1
|
Suissa JS, Smith M. The evolution of reproductive leaf dimorphism in two globally distributed fern families is neither stepwise nor irreversible, unless further specialization evolves. Evolution 2025; 79:164-175. [PMID: 39487977 DOI: 10.1093/evolut/qpae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
A contemporary interpretation of Dollo's Law states that the evolution of a specialized structure is irreversible. Among land plants, reproductive specialization shows a trend toward increasing complexity without reversion, raising questions about evolutionary steps and the irreversibility of reproductive complexity. Ferns exhibit varied reproductive strategies; some are dimorphic (producing separate leaves for photosynthesis and reproduction), while others are monomorphic (where one leaf is used for both photosynthesis and spore dispersal). This diversity provides an opportunity to examine the applicability of Dollo's Law in the evolution of reproductive leaf specialization. We analyzed 118 species in Blechnaceae and Onocleaceae, applying quantitative morphometrics and phylogenetic comparative methods to test the pillars of a modernized interpretation of Dollo's Law. The evolution of dimorphism in Blechnaceae is neither stepwise nor irreversible, with direct transitions from monomorphism to dimorphism, including several reversions. In contrast, Onocleaceae exhibits an irreversibility to monomorphism only upon further specialization of fertile leaves for humidity-driven spore dispersal; this suggests that additional specialization, not dimorphism alone, may facilitate irreversibility. These results provide insight into the canalization of fertile-sterile leaf dimorphism in seed plants, where the addition of traits like heterospory and integuments lead to further specialization and potential irreversibility. These findings suggest that as new specialized traits evolve alongside preexisting ones, reversion may become increasingly unlikely.
Collapse
Affiliation(s)
- Jacob S Suissa
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Makaleh Smith
- Environmental Studies Program, The New School, New York, NY, USA
| |
Collapse
|
2
|
Parker J. Organ Evolution: Emergence of Multicellular Function. Annu Rev Cell Dev Biol 2024; 40:51-74. [PMID: 38960448 DOI: 10.1146/annurev-cellbio-111822-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate, producing emergent biological functions. How organs originate is a fundamental evolutionary problem that has eluded deep mechanistic and conceptual understanding. Here I propose a cell- to organ-level transitions framework, whereby cooperative division of labor originates and becomes entrenched between cell types through a process of functional niche creation, cell-type subfunctionalization, and irreversible ratcheting of cell interdependencies. Comprehending this transition hinges on explaining how these processes unfold molecularly in evolving populations. Recent single-cell transcriptomic studies and analyses of terminal fate specification indicate that cellular functions are conferred by modular gene expression programs. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. Tracing gene expression program evolution at the level of single cells in populations may reveal transitions toward organ complexity.
Collapse
Affiliation(s)
- Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA;
| |
Collapse
|
3
|
Zhang G, Yang J, Zhang C, Jiao B, Panero JL, Cai J, Zhang ZR, Gao LM, Gao T, Ma H. Nuclear phylogenomics of Asteraceae with increased sampling provides new insights into convergent morphological and molecular evolution. PLANT COMMUNICATIONS 2024; 5:100851. [PMID: 38409784 PMCID: PMC11211554 DOI: 10.1016/j.xplc.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Convergent morphological evolution is widespread in flowering plants, and understanding this phenomenon relies on well-resolved phylogenies. Nuclear phylogenetic reconstruction using transcriptome datasets has been successful in various angiosperm groups, but it is limited to taxa with available fresh materials. Asteraceae, which are one of the two largest angiosperm families and are important for both ecosystems and human livelihood, show multiple examples of convergent evolution. Nuclear Asteraceae phylogenies have resolved relationships among most subfamilies and many tribes, but many phylogenetic and evolutionary questions regarding subtribes and genera remain, owing to limited sampling. Here, we increased the sampling for Asteraceae phylogenetic reconstruction using transcriptomes and genome-skimming datasets and produced nuclear phylogenetic trees with 706 species representing two-thirds of recognized subtribes. Ancestral character reconstruction supports multiple convergent evolutionary events in Asteraceae, with gains and losses of bilateral floral symmetry correlated with diversification of some subfamilies and smaller groups, respectively. Presence of the calyx-related pappus may have been especially important for the success of some subtribes and genera. Molecular evolutionary analyses support the likely contribution of duplications of MADS-box and TCP floral regulatory genes to innovations in floral morphology, including capitulum inflorescences and bilaterally symmetric flowers, potentially promoting the diversification of Asteraceae. Subsequent divergences and reductions in CYC2 gene expression are related to the gain and loss of zygomorphic flowers. This phylogenomic work with greater taxon sampling through inclusion of genome-skimming datasets reveals the feasibility of expanded evolutionary analyses using DNA samples for understanding convergent evolution.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA; State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Caifei Zhang
- Wuhan Botanical Garden and Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bohan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - José L Panero
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi-Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Lijiang National Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan 674100, China.
| | - Tiangang Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hong Ma
- Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA.
