1
|
Chakraborty T, Trujillo JT, Kendall T, Mosher RA. A null allele of the pol IV second subunit impacts stature and reproductive development in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:748-755. [PMID: 35635763 DOI: 10.1111/tpj.15848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
All eukaryotes possess three DNA-dependent RNA polymerases, Pols I-III, while land plants possess two additional polymerases, Pol IV and Pol V. Derived through duplication of Pol II subunits, Pol IV produces 24-nt short interfering RNAs that interact with Pol V transcripts to target de novo DNA methylation and silence transcription of transposons. Members of the grass family encode additional duplicated subunits of Pol IV and V, raising questions regarding the function of each paralog. In this study, we identify a null allele of the putative Pol IV second subunit, NRPD2, and demonstrate that NRPD2 is the sole subunit functioning with NRPD1 in small RNA production and CHH methylation in leaves. Homozygous nrpd2 mutants have neither gametophytic defects nor embryo lethality, although adult plants are dwarf and sterile.
Collapse
Affiliation(s)
- Tania Chakraborty
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Joshua T Trujillo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
2
|
Pereira R, Leitão JM. A Non-Rogue Mutant Line Induced by ENU Mutagenesis in Paramutated Rogue Peas ( Pisum sativum L.) Is Still Sensitive to the Rogue Paramutation. Genes (Basel) 2021; 12:1680. [PMID: 34828288 PMCID: PMC8623080 DOI: 10.3390/genes12111680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
The spontaneously emerging rogue phenotype in peas (Pisum sativum L.), characterized by narrow and pointed leaf stipula and leaflets, was the first identified case of the epigenetic phenomenon paramutation. The crosses of homozygous or heterozygous (e.g., F1) rogue plants with non-rogue (wild type) plants, produce exclusively rogue plants in the first and all subsequent generations. The fact that the wild phenotype disappears forever, is in clear contradiction with the Mendelian rules of inheritance, a situation that impedes the positional cloning of genes involved in this epigenetic phenomenon. One way of overcoming this obstacle is the identification of plant genotypes harboring naturally occurring or artificially induced neutral alleles, non-sensitive to paramutation. So far, such alleles have never been described for the pea rogue paramutation. Here, we report the induction via 1-ethyl-1-nitrosourea (ENU) mutagenesis of a non-rogue revertant mutant in the rogue cv. Progreta, and the completely unusual fixation of the induced non-rogue phenotype through several generations. The reversion of the methylation status of two previously identified differentially methylated genomic sequences in the induced non-rogue mutant, confirms that the rogue paramutation is accompanied by alterations in DNA methylation. Nevertheless, unexpectedly, the induced non-rogue mutant showed to be still sensitive to paramutation.
Collapse
Affiliation(s)
- Ricardo Pereira
- Laboratory of Genomics and Genetic Improvement, MED, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Corte Velada Investimentos, Monte Ruivo, PB 552X, 8600-237 Odiáxere, Portugal
| | - José M. Leitão
- Laboratory of Genomics and Genetic Improvement, MED, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
3
|
Chakraborty T, Kendall T, Grover JW, Mosher RA. Embryo CHH hypermethylation is mediated by RdDM and is autonomously directed in Brassica rapa. Genome Biol 2021; 22:140. [PMID: 33957938 PMCID: PMC8101221 DOI: 10.1186/s13059-021-02358-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA-directed DNA methylation (RdDM) initiates cytosine methylation in all contexts and maintains asymmetric CHH methylation. Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development. RdDM is required in the maternal sporophyte, suggesting that small RNAs from the maternal sporophyte might translocate to the developing embryo, triggering DNA methylation that prevents seed abortion. This raises the question of whether embryo hypermethylation is autonomously regulated by the embryo itself or influenced by the maternal sporophyte. RESULTS Here, we demonstrate that B. rapa embryos are hypermethylated in both euchromatin and heterochromatin and that this process requires RdDM. Contrary to the current models, B. rapa embryo hypermethylation is not correlated with demethylation of the endosperm. We also show that maternal somatic RdDM is not sufficient for global embryo hypermethylation, and we find no compelling evidence for maternal somatic influence over embryo methylation at any locus. Decoupling of maternal and zygotic RdDM leads to successful seed development despite the loss of embryo CHH hypermethylation. CONCLUSIONS We conclude that embryo CHH hypermethylation is conserved, autonomously controlled, and not required for embryo development. Furthermore, maternal somatic RdDM, while required for seed development, does not directly influence embryo methylation patterns.
