 DOI: 10.1186/s13024-024-00774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson's disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.
Collapse
Affiliation(s)
- Zainab Riaz
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gabriel S Richardson
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Anumantha G Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Zaitsava H, Gachowska M, Bartoszewska E, Kmiecik A, Kulbacka J. The Potential of Nuclear Pore Complexes in Cancer Therapy. Molecules 2024; 29:4832. [PMID: 39459201 PMCID: PMC11510365 DOI: 10.3390/molecules29204832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Nuclear pore complexes (NPCs) play a critical role in regulating transport-dependent gene expression, influencing various stages of cancer development and progression. Dysregulation of nucleocytoplasmic transport has profound implications, particularly in the context of cancer-associated protein mislocalization. This review provides specific information about the relationship between nuclear pore complexes, key regulatory proteins, and their impact on cancer biology. Highlighting the influence of tumor-suppressor proteins as well as the potential of gold nanoparticles and intelligent nanosystems in cancer treatment, their role in inhibiting cell invasion is examined. This article concludes with the clinical implications of nuclear export inhibitors, particularly XPO1, as a therapeutic target in various cancers, with selective inhibitors of nuclear export compounds demonstrating efficacy in both hematological and solid malignancies. The review aims to explore the role of NPCs in cancer biology, focusing on their influence on gene expression, cancer progression, protein mislocalization, and the potential of targeted therapies such as nuclear export inhibitors and intelligent nanosystems in cancer treatment. Despite their significance and the number of research studies, the direct role of NPCs in carcinogenesis remains incompletely understood.
Collapse
Affiliation(s)
- Hanna Zaitsava
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Martyna Gachowska
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Elżbieta Bartoszewska
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, 6a Chałubińskiego St., 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
6
|
Numata Y, Akutsu N, Idogawa M, Wagatsuma K, Numata Y, Ishigami K, Nakamura T, Hirano T, Kawakami Y, Masaki Y, Murota A, Sasaki S, Nakase H. Genomic analysis of an aggressive hepatic leiomyosarcoma case following treatment for hepatocellular carcinoma. Hepatol Res 2024; 54:859-865. [PMID: 38459823 DOI: 10.1111/hepr.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
A 70-year-old man undergoing treatment for immunoglobulin G4-related disease developed a liver mass on computed tomography during routine imaging examination. The tumor was located in the hepatic S1/4 region, was 38 mm in size, and showed arterial enhancement on dynamic contrast-enhanced computed tomography. We performed a liver biopsy and diagnosed moderately differentiated hepatocellular carcinoma. The patient underwent proton beam therapy. The tumor remained unchanged but enlarged after 4 years. The patient was diagnosed with hepatocellular carcinoma recurrence and received hepatic arterial chemoembolization. However, 1 year later, the patient developed jaundice, and the liver tumor grew in size. Unfortunately, the patient passed away. Autopsy revealed that the tumor consisted of spindle-shaped cells exhibiting nuclear atypia and a fission pattern and tested positive for α-smooth muscle actin and vimentin. No hepatocellular carcinoma components were observed, and the patient was pathologically diagnosed with hepatic leiomyosarcoma. Next-generation sequencing revealed somatic mutations in CACNA2D4, CTNNB1, DOCK5, IPO8, MTMR1, PABPC5, SEMA6D, and ZFP36L1. Based on the genetic mutation, sarcomatoid hepatocarcinoma was the most likely pathogenesis in this case. This mutation is indicative of the transition from sarcomatoid hepatocarcinoma to hepatic leiomyosarcoma.
Collapse
Affiliation(s)
- Yuto Numata
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Akutsu
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasunao Numata
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuike Ishigami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoya Nakamura
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yujiro Kawakami
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiharu Masaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayako Murota
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeru Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Lv Y, Wang C, Liu R, Wu S, Chen J, Zheng X, Jiang T, Chen L. NUP37 promotes the proliferation and invasion of glioma cells through DNMT1-mediated methylation. Cell Death Discov 2024; 10:373. [PMID: 39174498 PMCID: PMC11341718 DOI: 10.1038/s41420-024-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Nuclear regulation has potential in cancer therapy, with the nuclear pore complex (NPC) serving as a critical channel between the nucleus and cytoplasm, playing a role in regulating various biological processes and cancer. DNA methylation, an epigenetic modification mediated by DNA methyltransferases (DNMTs), influences gene expression and cell differentiation, and is crucial for the development and progression of tumor cells. Gliomas are the most common primary brain tumors, with glioblastoma being particularly aggressive, characterized by invasiveness, migration capability, and resistance to conventional treatments, resulting in poor prognosis. Our study revealed that the expression level of NUP37 affects the proliferation and invasion of glioma cells, and that the overexpression of DNMT1 can alleviate the adverse effects caused by NUP37 depletion. These findings suggest that NUP37 promotes the proliferation and invasion of glioma cells through its interaction with DNMT1.
Collapse
Affiliation(s)
- Yongqiang Lv
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Chaolian Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Ruoyu Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev 2024; 211:115354. [PMID: 38857762 DOI: 10.1016/j.addr.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
Collapse
Affiliation(s)
- Michal Skowicki
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Manuel Kraus
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
9
|
Bourgeois NM, Black JJ, Bhondeley M, Liu Z. Protein Kinase A Negatively Regulates the Acetic Acid Stress Response in S. cerevisiae. Microorganisms 2024; 12:1452. [PMID: 39065219 PMCID: PMC11278818 DOI: 10.3390/microorganisms12071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bioethanol fermentation from lignocellulosic hydrolysates is negatively affected by the presence of acetic acid. The budding yeast S. cerevisiae adapts to acetic acid stress partly by activating the transcription factor, Haa1. Haa1 induces the expression of many genes, which are responsible for increased fitness in the presence of acetic acid. Here, we show that protein kinase A (PKA) is a negative regulator of Haa1-dependent gene expression under both basal and acetic acid stress conditions. Deletions of RAS2, encoding a positive regulator of PKA, and PDE2, encoding a negative regulator of PKA, lead to an increased and decreased expression of Haa1-regulated genes, respectively. Importantly, the deletion of HAA1 largely reverses the effects of ras2∆. Additionally, the expression of a dominant, hyperactive RAS2A18V19 mutant allele also reduces the expression of Haa1-regulated genes. We found that both pde2Δ and RAS2A18V19 reduce cell fitness in response to acetic acid stress, while ras2Δ increases cellular adaptation. There are three PKA catalytic subunits in yeast, encoded by TPK1, TPK2, and TPK3. We show that single mutations in TPK1 and TPK3 lead to the increased expression of Haa1-regulated genes, while tpk2Δ reduces their expression. Among tpk double mutations, tpk1Δ tpk3Δ greatly increases the expression of Haa1-regulated genes. We found that acetic acid stress in a tpk1Δ tpk3Δ double mutant induces a flocculation phenotype, which is reversed by haa1Δ. Our findings reveal PKA to be a negative regulator of the acetic acid stress response and may help engineer yeast strains with increased efficiency of bioethanol fermentation.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Joshua J. Black
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Kudo Biotechnology, 117 Kendrick Street, Needham, MA 02494, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
10
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
11
|
Huang X, Huang Y, Qin L, Xiao Q, Wang Q, Wang J, Wang W, Lu X, Wu Y. Maize DDK1 encoding an Importin-4 β protein is essential for seed development and grain filling by mediating nuclear exporting of eIF1A. THE NEW PHYTOLOGIST 2024; 241:2075-2089. [PMID: 38095260 DOI: 10.1111/nph.19475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 02/09/2024]
Abstract
Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 β, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.