| |
Collapse
|
4
|
Huang W, Xu B, Guo W, Huang Z, Li Y, Wu W. De novo genome assembly and population genomics of a shrub tree Barthea barthei (Hance) krass provide insights into the adaptive color variations. FRONTIERS IN PLANT SCIENCE 2024; 15:1365686. [PMID: 38751846 PMCID: PMC11094225 DOI: 10.3389/fpls.2024.1365686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Flower color is a classic example of an ecologically important trait under selection in plants. Understanding the genetic mechanisms underlying shifts in flower color can provide key insights into ecological speciation. In this study, we investigated the genetic basis of flower color divergence in Barthea barthei, a shrub tree species exhibiting natural variation in flower color. We assembled a high-quality genome assembly for B. barthei with a contig N50 of 2.39 Mb and a scaffold N50 of 16.21 Mb. The assembly was annotated with 46,430 protein-coding genes and 1,560 non-coding RNAs. Genome synteny analysis revealed two recent tetraploidization events in B. barthei, estimated to have occurred at approximately 17 and 63 million years ago. These tetraploidization events resulted in massive duplicated gene content, with over 70% of genes retained in collinear blocks. Gene family members of the core regulators of the MBW complex were significantly expanded in B. barthei compared to Arabidopsis, suggesting that these duplications may have provided raw genetic material for the evolution of novel regulatory interactions and the diversification of anthocyanin pigmentation. Transcriptome profiling of B. barthei flowers revealed differential expression of 9 transcription factors related to anthocyanin biosynthesis between the two ecotypes. Six of these differentially expressed transcription factors were identified as high-confidence candidates for adaptive evolution based on positive selection signals. This study provides insights into the genetic basis of flower color divergence and the evolutionary mechanisms underlying ecological adaptation in plants.
Collapse
Affiliation(s)
- Weicheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zecheng Huang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
5
|
Gonçalves BCF, Mansano VDF, de Moraes RS, Paulino JV. Comparative floral development in Mimosa (Fabaceae: Caesalpinioideae) brings new insights into merism lability in the mimosoid clade. JOURNAL OF PLANT RESEARCH 2024; 137:215-240. [PMID: 38070055 DOI: 10.1007/s10265-023-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/29/2023] [Indexed: 02/28/2024]
Abstract
The genus Mimosa L. (Leguminosae; Caesalpinioideae; mimosoid clade), comprising more than 500 species, is an intriguing genus because, like other members of the mimosoid clade, it presents an enormous variation in floral characteristics and high merism lability. Thus, this study aimed to elucidate the floral development and identify which ontogenetic pathways give rise to merism variation and andromonoecy in Mimosa caesalpiniifolia, M. pudica, M. bimucronata, and M. candollei. Floral buds at various stages of development and flowers were collected, fixed, and processed for surface analysis (SEM). The development of the buds is synchronous in the inflorescences. Sepals appear simultaneously as individualized primordia in M. caesalpiniifolia and in reversed unidirectional order in M. bimucronata, with union and formation of an early ring-like calyx. Petal primordia appear in unidirectional order, with a noticeably elliptical shape in M. caesalpiniifolia. The wide merism variation in Mimosa results from the absence of organs from inception in the perianth and androecium whorls: in dimerous, trimerous, or tetramerous flowers, the additional organs primordia to compose the expected pentamerous flowers are not initiated. The haplostemonous androecium of M. pudica results from the absence of antepetalous stamens from inception. In the case of intraspecific variations (instabilities), there is no initiation and subsequent abortion of organs in the events of reduction in merosity. In addition, extra primordia are initiated in supernumerary cases. On the other hand, staminate flowers originate from the abortion of the carpel. Mimosa proved to be an excellent model for studying merism variation. The lability is associated with actinomorphic and rather congested flowers in the inflorescences. Our data, in association with others of previous studies, suggest that the high lability in merism appeared in clades that diverged later in the mimosoid clade. Thus, phylogenetic reconstruction studies are needed for more robust evolutionary inferences. The present investigation of ontogenetic processes was relevant to expand our understanding of floral evolution in the genus Mimosa and shed light on the unstable merism in the mimosoid clade.
Collapse
Affiliation(s)
- Bruno Cesar Ferreira Gonçalves
- Programa de Pós-Graduação em Botânica da Escola Nacional de Botânica Tropical - JBRJ, Rua Pacheco Leão, 2040 - Solar da Imperatriz - Horto, Rio de Janeiro, 22460-03, Brazil
| | - Vidal de Freitas Mansano
- Programa de Pós-Graduação em Botânica da Escola Nacional de Botânica Tropical - JBRJ, Rua Pacheco Leão, 2040 - Solar da Imperatriz - Horto, Rio de Janeiro, 22460-03, Brazil
- DIPEQ, Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro, Rua Pacheco Leão 915, Rio de Janeiro, RJ, 22460-030, Brazil
| | - Renan Siqueira de Moraes
- Departamento de Produtos Naturais E Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil
| | - Juliana Villela Paulino
- Programa de Pós-Graduação em Botânica da Escola Nacional de Botânica Tropical - JBRJ, Rua Pacheco Leão, 2040 - Solar da Imperatriz - Horto, Rio de Janeiro, 22460-03, Brazil.
- Departamento de Produtos Naturais E Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
6
|
Feng YY, Du H, Huang KY, Ran JH, Wang XQ. Reciprocal expression of MADS-box genes and DNA methylation reconfiguration initiate bisexual cones in spruce. Commun Biol 2024; 7:114. [PMID: 38242964 PMCID: PMC10799047 DOI: 10.1038/s42003-024-05786-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model. GGM7 could be essential for initiating bisexual cones. DNA methylation reconfiguration in bisexual cones affects the expression of key genes in cone development, including PcDAL12, PcDAL10, PcNEEDLY, and PcHDG5. Auxin likely plays an important role in the development of female structures of bisexual cones. This study unveils the potential mechanisms responsible for bisexual cone formation in conifers and may shed light on the evolution of bisexuality.