Collapse
Affiliation(s)
- Tania Chakraborty
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721 USA
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721 USA
| | - Jeffrey W. Grover
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721 USA
| | - Rebecca A. Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
4
|
Palomar VM, Garciarrubio A, Garay-Arroyo A, Martínez-Martínez C, Rosas-Bringas O, Reyes JL, Covarrubias AA. The canonical RdDM pathway mediates the control of seed germination timing under salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:691-707. [PMID: 33131171 DOI: 10.1111/tpj.15064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. As a result of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the crosstalk of regulatory networks. Germination is a critical process in the plant life cycle, and thus plants have evolved various strategies to control the timing of germination according to their local environment. The mechanisms involved in these adjustment responses are largely unknown, however. Here, we report that mutations in core elements of canonical RNA-directed DNA methylation (RdDM) affect the germination and post-germination growth of Arabidopsis seeds grown under salinity stress. Transcriptomic and whole-genome bisulfite sequencing (WGBS) analyses support the involvement of this pathway in the control of germination timing and post-germination growth under salinity stress by preventing the transcriptional activation of genes implicated in these processes. Subsequent transcriptional effects on genes that function in relation to these developmental events support this conclusion.
Collapse
Affiliation(s)
- Víctor Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N anexo Jardín Botánico Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04500, México
| | - Coral Martínez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Omar Rosas-Bringas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| |
Collapse
|
5
|
Grover JW, Kendall T, Baten A, Burgess D, Freeling M, King GJ, Mosher RA. Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:575-582. [PMID: 29569777 DOI: 10.1111/tpj.13910] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
Small RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA-directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis causes no overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV-dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction. Here we show that, unlike Arabidopsis, mutations in the Pol IV-dependent small RNA pathway cause severe and specific reproductive defects in Brassica rapa. High rates of abortion occur when seeds have RdDM mutant mothers, but not when they have mutant fathers. Although abortion occurs after fertilization, RdDM function is required in maternal somatic tissue, not in the female gametophyte or the developing zygote, suggesting that siRNAs from the maternal soma might function in filial tissues. We propose that recently outbreeding species such as B. rapa are key to understanding the role of RdDM during plant reproduction.
Collapse
Affiliation(s)
- Jeffrey W Grover
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Diane Burgess
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA, 94720, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA, 94720, USA
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Rebecca A Mosher
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ, 85721, USA
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
7
|
The Pea (Pisum sativum L.) Rogue Paramutation is Accompanied by Alterations in the Methylation Pattern of Specific Genomic Sequences. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The spontaneous emergence among common pea (Pisum sativum L.) cultivars of off-type rogue plants exhibiting leaves with narrower and pointed leaflets and stipules and the non-Mendelian inheritance of this new phenotype were first described in the early 20th century. However, so far, no studies at the molecular level of this first identified case of paramutation have been carried out. In this study, we show for the first time that the pea rogue paramutation is accompanied by alterations in the methylation status of specific genomic sequences. Although, no significant differences were observed in the genome-wide DNA methylation in leaves of non-rogue cv. Onward in comparison to its rogue paramutant line JI2723, 22 DNA sequences were identified by methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) analysis as differentially methylated in the two epigenomes. Mitotically inherited through all leaf tissues, the differential methylation patterns were also found to be meiotically inherited and conserved in pollen grains for 12 out of the 22 sequences. Fourteen of the sequences were successfully amplified in cDNA but none of them exhibited significant differential expression in the two contrasting epigenotypes. The further exploitation of the present research results on the way towards the elucidation of the molecular mechanisms behind this interesting epigenetic phenomenon is discussed.
