1
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
González-García JS. A model for ribosome translocation based on the alternated displacement of its subunits. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023:10.1007/s00249-023-01662-z. [PMID: 37291414 DOI: 10.1007/s00249-023-01662-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
A meaningful dilemma in ribosome translocation arising from experimental facts is that, although the ribosome-mRNA interaction force always has a significant magnitude, the ribosome still moves to the next codon on the mRNA. How does the ribosome move to the next codon in the sequence while holding the mRNA tightly? The hypothesis proposed here is that ribosome subunits alternate the grip of the ribosome on the mRNA, freeing the other subunit of such interaction for a while, thus allowing its motion to the following codon. Based on this assumption, a single-loop cycle of ribosome configurations involving the relative position of its subunits is elaborated. When its dynamic is modeled as a Markov network, it gives expressions for the average ribosome translocation speed and stall force as functions of the equilibrium constants among the proposed ribosome configurations. The calculations have a reasonable agreement with experimental results, and the succession of molecular events considered here is consistent with current biomolecular concepts of the ribosome translocation process. Thus, the alternative displacements hypothesis developed in the present work suggests a feasible explanation of ribosome translocation.
Collapse
Affiliation(s)
- José S González-García
- Seminario de Bifurcaciones y Singularidades, Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, 09340, Iztapalapa, Ciudad de México, México.
| |
Collapse
|
3
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
4
|
Cao Z, Hou Z. Improved estimation for energy dissipation in biochemical oscillations. J Chem Phys 2022; 157:025102. [DOI: 10.1063/5.0092126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biochemical oscillations, regulating the timing of life processes, need consume energy to achieve good performance on crucial functions, such as high accuracy of phase period and high sensitivity to external signals. However, it is a great challenge to precisely estimate the energy dissipation in such systems. Here, based on the stochastic normal form theory (SNFT), we calculate the Pearson correlation coefficient between the oscillatory amplitude and phase, and a trade-off relation between transport efficiency and phase sensitivity can then be derived, which serves as a tighter form than the estimator resulting from the conventional thermodynamic uncertainty relation (TUR). Our findings demonstrate that a more precise energy dissipation estimation can be obtained by enhancing the sensitivity of the biochemical oscillations. Moreover, the internal noise and amplitude power effects have also been discovered.
Collapse
Affiliation(s)
- Zhiyu Cao
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, University of Science and Technology of China Department of Chemical Physics, China
| | - Zhonghuai Hou
- Department of Chemical Physics, University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| |
Collapse
|
5
|
Usachev KS, Yusupov MM, Validov SZ. Hibernation as a Stage of Ribosome Functioning. BIOCHEMISTRY (MOSCOW) 2021; 85:1434-1442. [PMID: 33280583 DOI: 10.1134/s0006297920110115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In response to stress, eubacteria reduce the level of protein synthesis and either disassemble ribosomes into the 30S and 50S subunits or turn them into translationally inactive 70S and 100S complexes. This helps the cell to solve two principal tasks: (i) to reduce the cost of protein biosynthesis under unfavorable conditions, and (ii) to preserve functional ribosomes for rapid recovery of protein synthesis until favorable conditions are restored. All known genes for ribosome silencing factors and hibernation proteins are located in the operons associated with the response to starvation as one of the stress factors, which helps the cells to coordinate the slowdown of protein synthesis with the overall stress response. It is possible that hibernation systems work as regulators that coordinate the intensity of protein synthesis with the energy state of bacterial cell. Taking into account the limited amount of nutrients in natural conditions and constant pressure of other stress factors, bacterial ribosome should remain most of time in a complex with the silencing/hibernation proteins. Therefore, hibernation is an additional stage between the ribosome recycling and translation initiation, at which the ribosome is maintained in a "preserved" state in the form of separate subunits, non-translating 70S particles, or 100S dimers. The evolution of the ribosome hibernation has occurred within a very long period of time; ribosome hibernation is a conserved mechanism that is essential for maintaining the energy- and resource-consuming process of protein biosynthesis in organisms living in changing environment under stress conditions.
Collapse
Affiliation(s)
- K S Usachev
- Kazan Federal University, Kazan, 420008, Russia
| | - M M Yusupov
- Kazan Federal University, Kazan, 420008, Russia. .,Institute of Genetics and Molecular and Cellular Biology, Illkirch-Graffenstaden, 67400, France
| | | |
Collapse
|
6
|
González García JS, Delgado J. Stochastic microswimming model of ribosome motion on the polysome. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:9. [PMID: 33683520 DOI: 10.1140/epje/s10189-021-00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this work we assume that the ribosome propels itself during the translocation step of the translation process of protein synthesis by running a cycle of stochastically generated conformational changes involving its two subunits. This cycle includes only two experimentally found ribosome shape changes. The main result is an analytic expression for ribosome's average swimming speed on a polysome, where the ribosome is in the presence of other ribosomes. Relevant geometric parameters of ribosome deformations are calculated first by solving a deterministic problem where the ribosome runs a cycle of prescribed conformational changes. The method of reflections and pairwise additivity are used to obtain the stresses and forces needed to apply the multiparticle reciprocal theorem. Ribosome's average velocity when it runs the corresponding stochastic cycle of deformations is calculated assuming independence among the conformational cycles of different ribosomes on the polysome. The results obtained show that swimming in tandem on the polysome allows the ribosome to reach any typical subcellular speed with deformations whose amplitude is of a smaller size than when it swims alone in the fluid. Also, the flow organized by its swimming stroke becomes more determinant for its motion than random diffusion, compared to the solitary ribosome.