Collapse
Affiliation(s)
- Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Li Qin
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenqin Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai, 200233, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
12
|
Yamada A, Wake K, Imaoka S, Motoyoshi M, Yamamoto T, Asano M. Analysis of the effects of importin α1 on the nuclear translocation of IL-1α in HeLa cells. Sci Rep 2024; 14:1322. [PMID: 38225348 PMCID: PMC10789739 DOI: 10.1038/s41598-024-51521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024] Open
Abstract
Interleukin-1α (IL-1α), a cytokine released by necrotic cells, causes sterile inflammation. On the other hand, IL-1α is present in the nucleus and also regulates the expression of many proteins. A protein substrate containing a classical nuclear localization signal (cNLS) typically forms a substrate/importin α/β complex, which is subsequently transported to the nucleus. To the best of our knowledge, no study has directly investigated whether IL-1α-which includes cNLS-is imported into the nucleus in an importin α/β-dependent manner. In this study, we noted that all detected importin α subtypes interacted with IL-1α. In HeLa cells, importin α1-mediated nuclear translocation of IL-1α occurred at steady state and was independent of importin β1. Importin α1 not only was engaged in IL-1α nuclear transport but also concurrently functioned as a molecule that regulated IL-1α protein level in the cell. Furthermore, we discussed the underlying mechanism of IL-1α nuclear translocation by importin α1 based on our findings.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Kiyotaka Wake
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Saya Imaoka
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Takenori Yamamoto
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Institute for Genome Research, Tokushima University, Kuramotocho-3, Tokushima, 770-8503, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
13
|
Kose S, Ogawa Y, Imamoto N. Thermal Stress and Nuclear Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:61-78. [PMID: 39289274 DOI: 10.1007/978-981-97-4584-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nuclear transport is the basis for the biological reaction of eukaryotic cells, as it is essential to coordinate nuclear and cytoplasmic events separated by nuclear envelope. Although we currently understand the basic molecular mechanisms of nuclear transport in detail, many unexplored areas remain. For example, it is believed that the regulations and biological functions of the nuclear transport receptors (NTRs) highlights the significance of the transport pathways in physiological contexts. However, physiological significance of multiple parallel transport pathways consisting of more than 20 NTRs is still poorly understood, because our knowledge of each pathway, regarding their substrate information or how they are differently regulated, is still limited. In this report, we describe studies showing how nuclear transport systems in general are affected by temperature rises, namely, thermal stress or heat stress. We will then focus on Importin α family members and unique transport factor Hikeshi, because these two NTRs are affected in heat stress. Our present review will provide an additional view to point out the importance of diversity of the nuclear transport pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
14
|
Kaur R, Kumar P, Kumar A. Insights on the nuclear shuttling of H2A-H2B histone chaperones. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:902-914. [PMID: 38133493 DOI: 10.1080/15257770.2023.2296616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
All cellular processes that involve the unwinding of DNA also lead to the systematic shuttling of histones. Histone shuttling across the nuclear membrane is facilitated by a class of proteins known as - histone chaperones. Histone chaperones are classified based on their binding to H3/H4 histones or H2A/H2B histones. During the shuttling process, two types of signals - NLS and NES are recognized by the nuclear transport proteins. However, this is the nuclear transport protein and the mechanism of signal recognition by the protein is still unknown. Thus, in this piece of work, the NLS and NES signals are predicted on important H2A/H2B binding histone chaperones. In addition, cellular localization and potential DNA binding regions of histone chaperones are predicted. Mapping of predicted regions on the histone chaperone's structure suggested that the critical binding regions mainly lie on the disordered region of the histone chaperones. NLS and NES are present in the N- and C-terminal of the histone chaperones. Most histone chaperones contain bipartiate NLS signals. This article sheds light on the crucial aspect that in addition of being directly engaged in nucleosome synthesis and disassembly in vivo, histone chaperone also performs various specific roles via histone binding activity.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University Mathura, Bharthia, Uttar Pradesh, India
| | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Indian Council for Medical Research (ICMR-NICPR), Noida, Uttar Pradesh, India
| | - Anuj Kumar
- ICMR-National Institute of Cancer Prevention and Research, Indian Council for Medical Research (ICMR-NICPR), Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Chen K, Luo M, Lv Y, Luo Z, Yang H. Undervalued and novel roles of heterogeneous nuclear ribonucleoproteins in autoimmune diseases: Resurgence as potential biomarkers and targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1806. [PMID: 37365887 DOI: 10.1002/wrna.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Autoimmune diseases are mainly characterized by the abnormal autoreactivity due to the loss of tolerance to specific autoantigens, though multiple pathways associated with the homeostasis of immune responses are involved in initiating or aggravating the conditions. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major category of RNA-binding proteins ubiquitously expressed in a multitude of cells and have attracted great attentions especially with their distinctive roles in nucleic acid metabolisms and the pathogenesis in diseases like neurodegenerative disorders and cancers. Nevertheless, the interplay between hnRNPs and autoimmune disorders has not been fully elucidated. Virtually various family members of hnRNPs are increasingly identified as immune players and are pertinent to all kinds of immune-related processes including immune system development and innate or adaptive immune responses. Specifically, hnRNPs have been extensively recognized as autoantigens within and even beyond a myriad of autoimmune diseases, yet their diagnostic and prognostic values are seemingly underestimated. Molecular mimicry, epitope spreading and bystander activation may represent major putative mechanisms underlying the presence of autoantibodies to hnRNPs. Besides, hnRNPs play critical parts in regulating linchpin genes expressions that control genetic susceptibility, disease-linked functional pathways, or immune responses by interacting with other components particularly like microRNAs and long non-coding RNAs, thereby contributing to inflammation and autoimmunity as well as specific disease phenotypes. Therefore, comprehensive unraveling of the roles of hnRNPs is conducive to establishing potential biomarkers and developing better intervention strategies by targeting these hnRNPs in the corresponding disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzhi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Rouya C, Yambire KF, Derbyshire ML, Alwaseem H, Tavazoie SF. Inter-organellar nucleic acid communication by a mitochondrial tRNA regulates nuclear metabolic transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558912. [PMID: 37790361 PMCID: PMC10542527 DOI: 10.1101/2023.09.21.558912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Efficient communication between mitochondria and the nucleus underlies homoeostatic metabolic control, though the involved mitochondrial factors and their mechanisms are poorly defined. Here, we report the surprising detection of multiple mitochondrial-derived transfer RNAs (mito-tRNAs) within the nuclei of human cells. Focused studies of nuclear-transported mito-tRNA-asparagine (mtAsn) revealed that its cognate charging enzyme (NARS2) is also present in the nucleus. MtAsn promoted interaction of NARS2 with histone deacetylase 2 (HDAC2), and repressed HDAC2 association with specific chromatin loci. Perturbation of this axis using antisense oligonucleotides promoted nucleotide biogenesis and enhanced breast cancer growth, and RNA and nascent transcript sequencing demonstrated specific alterations in the transcription of nuclear genes. These findings uncover nucleic-acid mediated communication between two organelles and the existence of a machinery for nuclear gene regulation by a mito-tRNA that restricts tumor growth through metabolic control. Highlights Multiple mitochondrial-derived tRNAs are detected in human cell nucleiMtAsn promotes binding between NARS2 and HDAC2Metabolic alterations driven by mtAsn impact cell proliferationMtAsn inhibition releases HDAC2 to bind and transcriptionally regulate multiple nuclear genes.