Collapse
|
8
|
|
9
|
The sex locus is tightly linked to factors conferring sex-specific lethal effects in the mosquito Aedes aegypti. Heredity (Edinb) 2016; 117:408-416. [PMID: 27485667 DOI: 10.1038/hdy.2016.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/21/2016] [Accepted: 06/20/2016] [Indexed: 11/08/2022] Open
Abstract
In many taxa, sex chromosomes are heteromorphic and largely non-recombining. Evolutionary models predict that spread of recombination suppression on the Y chromosome is fueled by the accumulation of sexually antagonistic alleles in close linkage to the sex determination region. However, empirical evidence for the existence of sexually antagonistic alleles is scarce. In the mosquito Aedes aegypti, the sex-determining chromosomes are homomorphic. The region of suppressed recombination, which surrounds the male-specific sex-determining gene, remains very small, despite ancient origin of the sex chromosomes in the Aedes lineage. We conducted a genetic analysis of the A. aegypti chromosome region tightly linked to the sex locus. We used a strain with an enhanced green fluorescent protein (EGFP)-tagged transgene inserted near the male-determining gene to monitor crossing-over events close to the boundary of the sex-determining region (SDR), and to trace the inheritance pattern of the transgene in relation to sex. In a series of crossing experiments involving individuals with a recombinant sex chromosome we found developmental abnormalities leading to 1:2 sex biases, caused by lethality of half of the male or female progeny. Our results suggest that various factors causing sex-specific lethal effects are clustered within the neighborhood of the SDR, which in the affected sex are likely lost or gained through recombination, leading to death. These may include genes that are recessive lethal, vital for development and/or sexually antagonistic. The sex chromosome fragment in question represents a fascinating test case for the analysis of processes that shape stable boundaries of a non-recombining region.
Collapse
|
10
|
Springer NM, McGinnis KM. Paramutation in evolution, population genetics and breeding. Semin Cell Dev Biol 2015; 44:33-8. [PMID: 26325077 DOI: 10.1016/j.semcdb.2015.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
Abstract
Paramutation is a fascinating phenomenon in which directed allelic interactions result in heritable changes in the state of an allele. Paramutation has been carefully characterized at a handful of loci but the prevalence of paramutable/paramutagenic alleles is not well characterized within genomes or populations. In order to consider the role of paramutation in evolutionary processes and plant breeding, we focused on several questions. First, what causes certain alleles to become subject to paramutation? While paramutation clearly involves epigenetic regulation it is also true that only certain alleles defined by genetic sequences are able to participate in paramutation. Second, what is the prevalence of paramutation? There are only a handful of well-documented examples of paramutation. However, there is growing evidence that many loci may undergo changes in chromatin state or expression that are similar to changes observed as a result of paramutation. Third, how will paramutation events be inherited in natural or artificial populations? Many factors, including stability of epigenetic state, mating style and ploidy, may influence the prevalence of paramutation states within populations. Developing a clear understanding of the mechanisms and frequency of paramutation in crop plant genomes will facilitate new opportunities in genetic manipulation, and will also enhance plant breeding programs and our understanding of genome evolution.
Collapse
Affiliation(s)
- Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
11
|
Gabriel JM, Hollick JB. Paramutation in maize and related behaviors in metazoans. Semin Cell Dev Biol 2015; 44:11-21. [PMID: 26318741 DOI: 10.1016/j.semcdb.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
Paramutation refers to both the process and results of trans-homolog interactions causing heritable changes in both gene regulation and silencing abilities. Originally described in plants, paramutation-like behaviors have now been reported in model metazoans. Here we detail our current understanding of the paramutation mechanism as defined in Zea mays and compare this paradigm to these metazoan examples. Experimental results implicate functional roles of small RNAs in all these model organisms that highlight a diversity of mechanisms by which these molecules specify meiotically heritable regulatory information in the eukarya.