Collapse
Affiliation(s)
- José Santiago González García
- Seminario de Bifurcaciones y Singularidades, Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Iztapalapa, Ciudad de México, 09340, Mexico.
| | - Joaquín Delgado
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Iztapalapa, Ciudad de México, 09340, Mexico
| |
Collapse
|
7
|
Dutta A, Schütz GM, Chowdhury D. Stochastic thermodynamics and modes of operation of a ribosome: A network theoretic perspective. Phys Rev E 2021; 101:032402. [PMID: 32289926 DOI: 10.1103/physreve.101.032402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The ribosome is one of the largest and most complex macromolecular machines in living cells. It polymerizes a protein in a step-by-step manner as directed by the corresponding nucleotide sequence on the template messenger RNA (mRNA) and this process is referred to as "translation" of the genetic message encoded in the sequence of mRNA transcript. In each successful chemomechanical cycle during the (protein) elongation stage, the ribosome elongates the protein by a single subunit, called amino acid, and steps forward on the template mRNA by three nucleotides called a codon. Therefore, a ribosome is also regarded as a molecular motor for which the mRNA serves as the track, its step size is that of a codon and two molecules of GTP and one molecule of ATP hydrolyzed in that cycle serve as its fuel. What adds further complexity is the existence of competing pathways leading to distinct cycles, branched pathways in each cycle, and futile consumption of fuel that leads neither to elongation of the nascent protein nor forward stepping of the ribosome on its track. We investigate a model formulated in terms of the network of discrete chemomechanical states of a ribosome during the elongation stage of translation. The model is analyzed using a combination of stochastic thermodynamic and kinetic analysis based on a graph-theoretic approach. We derive the exact solution of the corresponding master equations. We represent the steady state in terms of the cycles of the underlying network and discuss the energy transduction processes. We identify the various possible modes of operation of a ribosome in terms of its average velocity and mean rate of GTP hydrolysis. We also compute entropy production as functions of the rates of the interstate transitions and the thermodynamic cost for accuracy of the translation process.
Collapse
Affiliation(s)
- Annwesha Dutta
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | - Gunter M Schütz
- Institute of Complex Systems II, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
8
|
Peng S, Sun R, Wang W, Chen C. Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Peng S, Wang W, Chen C. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds. J Phys Chem B 2018; 122:4844-4850. [PMID: 29668282 DOI: 10.1021/acs.jpcb.8b03476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
Collapse
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing , China
| | - Wenjuan Wang
- School of Life Sciences and Technology Center for Protein Sciences , Tsinghua University , Beijing , China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing , China
| |
Collapse
|
10
|
Modulation of Hoogsteen dynamics on DNA recognition. Nat Commun 2018; 9:1473. [PMID: 29662229 PMCID: PMC5902632 DOI: 10.1038/s41467-018-03516-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
In naked duplex DNA, G–C and A–T Watson-Crick base pairs exist in dynamic equilibrium with their Hoogsteen counterparts. Here, we used nuclear magnetic resonance (NMR) relaxation dispersion and molecular dynamics (MD) simulations to examine how Watson-Crick/Hoogsteen dynamics are modulated upon recognition of duplex DNA by the bisintercalator echinomycin and monointercalator actinomycin D. In both cases, DNA recognition results in the quenching of Hoogsteen dynamics at base pairs involved in intermolecular base-specific hydrogen bonds. In the case of echinomycin, the Hoogsteen population increased 10-fold for base pairs flanking the chromophore most likely due to intermolecular stacking interactions, whereas actinomycin D minimally affected Hoogsteen dynamics at other sites. Modulation of Hoogsteen dynamics at binding interfaces may be a general phenomenon with important implications for DNA–ligand and DNA–protein recognition. DNA is found in a dynamic equilibrium between standard Watson-Crick (WC) base pairs and non-standard Hoogsteen (HG) base pairs. Here the authors describe the influence of echinomycin and actinomycin D ligands binding on the HG-WC base pair dynamics in DNA.
Collapse
|
11
|
Peng S, Wang W, Chen C. Breaking the Concentration Barrier for Single-Molecule Fluorescence Measurements. Chemistry 2017; 24:1002-1009. [DOI: 10.1002/chem.201704065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology; Tsinghua University; Beijing, 100084 P.R. China
| | - Wenjuan Wang
- School of Life Sciences and Technology Center for Protein Sciences; Tsinghua University; Beijing, 100084 P.R. China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology; Tsinghua University; Beijing, 100084 P.R. China
| |
Collapse
|
12
|
Beal J. Biochemical complexity drives log‐normal variation in genetic expression. ENGINEERING BIOLOGY 2017. [DOI: 10.1049/enb.2017.0004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jacob Beal
- Raytheon BBN Technologies Cambridge MA 02138 USA
| |
Collapse
|
13
|
Füchtbauer AF, Preus S, Börjesson K, McPhee SA, Lilley DMJ, Wilhelmsson LM. Fluorescent RNA cytosine analogue - an internal probe for detailed structure and dynamics investigations. Sci Rep 2017; 7:2393. [PMID: 28539582 PMCID: PMC5443824 DOI: 10.1038/s41598-017-02453-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
The bright fluorescent cytosine analogue tCO stands out among fluorescent bases due to its virtually unquenched fluorescence emission in duplex DNA. However, like most reported base analogues, it has not been thoroughly characterized in RNA. We here report on the first synthesis and RNA-incorporation of tCO, and characterize its base-mimicking and fluorescence properties in RNA. As in DNA, we find a high quantum yield inside RNA duplexes (<ΦF> = 0.22) that is virtually unaffected by the neighbouring bases (ΦF = 0.20-0.25), resulting in an average brightness of 1900 M-1 cm-1. The average fluorescence lifetime in RNA duplexes is 4.3 ns and generally two lifetimes are required to fit the exponential decays. Fluorescence properties in ssRNA are defined by a small increase in average quantum yield (<ΦF > = 0.24) compared to dsRNA, with a broader distribution (ΦF = 0.17-0.34) and slightly shorter average lifetimes. Using circular dichroism, we find that the tCO-modified RNA duplexes form regular A-form helices and in UV-melting experiments the stability of the duplexes is only slightly higher than that of the corresponding natural RNA (<ΔT m> = + 2.3 °C). These properties make tCO a highly interesting fluorescent RNA base analogue for detailed FRET-based structural measurements, as a bright internal label in microscopy, and for fluorescence anisotropy measurements of RNA dynamics.