Collapse
|
18
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D'Arcy S. Molecular basis of RanGTP-activated release of Histones H2A-H2B from Importin-9. Structure 2023; 31:903-911.e3. [PMID: 37379840 PMCID: PMC10527638 DOI: 10.1016/j.str.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro. Using hydrogen-deuterium exchange coupled with mass spectrometry (HDX), we show that Imp9 stabilizes H2A-H2B beyond the direct-binding site, like other histone chaperones. HDX also shows that binding of RanGTP releases H2A-H2B contacts at Imp9 HEAT repeats 4-5, but not 18-19. DNA- and histone-binding surfaces of H2A-H2B are exposed in the ternary complex, facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. Imp9 thus provides a connection between the nuclear import of H2A-H2B and its deposition into chromatin.
Collapse
Affiliation(s)
- Joy M Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Oladimeji S Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson 75080, USA.
| |
Collapse
|
19
|
Kehlenbach RH, Neumann P, Ficner R, Dickmanns A. Interaction of nucleoporins with nuclear transport receptors: a structural perspective. Biol Chem 2023; 404:791-805. [PMID: 37210735 DOI: 10.1515/hsz-2023-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Piotr Neumann
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
20
|
Jiou J, Shaffer JM, Bernades NE, Fung HYJ, Kikumoto Dias J, D’Arcy S, Chook YM. Mechanism of RanGTP priming H2A-H2B release from Kap114 in an atypical RanGTP•Kap114•H2A-H2B complex. Proc Natl Acad Sci U S A 2023; 120:e2301199120. [PMID: 37450495 PMCID: PMC10629556 DOI: 10.1073/pnas.2301199120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release. Here, we show cryo-EM structures of Importin-9•RanGTP and of its yeast homolog Kap114, including Kap114•RanGTP, Kap114•H2A-H2B, and RanGTP•Kap114•H2A-H2B, to explain how the conserved Kap114 binds H2A-H2B and RanGTP simultaneously and how the GTPase primes histone transfer to the nucleosome. In the ternary complex, RanGTP binds to the N-terminal repeats of Kap114 in the same manner as in the Kap114/Importin-9•RanGTP complex, and H2A-H2B binds via its acidic patch to the Kap114 C-terminal repeats much like in the Kap114/Importin-9•H2A-H2B complex. Ran binds to a different conformation of Kap114 in the ternary RanGTP•Kap114•H2A-H2B complex. Here, Kap114 no longer contacts the H2A-H2B surface proximal to the H2A docking domain that drives nucleosome assembly, positioning it for transfer to the assembling nucleosome or to dedicated H2A-H2B chaperones in the nucleus.
Collapse
Affiliation(s)
- Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Natalia E. Bernades
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Juliana Kikumoto Dias
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX75080
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
21
|
Iwanami N, Richter AS, Sikora K, Boehm T. Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR α chain of iNKT cells. Nat Commun 2023; 14:3645. [PMID: 37339974 DOI: 10.1038/s41467-023-39422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Unconventional T cells, such as innate natural killer T cells (iNKT) cells, are an important part of vertebrate immune defences. iNKT recognise glycolipids through a T cell receptor (TCR) that is composed of a semi-invariant TCR α chain, paired with a restricted set of TCR β chains. Here, we show that splicing of the cognate Trav11-Traj18-Trac pre-mRNA encoding the characteristic Vα14Jα18 variable region of this semi-invariant TCR depends on the presence of Tnpo3. The Tnpo3 gene encodes a nuclear transporter of the β-karyopherin family whose cargo includes various splice regulators. The block of iNKT cell development in the absence of Tnpo3 can be overcome by transgenic provision of a rearranged Trav11-Traj18-Trac cDNA, indicating that Tnpo3 deficiency does not interfere with the development of iNKT cells per se. Our study thus identifies a role for Tnpo3 in regulating the splicing of the pre-mRNA encoding the cognate TCRα chain of iNKT cells.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Andreas S Richter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.
| |
Collapse
|
22
|
Simakin P, Koch C, Herrmann JM. A modular cloning (MoClo) toolkit for reliable intracellular protein targeting in the yeast Saccharomyces cerevisiae. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:78-87. [PMID: 37009624 PMCID: PMC10054711 DOI: 10.15698/mic2023.04.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
Modular Cloning (MoClo) allows the combinatorial assembly of plasmids from standardized genetic parts without the need of error-prone PCR reactions. It is a very powerful strategy which enables highly flexible expression patterns without the need of repetitive cloning procedures. In this study, we describe an advanced MoClo toolkit that is designed for the baker's yeast Saccharomyces cerevisiae and optimized for the targeting of proteins of interest to specific cellular compartments. Comparing different targeting sequences, we developed signals to direct proteins with high specificity to the different mitochondrial subcompartments, such as the matrix and the intermembrane space (IMS). Furthermore, we optimized the subcellular targeting by controlling expression levels using a collection of different promoter cassettes; the MoClo strategy allows it to generate arrays of expression plasmids in parallel to optimize gene expression levels and reliable targeting for each given protein and cellular compartment. Thus, the MoClo strategy enables the generation of protein-expressing yeast plasmids that accurately target proteins of interest to various cellular compartments.