Collapse
Affiliation(s)
- Janelle M Gabriel
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Jay B Hollick
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Pilu R. Paramutation phenomena in plants. Semin Cell Dev Biol 2015; 44:2-10. [DOI: 10.1016/j.semcdb.2015.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
13
|
Yuan S, Oliver D, Schuster A, Zheng H, Yan W. Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci Rep 2015; 5:9266. [PMID: 25783852 PMCID: PMC4363887 DOI: 10.1038/srep09266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/20/2015] [Indexed: 01/03/2023] Open
Abstract
Paramutations result from interactions between two alleles at a single locus, whereby one induces a heritable change in the other. Although common in plants, paramutations are rarely studied in animals. Here, we report a new paramutation mouse model, in which the paramutant allele was induced by an insertional mutation and displayed the "white-tail-tip" (WTT) phenotype. The paramutation phenotype could be transmitted across multiple generations, and the breeding scheme (intercrossing vs. outcrossing) drastically affected the transmission efficiency. Paternal (i.e., sperm-borne) RNAs isolated from paramutant mice could induce the paramutation phenotype, which, however, failed to be transmitted to subsequent generations. Maternal miRNAs and piRNAs appeared to have an inhibitory effect on the efficiency of germline transmission of the paramutation. This paramutation mouse model represents an important tool for dissecting the underlying mechanism, which should be applicable to the phenomenon of epigenetic transgenerational inheritance (ETI) in general. Mechanistic insights of ETI will help us understand how organisms establish new heritable epigenetic states during development, or in times of environmental or nutritional stress.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
14
|
Abstract
Epigenetics is one of the most rapidly developing fields of biological research. Breakthroughs in several technologies have enabled the possibility of genome-wide epigenetic research, for example the mapping of human genome-wide DNA methylation. In addition, with the development of various high-throughput and high-resolution sequencing technologies, a large number of functional noncoding RNAs have been identified. Massive studies indicated that these functional ncRNA also play an important role in epigenetics. In this review, we gain inspiration from the recent proposal of the ceRNAs hypothesis. This hypothesis proposes that miRNAs act as a language of communication. Accordingly, we further deduce that all of epigenetics may functionally acquire such a unique language characteristic. In summary, various epigenetic markers may not only participate in regulating cellular processes, but they may also act as the intracellular ‘language’ of communication and are involved in extensive information exchanges within cell.
Collapse
Affiliation(s)
- Biao Huang
- Research Center of Basic Medical Science, Department of Immunology, Basic Medical College, Tianjin Key Laboratory of Cellular & Molecular Immunology, Key Laboratory of Immune Microenvironments & Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Cizhong Jiang
- Department of Bioinformatics, Shanghai Key Laboratory of Signaling & Disease Research, The School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Rongxin Zhang
- Research Center of Basic Medical Science, Department of Immunology, Basic Medical College, Tianjin Key Laboratory of Cellular & Molecular Immunology, Key Laboratory of Immune Microenvironments & Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
15
|
McKeown PC, Spillane C. Landscaping plant epigenetics. Methods Mol Biol 2014; 1112:1-24. [PMID: 24478004 DOI: 10.1007/978-1-62703-773-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.
Collapse
Affiliation(s)
- Peter C McKeown
- Genetics & Biotechnology Lab, Plant & Agribiosciences Centre (PABC), School of Natural Sciences, National University of Ireland, Galway (NUI Galway), Ireland
| | | |
Collapse
|
16
|
Abstract
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance. DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.