Collapse
Affiliation(s)
- Anders Foller Füchtbauer
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Søren Preus
- Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Scott A McPhee
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - L Marcus Wilhelmsson
- Chemistry and Chemical Engineering/Chemistry and Biochemistry, Chalmers University of Technology, Gothenburg, SE-41296, Sweden.
| |
Collapse
|
14
|
Roy V, Roth R, Berge M, Chitta R, Vajrala S, Kuntumalla S, E Schmelzer A, Schoner R. A bicistronic vector with destabilized mRNA secondary structure yields scalable higher titer expression of human neurturin in E. coli. Biotechnol Bioeng 2017; 114:1753-1761. [PMID: 28369693 DOI: 10.1002/bit.26299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/22/2017] [Accepted: 03/24/2017] [Indexed: 11/10/2022]
Abstract
Human neurturin (NTN) is a cystine knot growth factor with potential therapeutic use in diseases such as Parkinson's and diabetes. Scalable high titer production of native NTN is particularly challenging because of the cystine knot structure which consists of an embedded ring comprised of at least three disulfide bonds. We sought to pursue enhanced scalable production of NTN in Escherichia coli. Our initial efforts focused on codon optimization of the first two codons following AUG, but these studies resulted in only a marginal increase in NTN expression. Therefore, we pursued an alternative strategy of using a bicistronic vector for NTN expression designed to reduce mRNA secondary structure to achieve increased ribosome binding and re-initiation. The first cistron was designed to prevent sequestration of the translation initiation region in a secondary conformation. The second cistron, which contained the NTN coding sequence itself, was engineered to disrupt double bonded base pairs and destabilize the secondary structure for ribosome re-initiation. The ensemble approach of reducing NTN's mRNA secondary structure and using the bicistronic vector had an additive effect resulting in significantly increased NTN expression. Our strain selection studies were conducted in a miniaturized bioreactor. An optimized strain was selected and scaled up to a 100 L fermentor, which yielded an inclusion body titer of 2 g/L. The inclusion bodies were refolded to yield active NTN. We believe that our strategy is applicable to other candidate proteins that are difficult-to-express due to stable mRNA secondary structures. Biotechnol. Bioeng. 2017;114: 1753-1761. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Varnika Roy
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Robert Roth
- Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Mark Berge
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Rajesh Chitta
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Sucheta Vajrala
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | | | - Albert E Schmelzer
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| | - Ron Schoner
- Cell Culture and Fermentation Sciences, MedImmune, LLC, 1 MedImmune Way, Gaithersburg, Maryland, 20878
| |
Collapse
|
15
|
Nguyen K, Yang H, Whitford PC. How the Ribosomal A-Site Finger Can Lead to tRNA Species-Dependent Dynamics. J Phys Chem B 2017; 121:2767-2775. [PMID: 28276690 DOI: 10.1021/acs.jpcb.7b01072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins are synthesized by the joint action of the ribosome and tRNA molecules, where the rate of synthesis can be affected by numerous factors, such as the concentration of tRNA, the binding affinity of tRNA for the ribosome, or post-transcriptional modifications. Here, we expand this range of contributors by demonstrating how differences in tRNA structure can give rise to tRNA species-specific dynamics in the ribosome. To show this, we perform simulations of A/P hybrid-state formation for two tRNA species (tRNAPhe and tRNALeu), which differ in the size of their variable loops (VLs). These calculations reveal that steric interactions between the VL and the ribosomal A-site finger (ASF, i.e., H38 of 23S rRNA) can directly modulate the free-energy landscape for each tRNA species. We also find that tRNA and ASF motions are highly correlated, where fluctuations of the ASF are predictive of tRNA transition events. Finally, by introducing perturbations to the model, we demonstrate that ASF flexibility is a determinant of the rate of A/P hybrid-state formation.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Huan Yang
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
González-García JS. Theoretical estimate of the effect of thermal agitation on ribosome motion generated by stochastic microswimming. Biochem Biophys Res Commun 2016; 480:13-17. [PMID: 27725155 DOI: 10.1016/j.bbrc.2016.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
The effect of thermal agitation on ribosome motion is evaluated through the Péclet number, assuming that the ribosome is self-propelled along the mRNA during protein synthesis by a swimming stroke consisting of a cycle of stochastically-generated ribosome configurations involving its two subunits. The ribosome velocity probability distribution function is obtained, giving an approximately normal distribution. Its mean and variance together with an estimate of the in vivo free diffusion coefficient of the ribosome and using only configuration changes of small size, give a Péclet number similar to motor proteins and microorganisms. These results suggest the feasibility of the stochastic microswimming hypothesis to explain ribosome motion.