Collapse
Affiliation(s)
- Pavel Simakin
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- # Both authors contributed equally
| | - Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- # Both authors contributed equally
| | - Johannes M. Herrmann
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- * Corresponding Author: Johannes M. Herrmann, Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany; Phone: +49 6312052406; E-mail:
| |
Collapse
|
23
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
24
|
Shaffer JM, Jiou J, Tripathi K, Olaluwoye OS, Fung HYJ, Chook YM, D’Arcy S. Molecular basis of RanGTP-activated nucleosome assembly with Histones H2A-H2B bound to Importin-9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525896. [PMID: 36747879 PMCID: PMC9901172 DOI: 10.1101/2023.01.27.525896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B. Unlike the binary Imp9•H2A-H2B complex, this RanGTP•Imp9•H2A-H2B ternary complex can release H2A-H2B to an assembling nucleosome. Here, we define the molecular basis for this RanGTP-activated nucleosome assembly by Imp9. We use hydrogen-deuterium exchange coupled with mass spectrometry and compare the dynamics and interfaces of the RanGTP•Imp9•H2A-H2B ternary complex to those in the Imp9•H2A-H2B or Imp9•RanGTP binary complexes. Our data are consistent with the Imp9•H2A-H2B structure by Padavannil et al. 2019 showing that Imp9 HEAT repeats 4-5 and 18-19 contact H2A-H2B, as well as many homologous importin•RanGTP structures showing that importin HEAT repeats 1 and 3, and the h8 loop, contact RanGTP. We show that Imp9 stabilizes H2A-H2B beyond the direct binding site, similar to other histone chaperones. Importantly, we reveal that binding of RanGTP releases H2A-H2B interaction at Imp9 HEAT repeats 4-5, but not 18-19. This exposes DNA- and histone-binding surfaces of H2A-H2B, thereby facilitating nucleosome assembly. We also reveal that RanGTP has a weaker affinity for Imp9 when H2A-H2B is bound. This may ensure that H2A-H2B is only released in high RanGTP concentrations near chromatin. We delineate the molecular link between the nuclear import of H2A-H2B and its deposition into chromatin by Imp9. Significance Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP alone is insufficient to release H2A-H2B. The resulting stable RanGTP•Imp9•H2A-H2B complex gains nucleosome assembly activity as H2A-H2B can be deposited onto an assembling nucleosome. We show that H2A-H2B is allosterically stabilized via interactions with both N- and C-terminal portions of Imp9, reinforcing its chaperone-like behavior. RanGTP binding causes H2A-H2B release from the N-terminal portion of Imp9 only. The newly-exposed H2A-H2B surfaces can interact with DNA or H3-H4 in nucleosome assembly. Imp9 thus plays a multi-faceted role in histone import, storage, and deposition regulated by RanGTP, controlling histone supply in the nucleus and to chromatin.
Collapse
Affiliation(s)
- Joy M. Shaffer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Jenny Jiou
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Kiran Tripathi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Oladimeji S. Olaluwoye
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States, 75390
| | - Sheena D’Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States, 75080
| |
Collapse
|
25
|
Zhang G, Yi L, Wang C, Yang P, Zhang J, Wang J, Lu C, Zhang X, Liu Y. Photobiomodulation promotes angiogenesis in wound healing through stimulating the nuclear translocation of VEGFR2 and STAT3. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112573. [PMID: 36403534 DOI: 10.1016/j.jphotobiol.2022.112573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, Photobiomodulation (PBM) has gained prevalence as a kind of physical therapy for wound healing, however, concerning specific cellular mechanisms induced by PBM remains uncertain. The objective of this study is to evaluate the mechanisms of action of PBM (632.8 nm) on angiogenesis in wound healing in vitro and vivo. In the present work, we indicated that PBM with 1.0 J/cm2 irradiation dose exerts positive effects on cell viability, migration, proliferation and tube formation in human umbilical vein endothelial cells (HUVECs). Furthermore, we demonstrate that the VEGFA/VEGFR2/STAT3 pathway plays an important role in PBM effecting cellular function and promoting angiogenesis in wound healing. In addition, we also found that PBM activated the VEGFA/VEGFR2/STAT3 pathway by stimulating VEGFR2 and STAT3 nuclear translocation in the presence of importin-β. Our research offer a new insight into the potential molecular mechanisms in which PBM promotes angiogenesis in wound healing.
Collapse
Affiliation(s)
- Gai Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
27
|
Lokareddy RK, Hou CFD, Li F, Yang R, Cingolani G. Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function. Viruses 2022; 14:v14102215. [PMID: 36298770 PMCID: PMC9611059 DOI: 10.3390/v14102215] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Collapse
|
28
|
Petrovic S, Samanta D, Perriches T, Bley CJ, Thierbach K, Brown B, Nie S, Mobbs GW, Stevens TA, Liu X, Tomaleri GP, Schaus L, Hoelz A. Architecture of the linker-scaffold in the nuclear pore. Science 2022; 376:eabm9798. [PMID: 35679425 PMCID: PMC9867570 DOI: 10.1126/science.abm9798] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION In eukaryotic cells, the selective bidirectional transport of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC). Embedded in nuclear envelope pores, the ~110-MDa human NPC is an ~1200-Å-wide and ~750-Å-tall assembly of ~1000 proteins, collectively termed nucleoporins. Because of the NPC's eightfold rotational symmetry along the nucleocytoplasmic axis, each of the ~34 different nucleoporins occurs in multiples of eight. Architecturally, the NPC's symmetric core is composed of an inner ring encircling the central transport channel and two outer rings anchored on both sides of the nuclear envelope. Because of its central role in the flow of genetic information from DNA to RNA to protein, the NPC is commonly targeted in viral infections and its nucleoporin constituents are associated with a plethora of diseases. RATIONALE Although the arrangement of most scaffold nucleoporins in the NPC's symmetric core was determined by quantitative docking of crystal structures into cryo-electron tomographic (cryo-ET) maps of intact NPCs, the topology and molecular details of their cohesion by multivalent linker nucleoporins have remained elusive. Recently, in situ cryo-ET reconstructions of NPCs from various species have indicated that the NPC's inner ring is capable of reversible constriction and dilation in response to variations in nuclear envelope membrane tension, thereby modulating the diameter of the central transport channel by ~200 Å. We combined biochemical reconstitution, high-resolution crystal and single-particle cryo-electron microscopy (cryo-EM) structure determination, docking into cryo-ET maps, and physiological validation to elucidate the molecular architecture of the linker-scaffold interaction network that not only is essential for the NPC's integrity but also confers the plasticity and robustness necessary to allow and withstand such large-scale conformational changes. RESULTS By biochemically mapping scaffold-binding regions of all fungal and human linker nucleoporins and determining crystal and single-particle cryo-EM structures of linker-scaffold complexes, we completed the characterization of the biochemically tractable linker-scaffold network and established its evolutionary conservation, despite considerable sequence divergence. We determined a series of crystal and single-particle cryo-EM structures of the intact Nup188 and Nup192 scaffold hubs bound to their Nic96, Nup145N, and Nup53 linker nucleoporin binding regions, revealing that both proteins form distinct question mark-shaped keystones of two evolutionarily conserved hetero‑octameric inner ring complexes. Linkers bind to scaffold surface pockets through short defined motifs, with flanking regions commonly forming additional disperse interactions that reinforce the binding. Using a structure‑guided functional analysis in Saccharomyces cerevisiae, we confirmed the robustness of linker‑scaffold interactions and established the physiological relevance of our biochemical and structural findings. The near-atomic composite structures resulting from quantitative docking of experimental structures into human and S. cerevisiae cryo-ET maps of constricted and dilated NPCs structurally disambiguated the positioning of the Nup188 and Nup192 hubs in the intact fungal and human NPC and revealed the topology of the linker-scaffold network. The linker-scaffold gives rise to eight relatively rigid inner ring spokes that are flexibly interconnected to allow for the formation of lateral channels. Unexpectedly, we uncovered that linker‑scaffold interactions play an opposing role in the outer rings by forming tight cross-link staples between the eight nuclear and cytoplasmic outer ring spokes, thereby limiting the dilatory movements to the inner ring. CONCLUSION We have substantially advanced the structural and biochemical characterization of the symmetric core of the S. cerevisiae and human NPCs and determined near-atomic composite structures. The composite structures uncover the molecular mechanism by which the evolutionarily conserved linker‑scaffold establishes the NPC's integrity while simultaneously allowing for the observed plasticity of the central transport channel. The composite structures are roadmaps for the mechanistic dissection of NPC assembly and disassembly, the etiology of NPC‑associated diseases, the role of NPC dilation in nucleocytoplasmic transport of soluble and integral membrane protein cargos, and the anchoring of asymmetric nucleoporins. [Figure: see text].