Collapse
Affiliation(s)
- Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
MacNeill BN, Ortiz-Brunel JP, Rodríguez A, Ruiz-Sánchez E, Navarro-Moreno J, Hofford NP, McKain MR. Floral Diversity and Pollination Syndromes in Agave subgenus Manfreda. Integr Comp Biol 2023; 63:1376-1390. [PMID: 37673672 DOI: 10.1093/icb/icad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
The genus Agave is an ecological keystone of American deserts and both culturally and economically important in Mexico. Agave is a large genus of about 250 species. The radiation of Agave is marked by an initial adaptation to desert environments and then a secondary diversification of species associated with pollinator groups, such as hummingbirds and nocturnal moths. Phylogenetic analyses place Agave subgenus Manfreda, or the "herbaceous agaves," in a monophyletic clade that likely evolved in part as an adaptation to novel pollination vectors. Here, we present a morphological and observational study assessing the evolution of floral form in response to pollinator specialization within this understudied group. We found significant visitation by hummingbirds and nocturnal moths to several species within the Agave subgenus Manfreda. These observations also align with our morphological analyses of floral organs and support the evolution of distinct pollination syndromes. We found that not all floral morphology is consistent within a pollination syndrome, suggesting hidden diversity in the evolution of floral phenotypes in Agave. We also characterize the morphological variation between herbarium and live specimens, demonstrating that special consideration needs to be made when combining these types of data. This work identifies the potential for studying the functional evolution of diverse floral forms within Agave and demonstrates the need to further explore ecological and evolutionary relationships to understand pollinator influence on diversification in the genus.
Collapse
Affiliation(s)
- Bryan N MacNeill
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | | | - Aarón Rodríguez
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Eduardo Ruiz-Sánchez
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Jesús Navarro-Moreno
- Department of Botany and Zoology, University of Guadalajara, Zapopan, Jal. 45200 , Mexico
| | - Nathaniel P Hofford
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
8
|
Liu H, Li J, Gong P, He C. The origin and evolution of carpels and fruits from an evo-devo perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:283-298. [PMID: 36031801 DOI: 10.1111/jipb.13351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity. The carpel is integral to a flower and develops into fruits after fertilization, while the perianth, consisting of the calyx and corolla, is decorative to facilitate pollination and protect the internal organs, including the carpels and stamens. Therefore, the nature of flower origin is carpel and stamen origin, which represents one of the greatest and fundamental unresolved issues in plant evolutionary biology. Here, we briefly summarize the main progress and key genes identified for understanding floral development, focusing on the origin and development of the carpels. Floral ABC models have played pioneering roles in elucidating flower development, but remain insufficient for resolving flower and carpel origin. The genetic basis for carpel origin and subsequent diversification leading to fruit diversity also remains elusive. Based on current research progress and technological advances, simplified floral models and integrative evolutionary-developmental (evo-devo) strategies are proposed for elucidating the genetics of carpel origin and fruit evolution. Stepwise birth of a few master regulatory genes and subsequent functional diversification might play a pivotal role in these evolutionary processes. Among the identified transcription factors, AGAMOUS (AG) and CRABS CLAW (CRC) may be the two core regulatory genes for carpel origin as they determine carpel organ identity, determinacy, and functionality. Therefore, a comparative identification of their protein-protein interactions and downstream target genes between flowering and non-flowering plants from an evo-devo perspective may be primary projects for elucidating carpel origin and development.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
9
|
Choi IS, Cardoso D, de Queiroz LP, de Lima HC, Lee C, Ruhlman TA, Jansen RK, Wojciechowski MF. Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 13:823190. [PMID: 35283880 PMCID: PMC8905342 DOI: 10.3389/fpls.2022.823190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Comprising 501 genera and around 14,000 species, Papilionoideae is not only the largest subfamily of Fabaceae (Leguminosae; legumes), but also one of the most extraordinarily diverse clades among angiosperms. Papilionoids are a major source of food and forage, are ecologically successful in all major biomes, and display dramatic variation in both floral architecture and plastid genome (plastome) structure. Plastid DNA-based phylogenetic analyses have greatly improved our understanding of relationships among the major groups of Papilionoideae, yet the backbone of the subfamily phylogeny remains unresolved. In this study, we sequenced and assembled 39 new plastomes that are covering key genera representing the morphological diversity in the subfamily. From 244 total taxa, we produced eight datasets for maximum likelihood (ML) analyses based on entire plastomes and/or concatenated sequences of 77 protein-coding sequences (CDS) and two datasets for multispecies coalescent (MSC) analyses based on individual gene trees. We additionally produced a combined nucleotide dataset comprising CDS plus matK gene sequences only, in which most papilionoid genera were sampled. A ML tree based on the entire plastome maximally supported all of the deep and most recent divergences of papilionoids (223 out of 236 nodes). The Swartzieae, ADA (Angylocalyceae, Dipterygeae, and Amburaneae), Cladrastis, Andira, and Exostyleae clades formed a grade to the remainder of the Papilionoideae, concordant with nine ML and two MSC trees. Phylogenetic relationships among the remaining five papilionoid lineages (Vataireoid, Dermatophyllum, Genistoid s.l., Dalbergioid s.l., and Baphieae + Non-Protein Amino Acid Accumulating or NPAAA clade) remained uncertain, because of insufficient support and/or conflicting relationships among trees. Our study fully resolved most of the deep nodes of Papilionoideae, however, some relationships require further exploration. More genome-scale data and rigorous analyses are needed to disentangle phylogenetic relationships among the five remaining lineages.