Collapse
Affiliation(s)
- José S González-García
- Departamento de Física, Química y Matemáticas, Tecnologico de Monterrey, Campus Ciudad de México, Calle del Puente 222 Col, Ejidos de Huipulco, Tlalpan, Ciudad de México 14380, México.
| |
Collapse
|
17
|
Song G, Qin Y. EF4 reveals the energy barrier for tRNA back-translocation in the peptidyl transferase center. RNA Biol 2016; 13:934-939. [DOI: 10.1080/15476286.2016.1215795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Guangtao Song
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Dulin D, Cui TJ, Cnossen J, Docter MW, Lipfert J, Dekker NH. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics. Biophys J 2016; 109:2113-25. [PMID: 26588570 DOI: 10.1016/j.bpj.2015.10.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
The observation of biological processes at the molecular scale in real time requires high spatial and temporal resolution. Magnetic tweezers are straightforward to implement, free of radiation or photodamage, and provide ample multiplexing capability, but their spatiotemporal resolution has lagged behind that of other single-molecule manipulation techniques, notably optical tweezers and AFM. Here, we present, to our knowledge, a new high-resolution magnetic tweezers apparatus. We systematically characterize the achievable spatiotemporal resolution for both incoherent and coherent light sources, different types and sizes of beads, and different types and lengths of tethered molecules. Using a bright coherent laser source for illumination and tracking at 6 kHz, we resolve 3 Å steps with a 1 s period for surface-melted beads and 5 Å steps with a 0.5 s period for double-stranded-dsDNA-tethered beads, in good agreement with a model of stochastic bead motion in the magnetic tweezers. We demonstrate how this instrument can be used to monitor the opening and closing of a DNA hairpin on millisecond timescales in real time, together with attendant changes in the hairpin dynamics upon the addition of deoxythymidine triphosphate. Our approach opens up the possibility of observing biological events at submillisecond timescales with subnanometer resolution using camera-based detection.
Collapse
Affiliation(s)
- David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Tao Ju Cui
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jelmer Cnossen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Margreet W Docter
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich and Center for Nanoscience, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
19
|
Nguyen K, Whitford PC. Capturing Transition States for tRNA Hybrid-State Formation in the Ribosome. J Phys Chem B 2016; 120:8768-75. [PMID: 27479146 DOI: 10.1021/acs.jpcb.6b04476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to quantitatively describe the energetics of biomolecular rearrangements, it is necessary to identify reaction coordinates that accurately capture the relevant transition events. Here, we perform simulations of A-site tRNA movement (∼20 Å) during hybrid-state formation in the ribosome and quantify the ability of interatomic distances to capture the transition state ensemble. Numerous coordinates are found to be accurate indicators of the transition state, allowing tRNA rearrangements to be described as diffusion across a one-dimensional free-energy surface. In addition to providing insights into the physical-chemical relationship between biomolecular structure and dynamics, these results can help enable single-molecule techniques to probe the free-energy landscape of the ribosome.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University , Dana Research Center 123, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University , Dana Research Center 123, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Berghuis BA, Köber M, van Laar T, Dekker NH. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods 2016; 105:90-8. [DOI: 10.1016/j.ymeth.2016.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022] Open
|
21
|
Tinoco I, Kim HK, Yan S. Frameshifting dynamics. Biopolymers 2016; 99:1147-66. [PMID: 23722586 DOI: 10.1002/bip.22293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 01/26/2023]
Abstract
Translation of messenger RNA by a ribosome occurs three nucleotides at a time from start signal to stop. However, a frameshift means that some nucleotides are read twice or some are skipped, and the following sequence of amino acids is completely different from the sequence in the original frame. In some messenger RNAs, including viral RNAs, frameshifting is programmed with RNA signals to produce specific ratios of proteins vital to the replication of the organism. The mechanisms that cause frameshifting have been studied for many years, but there are no definitive conclusions. We review ribosome structure and dynamics in relation to frameshifting dynamics provided by classical ensemble studies, and by new single-molecule methods using optical tweezers and FRET.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460
| | | | | |
Collapse
|
22
|
Nguyen K, Whitford PC. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation. Nat Commun 2016; 7:10586. [PMID: 26838673 PMCID: PMC4742886 DOI: 10.1038/ncomms10586] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/31/2015] [Indexed: 12/01/2022] Open
Abstract
Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA–tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P–P/E and P/P–E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P–pe/E intermediate, where the 30S head is rotated ∼18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ∼10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements. During protein elongation, the translocation of mRNA and tRNA molecules across the 30S ribosomal subunit is associated with large-scale motions of the 30S head domain. Here the authors carry out MD simulations to probe the associated steric interactions and identify novel tilting motions during the late stages of translocation.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol 2016; 428:2186-94. [PMID: 26764228 DOI: 10.1016/j.jmb.2015.12.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
"Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Probing the Translation Dynamics of Ribosomes Using Zero-Mode Waveguides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 139:1-43. [PMID: 26970189 DOI: 10.1016/bs.pmbts.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments.