Collapse
|
17
|
Affiliation(s)
- Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Richard R. Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Lim JP, Brunet A. Bridging the transgenerational gap with epigenetic memory. Trends Genet 2013; 29:176-86. [PMID: 23410786 DOI: 10.1016/j.tig.2012.12.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
It is textbook knowledge that inheritance of traits is governed by genetics, and that the epigenetic modifications an organism acquires are largely reset between generations. Recently, however, transgenerational epigenetic inheritance has emerged as a rapidly growing field, providing evidence suggesting that some epigenetic changes result in persistent phenotypes across generations. Here, we survey some of the most recent examples of transgenerational epigenetic inheritance in animals, ranging from Caenorhabditis elegans to humans, and describe approaches and limitations to studying this phenomenon. We also review the current body of evidence implicating chromatin modifications and RNA molecules in mechanisms underlying this unconventional mode of inheritance and discuss its evolutionary implications.
Collapse
Affiliation(s)
- Jana P Lim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
19
|
Lempe J, Lachowiec J, Sullivan AM, Queitsch C. Molecular mechanisms of robustness in plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:62-9. [PMID: 23279801 PMCID: PMC3577948 DOI: 10.1016/j.pbi.2012.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 05/18/2023]
Abstract
Robustness, the ability of organisms to buffer phenotypes against perturbations, has drawn renewed interest among developmental biologists and geneticists. A growing body of research supports an important role of robustness in the genotype to phenotype translation, with far-reaching implications for evolutionary processes and disease susceptibility. Similar to animals and fungi, plant robustness is a function of genetic network architecture. Most perturbations are buffered; however, perturbation of network hubs destabilizes many traits. Here, we review recent advances in identifying molecular robustness mechanisms in plants that have been enabled by a combination of classical genetics and population genetics with genome-scale data.
Collapse
Affiliation(s)
- Janne Lempe
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
20
|
Goettel W, Messing J. Paramutagenicity of a p1 epiallele in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:159-77. [PMID: 22986680 DOI: 10.1007/s00122-012-1970-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/16/2012] [Indexed: 05/09/2023]
Abstract
Complex silencing mechanisms in plants and other kingdoms target transposons, repeat sequences, invasive viral nucleic acids and transgenes, but also endogenous genes and genes involved in paramutation. Paramutation occurs in a heterozygote when a transcriptionally active allele heritably adopts the epigenetic state of a transcriptionally and/or post-transcriptionally repressed allele. P1-rr and its silenced epiallele P1-pr, which encode a Myb-like transcription factor mediating pigmentation in floral organs of Zea mays, differ in their cytosine methylation pattern and chromatin structure at a complex enhancer site. Here, we tested whether P1-pr is able to heritably silence its transcriptionally active P1-rr allele in a heterozygote and whether DNA methylation is associated with the establishment and maintenance of P1-rr silencing. We found that P1-pr participates in paramutation as the repressing allele and P1-rr as the sensitive allele. Silencing of P1-rr is highly variable compared to the inducing P1-pr resulting in a wide range of gene expression. Whereas cytosine methylation at P1-rr is negatively correlated with transcription and pigment levels after segregation of P1-pr, methylation lags behind the establishment of the repressed p1 gene expression. We propose a model in which P1-pr paramutation is triggered by changing epigenetic states of transposons immediately adjacent to a P1-rr enhancer sequence. Considering the vast amount of transposable elements in the maize genome close to regulatory elements of genes, numerous loci could undergo paramutation-induced allele silencing, which could also have a significant impact on breeding agronomically important traits.