Collapse
Affiliation(s)
- In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Domingos Cardoso
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Luciano P. de Queiroz
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Haroldo C. de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | |
Collapse
|
10
|
Jabbour F, Espinosa F, Dejonghe Q, Le Péchon T. Development and Evolution of Unisexual Flowers: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020155. [PMID: 35050043 PMCID: PMC8780417 DOI: 10.3390/plants11020155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/12/2023]
Abstract
The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and chromosomal bases of unisexuality. We review here such developmental studies, aiming at characterizing the diversity of ontogenic pathways leading to functionally unisexual flowers. In addition, we present for the first time and in a two-dimensional morphospace a quantitative description of the developmental rate of the sexual organs in functionally unisexual flowers, in a non-exhaustive sampling of angiosperms with contrasted floral morphologies. Eventually, recommendations are provided to help plant evo-devo researchers and botanists addressing macroevolutionary and ecological issues to more precisely select the taxa, the biological material, or the developmental stages to be investigated.
Collapse
Affiliation(s)
- Florian Jabbour
- Institut de Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, 75005 Paris, France;
| | - Felipe Espinosa
- Independent Researcher, Carrera 13 # 113-24, Bogotá 110111, Colombia;
| | - Quentin Dejonghe
- Institut de Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, 75005 Paris, France;
| | - Timothée Le Péchon
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium;
- Fédération Wallonie-Bruxelles, Service Général de l’Enseignement Supérieur et de la Recherche Scientifique, Rue A. Lavalée, 1, 1080 Brussels, Belgium
| |
Collapse
|
11
|
Gonçalves B. Case not closed: the mystery of the origin of the carpel. EvoDevo 2021; 12:14. [PMID: 34911578 PMCID: PMC8672599 DOI: 10.1186/s13227-021-00184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
The carpel is a fascinating structure that plays a critical role in flowering plant reproduction and contributed greatly to the evolutionary success and diversification of flowering plants. The remarkable feature of the carpel is that it is a closed structure that envelopes the ovules and after fertilization develops into the fruit which protects, helps disperse, and supports seed development into a new plant. Nearly all plant-based foods are either derived from a flowering plant or are a direct product of the carpel. Given its importance it's no surprise that plant and evolutionary biologists have been trying to explain the origin of the carpel for a long time. Before carpel evolution seeds were produced on open leaf-like structures that are exposed to the environment. When the carpel evolved in the stem lineage of flowering plants, seeds became protected within its closed structure. The evolutionary transition from that open precursor to the closed carpel remains one of the greatest mysteries of plant evolution. In recent years, we have begun to complete a picture of what the first carpels might have looked like. On the other hand, there are still many gaps in our understanding of what the precursor of the carpel looked like and what changes to its developmental mechanisms allowed for this evolutionary transition. This review aims to present an overview of existing theories of carpel evolution with a particular emphasis on those that account for the structures that preceded the carpel and/or present testable developmental hypotheses. In the second part insights from the development and evolution of diverse plant organs are gathered to build a developmental hypothesis for the evolutionary transition from a hypothesized laminar open structure to the closed structure of the carpel.
Collapse
|
12
|
Sharma V, Clark AJ, Kawashima T. Insights into the molecular evolution of fertilization mechanism in land plants. PLANT REPRODUCTION 2021; 34:353-364. [PMID: 34061252 DOI: 10.1007/s00497-021-00414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/14/2021] [Indexed: 05/27/2023]
Abstract
Comparative genetics and genomics among green plants, including algae, provide deep insights into the evolution of land plant sexual reproduction. Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Anthony J Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
13
|
Jiang Y, Liu G, Zhang W, Zhang C, Chen X, Chen Y, Yu C, Yu D, Fu J, Chen F. Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoriacruziana. PHYTOCHEMISTRY 2021; 191:112899. [PMID: 34481346 DOI: 10.1016/j.phytochem.2021.112899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Among the factors that have made flowering plants the most species-rich lineage of land plants is the interaction between flower and insect pollinators, for which floral scent plays a pivotal role. Water lilies belong to the ANA (Amborellales, Nymphaeales, and Austrobaileyales) grade of basal flowering plants. In this study, Victoria cruziana was investigated as a model night-blooming water lily for floral scent biosynthesis. Four volatile compounds, including three benzenoids and one fatty acid methyl ester methyl hexanoate, were detected from the flowers of V. cruziana during their first bloom, with methyl hexanoate accounting for 45 % of total floral volatile emission. Emission rates were largely constant before significant drop starting at the end of second bloom. To understand the molecular basis of floral scent biosynthesis in V. cruziana, particularly methyl hexanoate, a transcriptome from the whole flowers at the full-bloom stage was created and analyzed. Methyl hexanoate was hypothesized to be biosynthesized by SABATH methyltransferases. From the transcriptome, three full-length SABATH genes designated VcSABATH1-3 were identified. A full-length cDNA for each of the three VcSABATH genes was expressed in Escherichia coli to produce recombinant proteins. When tested in in vitro methyltransferase enzyme assays with different fatty acids, both VcSABATH1 and VcSABATH3 exhibited highest levels of activity with hexanoic acid to produce methyl hexanoate, with the specific activity of VcSABATH1 being about 15 % of that for VcSABATH3. VcSABATH1 and VcSABATH3 showed the highest levels of expression in stamen and pistil, respectively. In phylogenetic analysis, three VcSABATH genes clustered with other water lily SABATH methyltransferase genes including the one known for making other fatty acid methyl esters, implying both a common evolutionary origin and functional divergence. Fatty acid methyl esters are not frequent constituents of floral scents of mesangiosperms, pointing to the importance for the evolution of novel fatty acid methyltransferase for making fatty acid methyl esters in the pollination biology of water lilies.