Collapse
|
25
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
26
|
Schulz S, Kramm K, Werner F, Grohmann D. Fluorescently labeled recombinant RNAP system to probe archaeal transcription initiation. Methods 2015; 86:10-8. [PMID: 25912642 DOI: 10.1016/j.ymeth.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 10/24/2022] Open
Abstract
The transcriptional apparatus is one of the most complex cellular machineries and in order to fully appreciate the behavior of these protein-nucleic acid assemblies one has to understand the molecular details of the system. In addition to classical biochemical and structural studies, fluorescence-based techniques turned out as an important--and sometimes the critical--tool to obtain information about the molecular mechanisms of transcription. Fluorescence is not only a multi-modal parameter that can report on molecular interactions, environment and oligomerization status. Measured on the single-molecule level it also informs about the heterogeneity of the system and gives access to distances and distance changes in the molecular relevant nanometer regime. A pre-requisite for fluorescence-based measurements is the site-specific incorporation of one or multiple fluorescent dyes. In this respect, the archaeal transcription system is ideally suited as it is available in a fully recombinant form and thus allows for site-specific modification via sophisticated labeling schemes. The application of fluorescence based approaches to the archaeal transcription apparatus changed our understanding of the molecular mechanisms and dynamics that drive archaeal transcription and unraveled the architecture of transcriptional complexes not amenable to structural interrogation.
Collapse
Affiliation(s)
- Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| | - Kevin Kramm
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| | - Finn Werner
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St, London WC1E 6BT, UK
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany.
| |
Collapse
|
27
|
Kahlscheuer ML, Widom J, Walter NG. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines. Methods Enzymol 2015; 558:539-570. [PMID: 26068753 PMCID: PMC4886477 DOI: 10.1016/bs.mie.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.
Collapse
Affiliation(s)
- Matthew L Kahlscheuer
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
28
|
Pawar MG, Nuthanakanti A, Srivatsan SG. Heavy atom containing fluorescent ribonucleoside analog probe for the fluorescence detection of RNA-ligand binding. Bioconjug Chem 2014; 24:1367-77. [PMID: 23841942 DOI: 10.1021/bc400194g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although numerous biophysical tools have provided effective systems to study nucleic acids, our current knowledge on how RNA structure complements its function is limited. Therefore, development of robust tools to study the structure–function relationship of RNA is highly desired. Toward this endeavor, we have developed a new ribonucleoside analog, based on a (selenophen-2-yl)pyrimidine core, which could serve as a fluorescence probe to study the function of RNA in real time and as an anomalous scattering label (selenium atom) for the phase determination in X-ray crystallography. The fluorescent selenophene-modified uridine analog is minimally perturbing and exhibits probe-like properties such as sensitivity to microenvironment and conformation changes. Utilizing these properties and amicability of the corresponding ribonucleotide analog to enzymatic incorporation, we have synthesized a fluorescent bacterial ribosomal decoding site (A-site) RNA construct and have developed a fluorescence binding assay to effectively monitor the binding of aminoglycoside antibiotics to the A-site. Our results demonstrate that this simple approach of building a dual probe could provide new avenues to study the structure–function relationship of not only nucleic acids, but also other biomacromolecules.
Collapse
|
29
|
Musalgaonkar S, Moomau CA, Dinman JD. Ribosomes in the balance: structural equilibrium ensures translational fidelity and proper gene expression. Nucleic Acids Res 2014; 42:13384-92. [PMID: 25389262 PMCID: PMC4245932 DOI: 10.1093/nar/gku1020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At equilibrium, empty ribosomes freely transit between the rotated and un-rotated states. In the cell, the binding of two translation elongation factors to the same general region of the ribosome stabilizes one state over the other. These stabilized states are resolved by expenditure of energy in the form of GTP hydrolysis. A prior study employing mutants of a late assembling peripheral ribosomal protein suggested that ribosome rotational status determines its affinity for elongation factors, and hence translational fidelity and gene expression. Here, mutants of the early assembling integral ribosomal protein uL2 are used to test the generality of this hypothesis. rRNA structure probing analyses reveal that mutations in the uL2 B7b bridge region shift the equilibrium toward the rotated state, propagating rRNA structural changes to all of the functional centers of ribosome. Structural disequilibrium unbalances ribosome biochemically: rotated ribosomes favor binding of the eEF2 translocase and disfavor that of the elongation ternary complex. This manifests as specific translational fidelity defects, impacting the expression of genes involved in telomere maintenance. A model is presented describing how cyclic intersubunit rotation ensures the unidirectionality of translational elongation, and how perturbation of rotational equilibrium affects specific aspects of translational fidelity and cellular gene expression.
Collapse
Affiliation(s)
- Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Christine A Moomau
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
Widom JR, Dhakal S, Heinicke LA, Walter NG. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update. Arch Toxicol 2014; 88:1965-85. [PMID: 25212907 PMCID: PMC4615698 DOI: 10.1007/s00204-014-1357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | | | | | | |
Collapse
|
31
|
Li X, Kolomeisky AB, Valleriani A. Stochastic kinetics on networks: when slow is fast. J Phys Chem B 2014; 118:10419-25. [PMID: 25140607 PMCID: PMC4154737 DOI: 10.1021/jp506668a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/12/2014] [Indexed: 01/28/2023]
Abstract
Most chemical and biological processes can be viewed as reaction networks in which different pathways often compete kinetically for transformation of substrates into products. An enzymatic process is an example of such phenomena when biological catalysts create new routes for chemical reactions to proceed. It is typically assumed that the general process of product formation is governed by the pathway with the fastest kinetics at all time scales. In contrast to the expectation, here we show theoretically that at time scales sufficiently short, reactions are predominantly determined by the shortest pathway (in the number of intermediate states), regardless of the average turnover time associated with each pathway. This universal phenomenon is demonstrated by an explicit calculation for a system with two competing reversible (or irreversible) pathways. The time scales that characterize this regime and its relevance for single-molecule experimental studies are also discussed.