Collapse
Affiliation(s)
- Stefan Petrovic
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Dipanjan Samanta
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Thibaud Perriches
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Christopher J. Bley
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Karsten Thierbach
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W. Mobbs
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Taylor A. Stevens
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lucas Schaus
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - André Hoelz
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Architecture of the cytoplasmic face of the nuclear pore. Science 2022; 376:eabm9129. [PMID: 35679405 DOI: 10.1126/science.abm9129] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and Chaetomium thermophilum cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two C. thermophilum CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
Collapse
Affiliation(s)
- Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anna T Gres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sho Harvey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Aaron W Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saroj G Regmi
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor A Stevens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Pak S, Li C. Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. FORESTRY RESEARCH 2022; 2:6. [PMID: 39525414 PMCID: PMC11524270 DOI: 10.48130/fr-2022-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2024]
Abstract
With the advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system, plant genome editing has entered a new era of robust and precise editing for any genes of interest. The development of various CRISPR/Cas toolkits has enabled new genome editing outcomes that not only target indel mutations but also enable base editing and prime editing. The application of the CRISPR/Cas toolkits has rapidly advanced breeding and crop improvement of economically important species. CRISPR/Cas toolkits have also been applied to a wide variety of tree species, including apple, bamboo, Cannabaceae, cassava, citrus, cacao tree, coffee tree, grapevine, kiwifruit, pear, pomegranate, poplar, ratanjoyt, and rubber tree. The application of editing to these species has resulted in significant discoveries related to critical genes associated with growth, secondary metabolism, and stress and disease resistance. However, most studies on tree species have involved only preliminary optimization of editing techniques, and a more in-depth study of editing techniques for CRISPR/Cas-based editing of tree species has the potential to rapidly accelerate tree breeding and trait improvements. Moreover, tree genome editing still relies mostly on Cas9-based indel mutation and Agrobacterium-mediated stable transformation. Transient transformation for transgene-free genome editing is preferred, but it typically has very low efficiency in tree species, substantially limiting its potential utility. In this work, we summarize the current status of tree genome editing practices using the CRISPR/Cas system and discuss limitations that impede the efficient application of CRISPR/Cas toolkits for tree genome editing, as well as future prospects.
Collapse
Affiliation(s)
- Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
31
|
Yang L, Zhang F, Chen C, Liu Z, Liu L, Li H. An Ultraviolet/Visible Light Regulated Protein Transport Gate Constructed by Pillar[6]arene-based Host-Guest System. Chem Asian J 2022; 17:e202200455. [PMID: 35532204 DOI: 10.1002/asia.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/06/2022] [Indexed: 11/08/2022]
Abstract
Protein transport is an interesting and intrinsic life feature that is highly relevant to physiology and disease in living beings. Herein, inspired by nature, based on the supramolecular host-guest interaction, we have introduced the classical azobenzene light switches and L-phenylalanine derived pillar[6]arene (L-Phe-P6) into the artificial nanochannel to construct light-responsive nanochannels that could regulate protein transport effectively under the control of ultraviolet (UV) and visible (Vis) light. The light-controlled distribution of L-Phe-P6 in the channel led to the difference in surface charges in the nanochannel, which eventually brought the difference in protein transport. This research may not only provide a convenient theoretical model for biological research, but also a flexible light-responsive protein transport model, which will play a crucial role in light-controlled release of protein drugs and so on.
Collapse
Affiliation(s)
- Lei Yang
- Central China Normal University, College of Chmistry, CHINA
| | - Fan Zhang
- Hubei University, College of Chemistry and Chemical Engineering, CHINA
| | - Chunxiu Chen
- Central China Normal University, College of Chemistry, CHINA
| | - Zhisheng Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Lu Liu
- Central China Normal University, College of Chemistry, CHINA
| | - Haibing Li
- Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA
| |
Collapse
|
32
|
Cellular Stress Induces Nucleocytoplasmic Transport Deficits Independent of Stress Granules. Biomedicines 2022; 10:biomedicines10051057. [PMID: 35625794 PMCID: PMC9138870 DOI: 10.3390/biomedicines10051057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Stress granules are non-membrane bound granules temporarily forming in the cytoplasm in response to stress. Proteins of the nucleocytoplasmic transport machinery were found in these stress granules and it was suggested that stress granules contribute to the nucleocytoplasmic transport defects in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). The aim of this study was to investigate whether there is a causal link between stress granule formation and nucleocytoplasmic transport deficits. Therefore, we uncoupled stress granule formation from cellular stress while studying nuclear import. This was carried out by preventing cells from assembling stress granules despite being subjected to cellular stress either by knocking down both G3BP1 and G3BP2 or by pharmacologically inhibiting stress granule formation. Conversely, we induced stress granules by overexpressing G3BP1 in the absence of cellular stress. In both conditions, nuclear import was not affected demonstrating that stress granule formation is not a direct cause of stress-induced nucleocytoplasmic transport deficits.