Collapse
Affiliation(s)
- Wolfgang Goettel
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
Hollick JB. Paramutation: a trans-homolog interaction affecting heritable gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:536-543. [PMID: 23017240 DOI: 10.1016/j.pbi.2012.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Paramutation describes both the process and results of trans-sensing between chromosomes that causes specific heritable changes in gene regulation. RNA molecules are implicated in mediating similar events in maize, mouse, and Drosophila. Changes in both small RNA profiles and cytosine methylation patterns in Arabidopsis hybrids represent a potential molecular equivalent to the interactions responsible for paramutations. Despite a seemingly unifying feature of RNA-directed changes, both recent and historical works show that paramutations in maize require plant-specific proteins and lack expected hallmarks of a trans-effect mediated solely by RNAs. Recent examples of nearby transposons affecting RNA polymerase II functions lead to an opinion that paramutations represent an emergent property of the transcriptional dynamics ongoing in plant genomes between repetitious features and nearby genes.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Abstract
Heritable phenotypic differences caused by epigenetic modifications, rather than DNA sequence mutations, pose a challenge to our understanding of natural variation. Here, we review what is known about plant epialleles and the role of epigenetics in evolution.
Collapse
|
23
|
Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 2011; 12:483-92. [PMID: 21779025 DOI: 10.1038/nrm3152] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.
Collapse
Affiliation(s)
- Jeremy R Haag
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
24
|
Brzeski J, Brzeska K. The maze of paramutation: a rough guide to the puzzling epigenetics of paramutation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:863-74. [PMID: 21976288 DOI: 10.1002/wrna.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic mechanisms maintain gene expression states through mitotic and sometimes meiotic cell divisions. Paramutation is an extreme example of epigenetic processes. Not only an established expression state is transmitted through meiosis to the following generations but also an information transfer occurs between alleles and leads to heritable changes in expression state. As a consequence the expression states can rapidly propagate in population, violating Mendelian genetics. Recent findings unraveled an essential role for siRNA-dependent processes in paramutation. Despite significant progress, the overall picture is still puzzling and many important questions remain to be answered.
Collapse
Affiliation(s)
- Jan Brzeski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
25
|
Pilu R. Paramutation: just a curiosity or fine tuning of gene expression in the next generation? Curr Genomics 2011; 12:298-306. [PMID: 22131875 PMCID: PMC3131737 DOI: 10.2174/138920211795860099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 12/31/2022] Open
Abstract
Gene silencing is associated with heritable changes in gene expression which occur without changes in DNA sequence. In eukaryotes these phenomena are common and control important processes, such as development, imprinting, viral and transposon sequence silencing, as well as transgene silencing. Among the epigenetic events, paramutation occurs when a silenced allele (named paramutagenic) is able to silence another allele (paramutable) in trans and this change is heritable. The silenced paramutable allele acquires paramutagenic capacity in the next generations. In the 1950s, Alexander Brink described for the first time the phenomenon of paramutation, occurring in maize at the colored1 (r1) gene, a complex locus (encoding myc-homologous transcription factors) that regulates the anthocyanin biosynthetic pathway. Since then, paramutation and paramutation-like interactions have been discovered in other plants and animals, suggesting that they may underlie important mechanisms for gene expression. The molecular bases of these phenomena are unknown. However in some cases, the event of paramutation has been correlated with changes in DNA methylation, chromatin structure and recently several studies suggest that RNA could play a fundamental role. This last consideration is greatly supported by genetic screening for mutants inhibiting paramutation, which allowed the identification of genes involved in RNA-directed transcriptional silencing, although it is possible that proteins are also required for paramutation.The meaning of paramutation in the life cycle and in evolution remains to be determined even though we might conjecture that this phenomenon could be involved in a fast heritability of favourable epigenetic states across generations in a non-Mendelian way.