Collapse
Affiliation(s)
- Xin Li
- Department
of Chemistry and Department of Chemistry and Center for Theoretical
Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B. Kolomeisky
- Department
of Chemistry and Department of Chemistry and Center for Theoretical
Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Angelo Valleriani
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
32
|
Bustamante CJ, Kaiser CM, Maillard RA, Goldman DH, Wilson CAM. Mechanisms of cellular proteostasis: insights from single-molecule approaches. Annu Rev Biophys 2014; 43:119-40. [PMID: 24895851 DOI: 10.1146/annurev-biophys-051013-022811] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins.
Collapse
|
33
|
The dynamics of SecM-induced translational stalling. Cell Rep 2014; 7:1521-1533. [PMID: 24836001 DOI: 10.1016/j.celrep.2014.04.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/27/2014] [Accepted: 04/17/2014] [Indexed: 02/01/2023] Open
Abstract
SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.
Collapse
|
34
|
Margaliot M, Sontag ED, Tuller T. Entrainment to periodic initiation and transition rates in a computational model for gene translation. PLoS One 2014; 9:e96039. [PMID: 24800863 PMCID: PMC4011696 DOI: 10.1371/journal.pone.0096039] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/02/2014] [Indexed: 01/09/2023] Open
Abstract
Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period . We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period . To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a desired, periodic, protein synthesis rate.
Collapse
Affiliation(s)
- Michael Margaliot
- School of Electrical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Eduardo D. Sontag
- Dept. of Mathematics and Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Tamir Tuller
- Dept. of Biomedical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
35
|
Larson JD, Rodgers ML, Hoskins AA. Visualizing cellular machines with colocalization single molecule microscopy. Chem Soc Rev 2014; 43:1189-200. [PMID: 23970346 PMCID: PMC3946777 DOI: 10.1039/c3cs60208g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many of the cell's macromolecular machines contain multiple components that transiently associate with one another. This compositional and dynamic complexity presents a challenge for understanding how these machines are constructed and function. Colocalization single molecule spectroscopy enables simultaneous observation of individual components of these machines in real-time and grants a unique window into processes that are typically obscured in ensemble assays. Colocalization experiments can yield valuable information about assembly pathways, compositional heterogeneity, and kinetics that together contribute to the development of richly detailed reaction mechanisms. This review focuses on recent advances in colocalization single molecule spectroscopy and how this technique has been applied to enhance our understanding of transcription, RNA splicing, and translation.
Collapse
Affiliation(s)
- Joshua D Larson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, USA.
| | | | | |
Collapse
|
36
|
Chowdhury D. Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules. Biophys J 2014; 104:2331-41. [PMID: 23746505 DOI: 10.1016/j.bpj.2013.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/14/2023] Open
Abstract
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here.
Collapse
|
37
|
Pawar MG, Srivatsan SG. Environment-responsive fluorescent nucleoside analogue probe for studying oligonucleotide dynamics in a model cell-like compartment. J Phys Chem B 2013; 117:14273-82. [PMID: 24161106 DOI: 10.1021/jp4071168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of fluorescent nucleoside analogue probes that have been used in the in vitro study of nucleic acids are not suitable for cell-based biophysical assays because they exhibit excitation maxima in the UV region and low quantum yields within oligonucleotides. Therefore, we propose that the photophysical characterization of oligonucleotides labeled with a fluorescent nucleoside analogue in reverse micelles (RM), which are good biological membrane models and UV-transparent, could provide an alternative approach to studying the properties of nucleic acids in a cell-like confined environment. In this context, we describe the photophysical properties of an environment-sensitive fluorescent uridine analogue (1), based on the 5-(benzo[b]thiophen-2-yl)pyrimidine core, in micelles and RM. The emissive nucleoside, which is polarity- and viscosity-sensitive, reports the environment of the surfactant assemblies via changes in its fluorescence properties. The nucleoside analogue, incorporated into an RNA oligonucleotide and hybridized to its complementary DNA and RNA oligonucleotides, exhibits a significantly higher fluorescence intensity, lifetime, and anisotropy in RM than in aqueous buffer, which is consistent with the environment of RM. Collectively, our results demonstrate that nucleoside 1 could be utilized as a fluorescent label to study the function of nucleic acids in a model cellular milieu.