Collapse
Affiliation(s)
- Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yuchu Chen
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
14
|
Julca I, Ferrari C, Flores-Tornero M, Proost S, Lindner AC, Hackenberg D, Steinbachová L, Michaelidis C, Gomes Pereira S, Misra CS, Kawashima T, Borg M, Berger F, Goldberg J, Johnson M, Honys D, Twell D, Sprunck S, Dresselhaus T, Becker JD, Mutwil M. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. NATURE PLANTS 2021; 7:1143-1159. [PMID: 34253868 DOI: 10.1101/2020.10.29.361501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/02/2021] [Indexed: 05/19/2023]
Abstract
The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Camilla Ferrari
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sebastian Proost
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | | | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, UK
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Christos Michaelidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Chandra Shekhar Misra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Mark Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
15
|
Julca I, Ferrari C, Flores-Tornero M, Proost S, Lindner AC, Hackenberg D, Steinbachová L, Michaelidis C, Gomes Pereira S, Misra CS, Kawashima T, Borg M, Berger F, Goldberg J, Johnson M, Honys D, Twell D, Sprunck S, Dresselhaus T, Becker JD, Mutwil M. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. NATURE PLANTS 2021; 7:1143-1159. [PMID: 34253868 DOI: 10.1038/s41477-021-00958-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Camilla Ferrari
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sebastian Proost
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | | | - Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, UK
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Christos Michaelidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Chandra Shekhar Misra
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomokazu Kawashima
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna, BioCenter (VBC), Vienna, Austria
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Mark Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Luo J, Li R, Xu X, Niu H, Zhang Y, Wang C. SMRT and Illumina RNA Sequencing and Characterization of a Key NAC Gene LoNAC29 during the Flower Senescence in Lilium oriental 'Siberia'. Genes (Basel) 2021; 12:genes12060869. [PMID: 34204040 PMCID: PMC8227295 DOI: 10.3390/genes12060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
Lily (Lilium spp.) is an important cut flower around the world. Flower senescence in lilies is characterized by the wilting and abscission of tepals, which results in a decrease in flower quality and huge economic loss. However, the mechanism underlying flower senescence in lilies is largely unknown. In this study, single-molecule, real-time (SMRT) and Illumina sequencing were carried out in L. oriental ‘Siberia’. Sequencing yielded 73,218 non-redundant transcripts, with an N50 of 3792 bp. These data were further integrated with three published transcriptomes through cogent analysis, which yielded 62,960 transcripts, with an increase in N50 of 3935 bp. Analysis of differentially expressed genes showed that 319 transcription factors were highly upregulated during flower senescence. The expression of twelve NAC genes and eleven senescence-associated genes (SAGs) showed that LoNAC29 and LoSAG39 were highly expressed in senescent flowers. Transient overexpression of LoNAC29 and LoSAG39 in tepals of lily notably accelerated flower senescence, and the promoter activity of LoSAG39 was strongly induced by LoNAC29. This work supported new evidence for the molecular mechanism of flower senescence and provided better sequence data for further study in lilies.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Ruirui Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Xintong Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Hairui Niu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Yujie Zhang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (R.L.); (X.X.); (H.N.); (Y.Z.)
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87282010
| |
Collapse
|
17
|
CmNAC73 Mediates the Formation of Green Color in Chrysanthemum Flowers by Directly Activating the Expression of Chlorophyll Biosynthesis Genes HEMA1 and CRD1. Genes (Basel) 2021; 12:genes12050704. [PMID: 34066887 PMCID: PMC8151904 DOI: 10.3390/genes12050704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysanthemum is one of the most beautiful and popular flowers in the world, and the flower color is an important ornamental trait of chrysanthemum. Compared with other flower colors, green flowers are relatively rare. The formation of green flower color is attributed to the accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum morifolium cultivars ‘Chunxiao’ and ‘Green anna’, which produce white, light green and dark green flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpression in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73 directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus, this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1 and CRD1 by CmNAC73 and provides new insights into the development of green flower color in chrysanthemum and chlorophyll metabolism in plants.
Collapse
|
18
|
Lovo J, Alcantara S, Vasconcelos TNC, Sajo MDG, Rudall PJ, Prenner G, Aguiar AJC, Mello-Silva R. Evolutionary lability in floral ontogeny affects pollination biology in Trimezieae. AMERICAN JOURNAL OF BOTANY 2021; 108:828-843. [PMID: 34019302 DOI: 10.1002/ajb2.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE There is little direct evidence linking floral development and pollination biology in plants. We characterize both aspects in plain and ornamented flowers of Trimezieae (Iridaceae) to investigate how changes in floral ontogeny may affect their interactions with pollinators through time. METHODS We examined floral ontogeny in 11 species and documented pollination biology in five species displaying a wide range of floral morphologies. We coded and reconstructed ancestral states of flower types over the tribal phylogeny to estimate the frequency of transition between different floral types. RESULTS All Trimezieae flowers are similar in early floral development, but ornamented flowers have additional ontogenetic steps compared with plain flowers, indicating heterochrony. Ornamented flowers have a hinge pollination mechanism (newly described here) and attract more pollinator guilds, while plain flowers offer less variety of resources for a shorter time. Although the ornamented condition is plesiomorphic in this clade, shifts to plain flowers have occurred frequently and abruptly during the past 5 million years, with some subsequent reversals. CONCLUSIONS Heterochrony has resulted in labile morphological changes during flower evolution in Trimezieae. Counterintuitively, species with plain flowers, which are endemic to the campo rupestre, are derived within the tribe and show a higher specialization than the ornamented species, with the former being visited by pollen-collecting bees only.