Collapse
|
33
|
Nag N, Sasidharan S, Uversky VN, Saudagar P, Tripathi T. Phase separation of FG-nucleoporins in nuclear pore complexes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119205. [PMID: 34995711 DOI: 10.1016/j.bbamcr.2021.119205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
The nuclear envelope (NE) is a bilayer membrane that separates and physically isolates the genetic material from the cytoplasm. Nuclear pore complexes (NPCs) are cylindrical structures embedded in the NE and remain the sole channel of communication between the nucleus and the cytoplasm. The interior of NPCs contains densely packed intrinsically disordered FG-nucleoporins (FG-Nups), consequently forming a permeability barrier. This barrier facilitates the selection and specificity of the cargoes that are imported, exported, or shuttled through the NPCs. Recent studies have revealed that FG-Nups undergo the process of liquid-liquid phase separation into liquid droplets. Moreover, these liquid droplets mimic the permeability barrier observed in the interior of NPCs. This review highlights the phase separation of FG-Nups occurring inside the NPCs rooted in the NE. We discuss the phase separation of FG-Nups and compare the different aspects contributing to their phase separation. Furthermore, several diseases caused by the aberrant phase separation of the proteins are examined with respect to NEs. By understanding the fundamental process of phase separation at the nuclear membrane, the review seeks to explore the parameters influencing this phenomenon as well as its importance, ultimately paving the way for better research on the structure-function relationship of biomolecular condensates.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India.
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
34
|
Xu X, Wang H, Liu J, Han S, Lin M, Guo Z, Chen X. OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus. RICE (NEW YORK, N.Y.) 2022; 15:12. [PMID: 35184252 PMCID: PMC8859016 DOI: 10.1186/s12284-022-00558-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Background OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation? Results In this study, we characterized the interaction of OsWRKY62 and OsWRKY76 with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαΔIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαΔIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal (NLS). Similarly, we found that OsIMαΔIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal (NES) in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1-NES fused gene compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae. Conclusion These results revealed the existence of NLS and NES in OsWRKY62. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.
Collapse
Affiliation(s)
- Xiaohui Xu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
- College of Modern Science and Technology, China Jiliang University, Hangzhou, 310018 China
| | - Han Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Jiqin Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Miaomiao Lin
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
35
|
Cevik M, Caker S, Deliorman G, Cagatay P, Gunduz MK, Susleyici B. The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes. Mol Biol Rep 2022; 49:1151-1159. [PMID: 35013863 DOI: 10.1007/s11033-021-06942-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes. METHODS AND RESULTS The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001). CONCLUSIONS This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.
Collapse
Affiliation(s)
- Mehtap Cevik
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Selen Caker
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Gokce Deliorman
- Department of Software Engineering, Faculty of Engineering and Architecture, Beykoz University, Istanbul, Turkey
| | - Penbe Cagatay
- Department of Medical Services and Technics, Vocational School of Health Service, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Belgin Susleyici
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
36
|
Tsimbalyuk S, Donnelly CM, Forwood JK. Structural characterization of human importin alpha 7 in its cargo-free form at 2.5 Å resolution. Sci Rep 2022; 12:315. [PMID: 35013395 PMCID: PMC8748863 DOI: 10.1038/s41598-021-03729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022] Open
Abstract
Shuttling of macromolecules between nucleus and cytoplasm is a tightly regulated process mediated through specific interactions between cargo and nuclear transport proteins. In the classical nuclear import pathway, importin alpha recognizes cargo exhibiting a nuclear localization signal, and this complex is transported through the nuclear pore complex by importin beta. Humans possess seven importin alpha isoforms that can be grouped into three subfamilies, with many cargoes displaying specificity towards these importin alpha isoforms. The cargo binding sites within importin alpha isoforms are highly conserved in sequence, suggesting that specificity potentially relies on structural differences. Structures of some importin alpha isoforms, both in cargo-bound and free states, have been previously solved. However, there are currently no known structures of cargo free importin alpha isoforms within subfamily 3 (importin alpha 5, 6, 7). Here, we present the first crystal structure of human importin alpha 7 lacking the IBB domain solved at 2.5 Å resolution. The structure reveals a typical importin alpha architecture comprised of ten armadillo repeats and is most structurally conserved with importin alpha 5. Very little difference in structure was observed between the cargo-bound and free states, implying that importin alpha 7 does not undergo conformational change when binding cargo. These structural insights provide a strong platform for further evaluation of structure–function relationships and understanding how isoform specificity within the importin alpha family plays a role in nuclear transport in health and disease.
Collapse
Affiliation(s)
- S Tsimbalyuk
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - C M Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - J K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia. .,School of Dentistry and Medical Sciences, Charles Sturt University, Room 2, National Life Sciences Hub, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
37
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
39
|
Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Nuclear Import of HIV-1. Viruses 2021; 13:2242. [PMID: 34835048 PMCID: PMC8619967 DOI: 10.3390/v13112242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; (Q.S.); (C.W.); (C.F.); (T.N.T.)
| |
Collapse
|
40
|
Ezzitouny M, Roselló-Lletí E, Portolés M, Sánchez-Lázaro I, Arnau-Vives MÁ, Tarazón E, Gil-Cayuela C, Lozano-Edo S, López-Vilella R, Almenar-Bonet L, Martínez-Dolz L. Value of SERCA2a as a Biomarker for the Identification of Patients with Heart Failure Requiring Circulatory Support. J Pers Med 2021; 11:jpm11111122. [PMID: 34834474 PMCID: PMC8622248 DOI: 10.3390/jpm11111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Heart failure (HF) alters the nucleo-cytoplasmic transport of cardiomyocytes and reduces SERCA2a levels, essential for intracellular calcium homeostasis. We consider in this study whether the molecules involved in these processes can differentiate those patients with advanced HF and the need for mechanical circulatory support (MCS) as a bridge to recovery or urgent heart transplantation from those who are clinically stable and who are transplanted in an elective code. Material and method: Blood samples from 29 patients with advanced HF were analysed by ELISA, and the plasma levels of Importin5, Nucleoporin153 kDa, RanGTPase-Activating Protein 1 and sarcoplasmic reticulum Ca2+ ATPase were compared between patients requiring MCS and those patients without a MCS need prior to heart transplantation. Results: SERCA2a showed significantly lower levels in patients who had MCS compared to those who did not require it (0.501 ± 0.530 ng/mL vs. 1.123 ± 0.661 ng/mL; p = 0.01). A SERCA2a cut-off point of 0.84 ng/mL (AUC 0.812 ± 0.085, 95% CI: 0.646–0.979; p = 0.004) provided a 92% sensitivity, 62% specificity, 91% negative predictive value and 67% positive predictive value. Conclusions: In this cohort, patients with advanced HF and a need for MCS have shown significantly lower levels of SERCA2a as compared to stable patients without a need for MCS prior to heart transplantation. This is a small study with preliminary findings, and larger-powered dedicated studies are required to confirm and validate these results.