Collapse
Affiliation(s)
- Maroti G Pawar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune , Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | | |
Collapse
|
38
|
Wang Y, Xiao M, Li Y. Heterogeneity of single molecule FRET signals reveals multiple active ribosome subpopulations. Proteins 2013; 82:1-9. [PMID: 23609951 DOI: 10.1002/prot.24308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 11/06/2022]
Abstract
Single molecule methods have revealed that heterogeneity is common in biological systems. However, interpretations of the complex signals are challenging. By tracking the fluorescence resonance energy transfer (FRET) signals between the A-site tRNA and L27 protein in single ribosomes, we attempt to develop a qualitative method to subtract the inherent patterns of the heterogeneous single molecule FRET data. Seven ribosome subpopulations are identified using this method and spontaneous exchanges among these subpopulations are observed. All of the pretranslocation subpopulations are competent in real-time translocation, but via distinguished pathways. These observations suggest that the ribosome may function through multiple reaction pathways.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd, Houston, Texas, 77214
| | | | | |
Collapse
|
39
|
Li PTX. Analysis of diffuse K+ and Mg2+ ion binding to a two-base-pair kissing complex by single-molecule mechanical unfolding. Biochemistry 2013; 52:4991-5001. [PMID: 23842027 DOI: 10.1021/bi400646x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The folding and stability of RNA tertiary interactions depend critically on cationic conditions. It is usually difficult, however, to isolate such effects on tertiary interactions from those on the entire RNA. By manipulating conformations of single RNA molecules using optical tweezers, we distinguished individual steps of breaking and forming of a two-base-pair kissing interaction from those of secondary folding. The binding of metal ions to the small tertiary structure appeared to be saturable with an apparent Kd of 160 mM for K(+) and 1.5 mM for Mg(2+). The kissing formation was estimated to be associated with binding of ~2-3 diffuse K(+) or Mg(2+) ions. At their saturated binding, Mg(2+) provided ~3 kcal/mol more stabilizing energy to the structure than K(+). Furthermore, the cations change the unkissing forces significantly more than the kissing ones. For example, the presence of Mg(2+) ions increased the average unkissing force from 21 pN to 44 pN, surprisingly high for breaking merely two base pairs; in contrast, the mean kissing force was changed by only 4.5 pN. Interestingly, the differential salt effects on the transition forces were not caused by different changes in the height of the kinetic barriers but were instead attributed to how different molecular structures respond to the applied force. Our results showed the importance of diffuse cation binding to the stability of tertiary interaction and demonstrated the utility of mechanical unfolding in studying tertiary interactions.
Collapse
Affiliation(s)
- Pan T X Li
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY , Albany, New York 12222, United States
| |
Collapse
|
40
|
González-García JS, Delgado J. Stochastic microswimming model for the average translational velocity of the ribosome. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012723. [PMID: 23944506 DOI: 10.1103/physreve.88.012723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/16/2013] [Indexed: 06/02/2023]
Abstract
The motion of the ribosome is modeled here, assuming that its two subunits are subject to stochastic rearrangements, thus producing different conformations constituting its deformation cycle, or swimming stroke. Using a general statistical mechanical formulation, the mean propulsion velocity of the ribosome is obtained as a function of the transition rates among the different conformations and of the relevant deformation variables. A calculation with reasonable parameter estimations shows that the ribosome can match the average protein synthesis speed with deformations of a size comparable to its radius.
Collapse
Affiliation(s)
- José S González-García
- Departamento de Física y Matemáticas, Instituto Tecnológico de Estudios Superiores de Monterrey, Campus Ciudad de México, Calle del Puente 222, Col. Ejidos de Huipulco, Tlalpan, México, D.F. 14380, México.
| | | |
Collapse
|
41
|
Tanpure AA, Pawar MG, Srivatsan SG. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201300010] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat Rev Microbiol 2013; 11:303-15. [DOI: 10.1038/nrmicro2994] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 2013; 10:354-60. [DOI: 10.1038/nmeth.2404] [Citation(s) in RCA: 541] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/14/2013] [Indexed: 01/19/2023]
|
44
|
Dynes JL, Steward O. Arc mRNA docks precisely at the base of individual dendritic spines indicating the existence of a specialized microdomain for synapse-specific mRNA translation. J Comp Neurol 2013; 520:3105-19. [PMID: 22350812 DOI: 10.1002/cne.23073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Arc (aka Arg 3.1) is induced by neural activity and learning experience. Arc mRNA is rapidly exported into dendrites where it localizes near activated synapses. By imaging green fluorescent protein (GFP)-tagged mRNA in living neurons in culture, we show that fusion transcripts containing the Arc 30'UTR (untranslated region) localize with remarkable precision in a microdomain at the base of dendritic spines. Transcripts with the Arc 30'UTR that encode a reporter protein rather than Arc show precise localization. Localization persists in the presence of translation inhibitors, indicating that localization does not require ongoing translation. Similarly, polyribosome complexes remained stably positioned at spine bases in brain tissue treated with the translation inhibitor (puromycin) that releases ribosomes from mRNA. Single particle tracking revealed that Arc mRNA particles positioned at spine bases exhibited highly constrained submicron movements. These observations imply the existence of a microdomain at the spine base where Arc mRNA docks in association with a previously unknown mRNA-binding structural element.
Collapse
Affiliation(s)
- Joseph L Dynes
- Reeve-Irvine Research Center, University of California at Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
45
|
The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep 2013; 3:497-508. [PMID: 23416053 DOI: 10.1016/j.celrep.2013.01.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/18/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition.
Collapse
|
46
|
Chen J, Tsai A, O'Leary SE, Petrov A, Puglisi JD. Unraveling the dynamics of ribosome translocation. Curr Opin Struct Biol 2012; 22:804-14. [PMID: 23142574 DOI: 10.1016/j.sbi.2012.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Translocation is one of the key events in translation, requiring large-scale conformational changes in the ribosome, movements of two transfer RNAs (tRNAs) across a distance of more than 20Å, and the coupled movement of the messenger RNA (mRNA) by one codon, completing one cycle of peptide-chain elongation. Translocation is catalyzed by elongation factor G (EF-G in bacteria), which hydrolyzes GTP in the process. However, how the conformational rearrangements of the ribosome actually drive the movements of the tRNAs and how EF-G GTP hydrolysis plays a role in this process are still unclear. Fluorescence methods, both single-molecule and bulk, have provided a dynamic view of translocation, allowing us to follow the different conformational changes of the ribosome in real-time. The application of electron microscopy has revealed new conformational intermediates during translocation and important structural rearrangements in the ribosome that drive tRNA movement, while computational approaches have added quantitative views of the translational pathway. These recent advances shed light on the process of translocation, providing insight on how to resolve the different descriptions of translocation in the current literature.