Collapse
Affiliation(s)
- Juliana Lovo
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Caixa Postal 5065, Cidade Universitária, João Pessoa, PB, 58051-970, Brazil
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Suzana Alcantara
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thais N C Vasconcelos
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | | | - Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Gerhard Prenner
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Antônio J C Aguiar
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Renato Mello-Silva
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
19
|
On the waiting time until coordinated mutations get fixed in regulatory sequences. J Theor Biol 2021; 524:110657. [PMID: 33675769 DOI: 10.1016/j.jtbi.2021.110657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022]
Abstract
In this paper we consider the time evolution of a population of size N with overlapping generations, in the vicinity of m genes. We assume that this population is subject to point mutations, genetic drift, and selection. More specifically, we analyze the statistical distribution of the waiting time Tm until the expression of these genes have changed for all individuals, when transcription factors recognize and attach to short DNA-sequences (binding sites) within regulatory sequences in the neighborhoods of the m genes. The evolutionary dynamics is described by a multitype Moran process, where each individual is assigned a m×L regulatory array that consists of regulatory sequences with L nucleotides for all m genes. We study how the waiting time distribution depends on the number of genes, the mutation rate, the length of the binding sites, the length of the regulatory sequences, and the way in which the targeted binding sites are coordinated for different genes in terms of selection coefficients. These selection coefficients depend on how many binding sites have appeared so far, and possibly on their order of appearance. We also allow for back mutations, whereby some acquired binding sites may be lost over time. It is further assumed that the mutation rate is small enough to warrant a fixed state population, so that all individuals have the same regulatory array, at any given time point, until the next successful mutation arrives in some individual and spreads to the rest of the population. We further incorporate stochastic tunneling, whereby successful mutations get mutated before their fixation. A crucial part of our approach is to divide the huge state space of regulatory arrays into a small number of components, assuming that the array component varies as a Markov process over time. This implies that Tm is the time until this Markov process hits an absorbing state, with a phase-type distribution. A number of interesting results can be derived from our general setup, for instance that the expected waiting time increases exponentially with m, for a selectively neutral model, when back-mutations are possible.
Collapse
|
20
|
Meade LE, Plackett ARG, Hilton J. Reconstructing development of the earliest seed integuments raises a new hypothesis for the evolution of ancestral seed-bearing structures. THE NEW PHYTOLOGIST 2021; 229:1782-1794. [PMID: 32639670 DOI: 10.1111/nph.16792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
How plant seeds originated remains unresolved, in part due to disconnects between fossil intermediates and developmental genetics in extant species. The Carboniferous fossil Genomosperma is considered among the most primitive known seeds, with highly lobed integument and exposed nucellus. We have used this key fossil taxon to investigate the evolutionary origins of seed development. We examined sectioned Genomosperma specimens using modern digital 3D reconstruction techniques and established population-level measurements of Genomosperma ovules for quantitative analysis. Genomosperma ovules show significant variation in integumentary lobe fusion and curvature. Our analysis suggests that this variation represents a single species with significant variations in lobe number and fusion, reminiscent of floral development in extant species. We conclude that changes in lobe flexure occurred late in development, consistent with a previously hypothesized function in pollen guidance/retention. We also identify seeds of Genomosperma within cupules for the first time. The presence of a cupule adds evidence towards the plesiomorphy of cupules within seed plants. Together with the similarities identified between the Genomosperma lobed integument and floral organs, we propose that the cupule, integument and nucellus together developed in a shoot-like fashion, potentially ancestral to extant seed plant reproductive shoots.
Collapse
Affiliation(s)
- Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R G Plackett
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jason Hilton
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
Dellinger AS. Pollination syndromes in the 21 st century: where do we stand and where may we go? THE NEW PHYTOLOGIST 2020; 228:1193-1213. [PMID: 33460152 DOI: 10.1111/nph.16793] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/31/2020] [Indexed: 06/12/2023]
Abstract
Pollination syndromes, recurring suites of floral traits appearing in connection with specific functional pollinator groups, have served for decades to organise floral diversity under a functional-ecological perspective. Some potential caveats, such as over-simplification of complex plant-animal interactions or lack of empirical observations, have been identified and discussed in recent years. Which of these caveats do indeed cause problems, which have been solved and where do future possibilities lie? I address these questions in a review of the pollination-syndrome literature of 2010 to 2019. I show that the majority of studies was based on detailed empirical pollinator observations and could reliably predict pollinators based on a few floral traits such as colour, shape or reward. Some traits (i.e. colour) were less reliable in predicting pollinators than others (i.e. reward, corolla width), however. I stress that future studies should consider floral traits beyond those traditionally recorded to expand our understanding of mechanisms of floral evolution. I discuss statistical methods suitable for objectively analysing the interplay of system-specific evolutionary constraints, pollinator-mediated selection and adaptive trade-offs at microecological and macroecological scales. I exemplify my arguments on an empirical dataset of floral traits of a neotropical plant radiation in the family Melastomataceae.
Collapse
|
22
|
Sokoloff DD, Remizowa MV, El ES, Rudall PJ, Bateman RM. Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature. THE NEW PHYTOLOGIST 2020; 228:420-426. [PMID: 31418869 DOI: 10.1111/nph.15974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Dmitry D Sokoloff
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Margarita V Remizowa
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena S El
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | |
Collapse
|
23
|
Phillips HR, Landis JB, Specht CD. Revisiting floral fusion: the evolution and molecular basis of a developmental innovation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3390-3404. [PMID: 32152629 DOI: 10.1093/jxb/eraa125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Throughout the evolution of the angiosperm flower, developmental innovations have enabled the modification or elaboration of novel floral organs enabling subsequent diversification and expansion into new niches, for example the formation of novel pollinator relationships. One such developmental innovation is the fusion of various floral organs to form complex structures. Multiple types of floral fusion exist; each type may be the result of different developmental processes and is likely to have evolved multiple times independently across the angiosperm tree of life. The development of fused organs is thought to be mediated by the NAM/CUC3 subfamily of NAC transcription factors, which mediate boundary formation during meristematic development. The goal of this review is to (i) introduce the development of fused floral organs as a key 'developmental innovation', facilitated by a change in the expression of NAM/CUC3 transcription factors; (ii) provide a comprehensive overview of floral fusion phenotypes amongst the angiosperms, defining well-known fusion phenotypes and applying them to a systematic context; and (iii) summarize the current molecular knowledge of this phenomenon, highlighting the evolution of the NAM/CUC3 subfamily of transcription factors implicated in the development of fused organs. The need for a network-based analysis of fusion is discussed, and a gene regulatory network responsible for directing fusion is proposed to guide future research in this area.