Collapse
Affiliation(s)
- Meryem Ezzitouny
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Correspondence: ; Fax: +34-96-124-58-49
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Ignacio Sánchez-Lázaro
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Miguel Ángel Arnau-Vives
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Estefanía Tarazón
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Carolina Gil-Cayuela
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
| | - Silvia Lozano-Edo
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
| | - Raquel López-Vilella
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
| | - Luis Almenar-Bonet
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplant Unit, Cardiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (I.S.-L.); (M.Á.A.-V.); (S.L.-E.); (R.L.-V.); (L.A.-B.); (L.M.-D.)
- Myocardial Dysfunction and Heart Transplant Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.R.-L.); (M.P.); (E.T.); (C.G.-C.)
- Center for Biomedical Research Network on Cardiovascular Diseases (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares: CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
41
|
Gu Y, Distler ME, Cheng HF, Huang C, Mirkin CA. A General DNA-Gated Hydrogel Strategy for Selective Transport of Chemical and Biological Cargos. J Am Chem Soc 2021; 143:17200-17208. [PMID: 34614359 DOI: 10.1021/jacs.1c08114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The selective transport of molecular cargo is critical in many biological and chemical/materials processes and applications. Although nature has evolved highly efficient in vivo biological transport systems, synthetic transport systems are often limited by the challenges associated with fine-tuning interactions between cargo and synthetic or natural transport barriers. Herein, deliberately designed DNA-DNA interactions are explored as a new modality for selective DNA-modified cargo transport through DNA-grafted hydrogel supports. The chemical and physical characteristics of the cargo and hydrogel barrier, including the number of nucleic acid strands on the cargo (i.e., the cargo valency) and DNA-DNA binding strength, can be used to regulate the efficiency of cargo transport. Regimes exist where a cargo-barrier interaction is attractive enough to yield high selectivity yet high mobility, while there are others where the attractive interactions are too strong to allow mobility. These observations led to the design of a DNA-dendron transport tag, which can be used to universally modify macromolecular cargo so that the barrier can differentiate specific species to be transported. These novel transport systems that leverage DNA-DNA interactions provide new chemical insights into the factors that control selective cargo mobility in hydrogels and open the door to designing a wide variety of drug/probe-delivery systems.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Max E Distler
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ho Fung Cheng
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chi Huang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
42
|
Cho B, Choi J, Kim R, Yun JN, Choi Y, Lee HH, Koh J. Thermodynamic Models for Assembly of Intrinsically Disordered Protein Hubs with Multiple Interaction Partners. J Am Chem Soc 2021; 143:12509-12523. [PMID: 34362249 DOI: 10.1021/jacs.1c00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prevalent in diverse protein interactomes, intrinsically disordered proteins or regions (IDPs or IDRs) often drive assembly of higher-order macromolecular complexes, using multiple target-binding motifs. Such IDP hubs are suggested to process various cellular signals and coordinate relevant biological processes. However, the mechanism of assembly and functional regulation of IDP hubs remains elusive due to the challenges in dissecting their intricate protein-protein interaction networks. Here we present basic thermodynamic models for the assembly of simple IDP hubs with multiple target proteins, constructing partition functions from fundamental binding parameters. We combined these basic functions to develop advanced thermodynamic models to analyze the assembly of the Nup153 hubs interacting with multiple karyopherin β1 (Kap) molecules, critical components of nucleocytoplasmic transport. The thermodynamic analysis revealed a complex organization of the Kap binding sites within the C-terminal IDR of Nup153 including a high-affinity 1:1 interaction site and a series of low-affinity sites for binding of multiple Kaps with negative cooperativity. The negative cooperativity arises from the overlapping nature of the low-affinity sites where Kap occupies multiple dipeptide motifs. The quantitative dissection culminated in construction of the Nup153 hub ensemble, elucidating how distribution among various Kap-bound states is modulated by Kap concentration and competing nuclear proteins. In particular, the Kap occupancy of the IDR can be fine-tuned by varying the location of competition within the overlapping sites, suggesting coupling of specific nuclear processes to distinct transport activities. In general, our results demonstrate the feasibility and a potential mechanism for manifold regulation of IDP functions by diverse cellular signals.
Collapse
Affiliation(s)
- ByeongJin Cho
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaejun Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - RyeongHyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jean Nyoung Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Junseock Koh
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Wang S, Sellner L, Wang L, Sauer T, Neuber B, Gong W, Stock S, Ni M, Yao H, Kleist C, Schmitt A, Müller-Tidow C, Schmitt M, Schubert ML. Combining selective inhibitors of nuclear export (SINEs) with chimeric antigen receptor (CAR) T cells for CD19‑positive malignancies. Oncol Rep 2021; 46:170. [PMID: 34165175 PMCID: PMC8250584 DOI: 10.3892/or.2021.8121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/08/2021] [Indexed: 11/06/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells directed against CD19 (CD19.CAR T cells) have yielded impressive clinical responses in the treatment of patients with lymphoid malignancies. However, resistance and/or relapse can limit treatment outcome. Risk of tumor escape can be reduced by combining treatment strategies. Selective inhibitors of nuclear export (SINEs) directed against nuclear exportin‑1 (XPO1) have demonstrated anti‑tumor efficacy in several hematological malignancies. The aim of the present study was to evaluate the combination of CAR T cells with the SINE compounds eltanexor and selinexor. As expected, eltanexor and selinexor were toxic to CD19‑positive malignant cells and the sensitivity of cells towards SINEs correlated with the levels of XPO1‑expression in ALL cell lines. When SINEs and CAR T cells were simultaneously combined, SINEs exerted toxicity towards CAR T cells and impaired their function affecting cytotoxicity and cytokine release ability. Flow cytometry and western blot analysis revealed that eltanexor decreased the cytoplasmic concentration of the transcription factor phosphorylated‑STAT3 in CAR T cells. Due to CAR T‑cell toxicity, sequential use of SINEs and CAR T cells was evaluated: Cytotoxicity of CAR T cells increased significantly when target cells were pre‑treated with the SINE compound eltanexor. In addition, exhaustion of CAR T cells decreased when target cells were pre‑treated with eltanexor. In summary, whereas the concomitant use of SINEs and CAR T cells does not seem advisable, sequential use of SINEs and CAR T cells might improve the anti‑tumor efficacy of CAR T cells.