Collapse
Affiliation(s)
- Roberto Pilu
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
26
|
Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:459-68. [PMID: 21515434 DOI: 10.1016/j.bbagrm.2011.03.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 01/08/2023]
Abstract
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Austria
| | | | | | | |
Collapse
|
27
|
Erhard KF, Hollick JB. Paramutation: a process for acquiring trans-generational regulatory states. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:210-216. [PMID: 21420347 DOI: 10.1016/j.pbi.2011.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/14/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
Basic tenets of Mendelian inheritance are violated by paramutations in which trans-homolog interactions lead to heritable changes in gene regulation and phenotype. First described in plants, similar behaviors have now been noted in diverse eukaryotes. Genetic and molecular studies of paramutations occurring in maize indicate that components of a small interfering RNA (siRNA) biogenesis pathway are required for the maintenance of meiotically heritable regulatory states. Although these findings lead to a hypothesis that siRNAs themselves mediate paramutation interactions, an assessment of existing data supports the opinion that siRNAs alone are insufficient. Recent evidence implies that transcription of paramutation-associated repeats and siRNA-facilitated chromatin changes at affected loci are involved in directing and maintaining the heritable changes in gene regulation that typify paramutations.
Collapse
Affiliation(s)
- Karl F Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
28
|
Abstract
DNA methylation is an epigenetic mark that has key roles in the control of genome activity in plants and mammals. It is critical for the stable silencing of repeat elements and is also involved in the epigenetic regulation of some genes. Despite similarities in the controlling functions of DNA methylation, its dynamics and deposition patterns differ in several respects between plants and mammals. One of the most striking differences is that plants tend to propagate pre-existing DNA methylation states across generations, whereas mammals re-establish them genome wide at every generation. Here, we review our current understanding of DNA methylation in the flowering plant Arabidopsis. We discuss in particular the role of RNAi in the incremental methylation and silencing of repeat elements over successive generations. We argue that paramutation, an epigenetic phenomenon first described in maize, is an extreme manifestation of this RNAi-dependent pathway.
Collapse
|
29
|
Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian? Biol Direct 2009; 4:42. [PMID: 19906303 PMCID: PMC2781790 DOI: 10.1186/1745-6150-4-42] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/11/2009] [Indexed: 12/15/2022] Open
Abstract
Background The year 2009 is the 200th anniversary of the publication of Jean-Bapteste Lamarck's Philosophie Zoologique and the 150th anniversary of Charles Darwin's On the Origin of Species. Lamarck believed that evolution is driven primarily by non-randomly acquired, beneficial phenotypic changes, in particular, those directly affected by the use of organs, which Lamarck believed to be inheritable. In contrast, Darwin assigned a greater importance to random, undirected change that provided material for natural selection. The concept The classic Lamarckian scheme appears untenable owing to the non-existence of mechanisms for direct reverse engineering of adaptive phenotypic characters acquired by an individual during its life span into the genome. However, various evolutionary phenomena that came to fore in the last few years, seem to fit a more broadly interpreted (quasi)Lamarckian paradigm. The prokaryotic CRISPR-Cas system of defense against mobile elements seems to function via a bona fide Lamarckian mechanism, namely, by integrating small segments of viral or plasmid DNA into specific loci in the host prokaryote genome and then utilizing the respective transcripts to destroy the cognate mobile element DNA (or RNA). A similar principle seems to be employed in the piRNA branch of RNA interference which is involved in defense against transposable elements in the animal germ line. Horizontal gene transfer (HGT), a dominant evolutionary process, at least, in prokaryotes, appears to be a form of (quasi)Lamarckian inheritance. The rate of HGT and the nature of acquired genes depend on the environment of the recipient organism and, in some cases, the transferred genes confer a selective advantage for growth in that environment, meeting the Lamarckian criteria. Various forms of stress-induced mutagenesis are tightly regulated and comprise a universal adaptive response to environmental stress in cellular life forms. Stress-induced mutagenesis can be construed as a quasi-Lamarckian phenomenon because the induced genomic changes, although random, are triggered by environmental factors and are beneficial to the organism. Conclusion Both Darwinian and Lamarckian modalities of evolution appear to be important, and reflect different aspects of the interaction between populations and the environment. Reviewers this article was reviewed by Juergen Brosius, Valerian Dolja, and Martijn Huynen. For complete reports, see the Reviewers' reports section.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|