Collapse
Affiliation(s)
- Heather R Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca NY, USA
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca NY, USA
| | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca NY, USA
| |
Collapse
|
24
|
Dowell JA, Reynolds EC, Pliakas TP, Mandel JR, Burke JM, Donovan LA, Mason CM. Genome-Wide Association Mapping of Floral Traits in Cultivated Sunflower (Helianthus annuus). J Hered 2020; 110:275-286. [PMID: 30847479 DOI: 10.1093/jhered/esz013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Floral morphology and pigmentation are both charismatic and economically relevant traits associated with cultivated sunflower (Helianthus annuus L.). Recent work has linked floral morphology and pigmentation to pollinator efficiency and seed yield. Understanding the genetic architecture of such traits is essential for crop improvement, and gives insight into the role of genetic constraints in shaping floral diversity. A diversity panel of 288 sunflower genotypes was phenotyped for a variety of morphological, phenological, and color traits in both a greenhouse and a field setting. Association mapping was performed using 5788 SNP markers using a mixed linear model approach. Several dozen markers across 10 linkage groups were significantly associated with variation in morphological and color trait variation. Substantial trait plasticity was observed between greenhouse and field phenotyping, and associations differed between environments. Color traits mapped more strongly than morphology in both settings, with markers together explaining 16% of petal carotenoid content in the greenhouse, and 17% and 24% of variation in disc anthocyanin presence in the field and greenhouse, respectively. Morphological traits like disc size mapped more strongly in the field, with markers together explaining up to 19% of disc size variation. Loci identified here through association mapping within cultivated germplasm differ from those identified through biparental crosses between modern cultivated sunflower and either its wild progenitor or domesticated landraces. Several loci lie within genomic regions involved in domestication. Differences between phenotype expression under greenhouse and field conditions highlight the importance of plasticity in determining floral morphology and pigmentation.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL
| | - Erin C Reynolds
- Department of Plant Biology, University of Georgia, Athens, GA
| | | | - Jennifer R Mandel
- Department of Biological Sciences, University of Memphis, Memphis, TN
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL.,Department of Plant Biology, University of Georgia, Athens, GA.,Arnold Arboretum, Harvard University, Boston, MA
| |
Collapse
|
25
|
Dong Y, Liu J, Li PW, Li CQ, Lü TF, Yang X, Wang YZ. Evolution of Darwin's Peloric Gloxinia (Sinningia speciosa) Is Caused by a Null Mutation in a Pleiotropic TCP Gene. Mol Biol Evol 2019; 35:1901-1915. [PMID: 29718509 PMCID: PMC6063280 DOI: 10.1093/molbev/msy090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unlike most crops, which were domesticated through long periods of selection by ancient humans, horticultural plants were primarily domesticated through intentional selection over short time periods. The molecular mechanisms underlying the origin and spread of novel traits in the domestication process have remained largely unexplored in horticultural plants. Gloxinia (Sinningia speciosa), whose attractive peloric flowers influenced the thoughts of Darwin, have been cultivated since the early 19th century, but its origin and genetic basis are currently unknown. By employing multiple experimental approaches including genetic analysis, genotype-phenotype associations, gene expression analysis, and functional interrogations, we showed that a single gene encoding a TCP protein, SsCYC, controls both floral orientation and zygomorphy in gloxinia. We revealed that a causal mutation responsible for the development of peloric gloxinia lies in a 10-bp deletion in the coding sequence of SsCYC. By combining genetic inference and literature searches, we have traced the putative ancestor and reconstructed the domestication path of the peloric gloxinia, in which a 10-bp deletion in SsCYC under selection triggered its evolution from the wild progenitor. The results presented here suggest that a simple genetic change in a pleiotropic gene can promote the elaboration of floral organs under intensive selection pressure.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Wei Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao-Qun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Feng Lü
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Rümpler F, Theißen G. Reconstructing the ancestral flower of extant angiosperms: the 'war of the whorls' is heating up. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2615-2622. [PMID: 30870567 DOI: 10.1093/jxb/erz106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/28/2019] [Indexed: 05/06/2023]
Abstract
The origin of the angiosperm flower is a long-standing problem of botany and evolutionary biology. One widely accepted milestone towards solving it is the reconstruction of the ancestral flower of extant angiosperms, here termed 'AFEA'. A recent approach employing novel methods gave results that were not anticipated. Most notably the reconstructed phyllotaxis of AFEA soon was criticized and sparked a heated debate in the literature. To better explain, clarify, and perhaps cool the debate, we first summarize the results of previous attempts to reconstruct AFEA and contrast them with the more recent, controversial prediction of its structure. We then outline the major arguments made by contrasting parties in the recent debate. Finally, we discuss two key topics, the molecular mechanism of phyllotaxis and the role of gene regulatory networks during flower development and evolution, that may help to clarify the issue in the intermediate future.