Collapse
Affiliation(s)
- Sanmei Wang
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Leopold Sellner
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Lei Wang
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Wenjie Gong
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sophia Stock
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Ming Ni
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hao Yao
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
44
|
Chen GQ, Li P, Yan Q, Wu YH, Wang HR, Chao SF, Wu LJ, Chen L, Feng GZ. Identification of Spodoptera frugiperda importin alphas that facilitate the nuclear import of Autographa californica multiple nucleopolyhedrovirus DNA polymerase. INSECT MOLECULAR BIOLOGY 2021; 30:400-409. [PMID: 33837597 DOI: 10.1111/imb.12704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Proteins containing nuclear localization signals (NLSs) are actively transported into the nucleus via the classic importin-α/β-mediated pathway, and NLSs are recognized by members of the importin-α family. Most studies of insect importin-αs have focused on Drosophila to date, little is known about the importin-α proteins in Lepidoptera insects. In this study, we identified four putative importin-α homologues, Spodoptera frugiperda importin-α1 (SfIMA1), SfIMA2, SfIMA4 and SfIMA7, from Sf9 cells. Immunofluorescence analysis showed that SfIMA2, SfIMA4 and SfIMA7 localized to the nucleus, while SfIMA1 distributed in cytoplasm. Additionally, SfIMA4 and SfIMA7 were also detected in the nuclear membrane of Sf9 cells. SfIMA1, SfIMA4 and SfIMA7, but not SfIMA2, were found to associate with the C terminus of AcMNPV DNA polymerase (DNApol) that harbours a typical monopartite NLS and a classic bipartite NLS. Further analysis of protein-protein interactions revealed that SfIMA1 specifically recognizes the bipartite NLS, while SfIMA4 and SfIMA7 bind to both monopartite and bipartite NLSs. Together, our results suggested that SfIMA1, SfIMA4 and SfIMA7 play important roles in the nuclear import of AcMNPV DNApol C terminus in Sf9 cells.
Collapse
Affiliation(s)
- Guo-Qing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pei Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yi-Hong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Hao-Ran Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shu-Fen Chao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li-Juan Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Long Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guo-Zhong Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
45
|
Huang Y, Li J, Du W, Li S, Li Y, Qu H, Xv J, Yu L, Zhu R, Wang H. Nuclear translocation of the 4-pass transmembrane protein Tspan8. Cell Res 2021; 31:1218-1221. [PMID: 34099887 PMCID: PMC8563794 DOI: 10.1038/s41422-021-00522-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yuwei Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junjian Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqing Du
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siyang Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haozhi Qu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingxuan Xv
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rongxuan Zhu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
46
|
Nord MS, Bernis C, Carmona S, Garland DC, Travesa A, Forbes DJ. Exportins can inhibit major mitotic assembly events in vitro: membrane fusion, nuclear pore formation, and spindle assembly. Nucleus 2021; 11:178-193. [PMID: 32762441 PMCID: PMC7540616 DOI: 10.1080/19491034.2020.1798093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Xenopus egg extracts are a powerful in vitro tool for studying complex biological processes, including nuclear reconstitution, nuclear membrane and pore assembly, and spindle assembly. Extracts have been further used to demonstrate a moonlighting regulatory role for nuclear import receptors or importins on these cell cycle assembly events. Here we show that exportins can also play a role in these events. Addition of Crm1, Exportin-t, or Exportin-5 decreased nuclear pore assembly in vitro. RanQ69L-GTP, a constitutively active form of RanGTP, ameliorated inhibition. Both Crm1 and Exportin-t inhibited fusion of nuclear membranes, again counteracted by RanQ69L-GTP. In mitotic extracts, Crm1 and Exportin-t negatively impacted spindle assembly. Pulldowns from the extracts using Crm1- or Exportin-t-beads revealed nucleoporins known to be essential for both nuclear pore and spindle assembly, with RanQ69L-GTP decreasing a subset of these target interactions. This study suggests a model where exportins, like importins, can regulate major mitotic assembly events.
Collapse
Affiliation(s)
- Matthew S Nord
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego , La Jolla, CA, USA
| | - Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego , La Jolla, CA, USA
| | - Sarah Carmona
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego , La Jolla, CA, USA
| | - Dennis C Garland
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego , La Jolla, CA, USA
| | - Anna Travesa
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego , La Jolla, CA, USA
| | - Douglass J Forbes
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego , La Jolla, CA, USA
| |
Collapse
|
47
|
Yang B, Chen J, Li X, Zhang X, Hu L, Jiang S, Zhang Z, Teng Y. TNPO1-mediated nuclear import of ARID1B promotes tumor growth in ARID1A-deficient gynecologic cancer. Cancer Lett 2021; 515:14-27. [PMID: 34044070 DOI: 10.1016/j.canlet.2021.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 01/30/2023]
Abstract
Karyopherin-β proteins are critically involved in cancer progression and have been reported as potential biomarkers and therapeutic targets for tumor treatment. However, TNPO1, as an important karyopherin-β family member, underlying functional roles in cancers remain largely unclear. In this study, under integrated gene-expression profiling screen of karyopherin-β in gynecologic cancer, we identify TNPO1 as a pivotal contributor to the gynecologic cancer progression. Remarkably, ARID1A-deficient gynecologic cancer cells are specifically vulnerable to the genetic perturbations of TNPO1 in vitro and in vivo. Mechanistically, TNPO1 is selectively responsible for nuclear import of ARID1B, which is a synthetic lethal target in ARID1A-inactivating mutation cancers. Furthermore, TNPO1 or ARID1B knockdown changes chromatin accessibility that results in loss of H3K4me1 and H3K27ac marker, diminishing activated transcription factor of the AP-1 family, and inactivating the PI3K/AKT signaling pathway by reducing growth pathway genes expression including PIK3CA and FGFR2. Together, this work indicates that the oncogenic function of TNPO1 and maybe represent a novel therapeutic strategy to treat ARID1A-deficient gynecologic cancer.
Collapse
Affiliation(s)
- Bikang Yang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| | - Yincheng Teng
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
48
|
Tabasi M, Nombela I, Janssens J, Lahousse AP, Christ F, Debyser Z. Role of Transportin-SR2 in HIV-1 Nuclear Import. Viruses 2021; 13:829. [PMID: 34064404 PMCID: PMC8147801 DOI: 10.3390/v13050829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The HIV replication cycle depends on the interaction of viral proteins with proteins of the host. Unraveling host-pathogen interactions during the infection is of great importance for understanding the pathogenesis and the development of antiviral therapies. To date HIV uncoating and nuclear import are the most debated steps of the HIV-1 replication cycle. Despite numerous studies during past decades, there is still much controversy with respect to the identity and the role of viral and host factors involved in these processes. In this review, we provide a comprehensive overview on the role of transportin-SR2 as a host cell factor during active nuclear transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (M.T.); (I.N.); (J.J.); (A.P.L.); (F.C.)
| |
Collapse
|
49
|
FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13081866. [PMID: 33919707 PMCID: PMC8070745 DOI: 10.3390/cancers13081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Overall survival outcomes, despite platinum-based chemotherapy, for patients with advanced ovarian cancer remains poor. Increased DNA repair capacity is a key route to platinum resistance in ovarian cancer. In the current study, we show that FEN1, a key player in DNA repair, is overexpressed in ovarian cancer and associated with poor survival. Pre-clinically FEN1 blockade not only increased platinum sensitivity but was also synthetically lethal in BRCA2 and POLβ deficient ovarian cancer cells. Together the data provides evidence that FEN1 is a promising anti-cancer target in ovarian cancer. Abstract FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy.
Collapse
|
50
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|