Collapse
Affiliation(s)
- Jin Chen
- Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
| | | | | | | | | |
Collapse
|
47
|
Hayashi G, Hong C, Hagihara M, Nakatani K. Activation of prokaryotic translation by antisense oligonucleotides binding to coding region of mRNA. Biochem Biophys Res Commun 2012; 429:105-10. [PMID: 23111330 DOI: 10.1016/j.bbrc.2012.10.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
A few examples of translational activation by antisense small noncoding RNAs (sRNAs) have already been discovered in prokaryotic cells, and all of them are through a sense-antisense interaction at the 5'-untranslated region (5'-UTR) of target mRNAs. Here, we report a novel phenomenon of translational activation of prokaryotic gene expression with trans-acting antisense oligonucleotides targeting the coding region of mRNA. Screening of antisense oligonucleotides complementary to the coding sequences of GFP or ZsGreen identified antisense sequences that activate translation of the mRNAs in a concentration-dependent manner. We also found that the translational activation highly depends on the hybridization positions of the antisense strands. Translation-activating antisense oligonucleotides (TAOs) tended to bind to the 5'-region rather than the 3'-region of the mRNA coding region. RNA folding simulation suggested that TAOs may disrupt the structured elements around the translation initiation region (TIR) by pairing with complementary sequences in the mRNA coding region, resulting in an increase in translation efficiency. Further, we demonstrate that number and position of locked nucleic acid (LNA) bases in the antisense strands govern the tendency of up- or down-regulation. Our findings described here may lead to the discovery of a new class of antisense sRNA and the development of a tool for activating desired gene expression in the future.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
Genomic analyses increasingly make use of sophisticated statistical and computational approaches in investigations of genomic function and evolution. Scientists implementing and developing these approaches are often computational scientists, physicists, or mathematicians. This article aims to provide a compact overview of genome biology for these scientists. Thus, the article focuses on providing biological context to the genomic features, processes, and structures analysed by these approaches. Topics covered include (1) differences between eukaryotic and prokaryotic cells; (2) the physical structure of genomes and chromatin; (3) different categories of genomic regions, including those serving as templates for RNA and protein synthesis, regulatory regions, repetitive regions, and "architectural" or "organisational" regions, such as centromeres and telomeres; (4) the cell cycle; (5) an overview of transcription, translation, and protein structure; and (6) a glossary of relevant terms.
Collapse
|
49
|
Réblová K, Šponer J, Lankaš F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Res 2012; 40:6290-303. [PMID: 22451682 PMCID: PMC3401443 DOI: 10.1093/nar/gks258] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 01/06/2023] Open
Abstract
The L1 stalk is a key mobile element of the large ribosomal subunit which interacts with tRNA during translocation. Here, we investigate the structure and mechanical properties of the rRNA H76/H75/H79 three-way junction at the base of the L1 stalk from four different prokaryotic organisms. We propose a coarse-grained elastic model and parameterize it using large-scale atomistic molecular dynamics simulations. Global properties of the junction are well described by a model in which the H76 helix is represented by a straight, isotropically flexible elastic rod, while the junction core is represented by an isotropically flexible spherical hinge. Both the core and the helix contribute substantially to the overall H76 bending fluctuations. The presence of wobble pairs in H76 does not induce any increased flexibility or anisotropy to the helix. The half-closed conformation of the L1 stalk seems to be accessible by thermal fluctuations of the junction itself, without any long-range allosteric effects. Bending fluctuations of H76 with a bulge introduced in it suggest a rationale for the precise position of the bulge in eukaryotes. Our elastic model can be generalized to other RNA junctions found in biological systems or in nanotechnology.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, CEITEC—Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, CEITEC—Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Filip Lankaš
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, CEITEC—Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
50
|
Real-time evidence for EF-G-induced dynamics of helix 44 in 16S rRNA. J Mol Biol 2012; 422:45-57. [PMID: 22634282 DOI: 10.1016/j.jmb.2012.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 11/21/2022]
Abstract
The penultimate stem-loop of 16S ribosomal RNA (rRNA), helix 44, plays a central role in ribosome function. Using time-resolved dimethyl sulfate (DMS) probing, we have analyzed time-dependent modifications that occur at specific bases in this helix near the decoding region, resulting from the binding of elongation factor G (EF-G) in various forms. When EF-G-GTP is bound to 70S ribosomes, bases A1492 and A1493 are immediately protected, while other bases in the region show either no change or enhanced modification. When apo-EF-G is bound to 70S ribosomes and GTP is added, substantial transient time-dependent enhancement occurs at bases A1492 and A1493, with somewhat less enhancement occurring at base A1483, all in the first 45 ms. When mRNA and deacylated tRNAs are bound to the 70S ribosome and EF-G-GTP is added, bases A1492 and A1493 again show substantial and continued enhancement, while bases A1408, A1413, and A1418 all show time-dependent protection. These results provide primary, real-time evidence that EF-G induces direct or indirect structural changes in this region as EF-G is bound and as GTP is hydrolyzed.
Collapse
|