Collapse
Affiliation(s)
- Florian Rümpler
- Friedrich Schiller University Jena, Matthias Schleiden Institute - Genetics, Philosophenweg, Jena, Germany
| | - Günter Theißen
- Friedrich Schiller University Jena, Matthias Schleiden Institute - Genetics, Philosophenweg, Jena, Germany
| |
Collapse
|
27
|
Monniaux M, Pieper B, McKim SM, Routier-Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. eLife 2018; 7:39399. [PMID: 30334736 PMCID: PMC6205810 DOI: 10.7554/elife.39399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023] Open
Abstract
Invariant floral forms are important for reproductive success and robust to natural perturbations. Petal number, for example, is invariant in Arabidopsis thaliana flowers. However, petal number varies in the closely related species Cardamine hirsuta, and the genetic basis for this difference between species is unknown. Here we show that divergence in the pleiotropic floral regulator APETALA1 (AP1) can account for the species-specific difference in petal number robustness. This large effect of AP1 is explained by epistatic interactions: A. thaliana AP1 confers robustness by masking the phenotypic expression of quantitative trait loci controlling petal number in C. hirsuta. We show that C. hirsuta AP1 fails to complement this function of A. thaliana AP1, conferring variable petal number, and that upstream regulatory regions of AP1 contribute to this divergence. Moreover, variable petal number is maintained in C. hirsuta despite sufficient standing genetic variation in natural accessions to produce plants with four-petalled flowers.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah M McKim
- Plant Sciences Department, University of Oxford, Oxford, United Kingdom
| | | | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
28
|
Roddy AB, Simonin KA, McCulloh KA, Brodersen CR, Dawson TE. Water relations of Calycanthus flowers: Hydraulic conductance, capacitance, and embolism resistance. PLANT, CELL & ENVIRONMENT 2018; 41:2250-2262. [PMID: 29603273 DOI: 10.1111/pce.13205] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
For most angiosperms, producing and maintaining flowers is critical to sexual reproduction, yet little is known about the physiological processes involved in maintaining flowers throughout anthesis. Among extant species, flowers of the genus Calycanthus have the highest hydraulic conductance and vein densities of species measured to date, yet they can wilt by late morning under hot conditions. Here, we combine diurnal measurements of gas exchange and water potential, pressure-volume relations, functional responses of gas exchange, and characterization of embolism formation using high resolution X-ray computed microtomography to determine drought responses of Calycanthus flowers. Transpiration from flowers frequently exceeded transpiration from leaves, and flowers were unable to limit transpiration under conditions of high vapour pressure deficit. As a result, they rely heavily on hydraulic capacitance to prevent water potential declines. Despite having high water potentials at turgor loss, flowers were very resistant to embolism formation, with no embolism apparent until tepal water potentials had declined to -2 MPa. Although Calycanthus flowers remain connected to the stem xylem and have high hydraulic capacitance, their inability to curtail transpiration leads to turgor loss. These results suggest that extreme climate events may cause flower failure, potentially preventing successful reproduction.
Collapse
Affiliation(s)
- Adam B Roddy
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Kevin A Simonin
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | | | - Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
29
|
Woźniak NJ, Sicard A. Evolvability of flower geometry: Convergence in pollinator-driven morphological evolution of flowers. Semin Cell Dev Biol 2018; 79:3-15. [DOI: 10.1016/j.semcdb.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
|
30
|
Bartlett ME. Changing MADS-Box Transcription Factor Protein-Protein Interactions as a Mechanism for Generating Floral Morphological Diversity. Integr Comp Biol 2018; 57:1312-1321. [PMID: 28992040 DOI: 10.1093/icb/icx067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flowers display fantastic morphological diversity. Despite extreme variability in form, floral organ identity is specified by a core set of deeply conserved proteins-the floral MADS-box transcription factors. This indicates that while core gene function has been maintained, MADS-box transcription factors have evolved to regulate different downstream genes. Thus, the evolution of gene regulation downstream of the MADS-box transcription factors is likely central to the evolution of floral form. Gene regulation is determined by the combination of transcriptional regulators present at a particular cis-regulatory element at a particular time. Therefore, the interactions between transcription factors can be of profound importance in determining patterns of gene regulation. Here, after a short primer on flowers and floral morphology, I discuss the centrality of protein-protein interactions to MADS-box transcription factor function, and review the evidence that the evolution of MADS-box protein-protein interactions is a key driver in the evolution of gene regulation downstream of the MADS-box genes.
Collapse
Affiliation(s)
- Madelaine E Bartlett
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant St., 374 Morrill 4?S, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Bontinck M, Van Leene J, Gadeyne A, De Rybel B, Eeckhout D, Nelissen H, De Jaeger G. Recent Trends in Plant Protein Complex Analysis in a Developmental Context. FRONTIERS IN PLANT SCIENCE 2018; 9:640. [PMID: 29868093 PMCID: PMC5962756 DOI: 10.3389/fpls.2018.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/26/2018] [Indexed: 05/30/2023]
Abstract
Because virtually all proteins interact with other proteins, studying protein-protein interactions (PPIs) is fundamental in understanding protein function. This is especially true when studying specific developmental processes, in which proteins often make developmental stage- or tissue specific interactions. However, studying these specific PPIs in planta can be challenging. One of the most widely adopted methods to study PPIs in planta is affinity purification coupled to mass spectrometry (AP/MS). Recent developments in the field of mass spectrometry have boosted applications of AP/MS in a developmental context. This review covers two main advancements in the field of affinity purification to study plant developmental processes: increasing the developmental resolution of the harvested tissues and moving from affinity purification to affinity enrichment. Furthermore, we discuss some new affinity purification approaches that have recently emerged and could have a profound impact on the future of protein interactome analysis in plants.
Collapse
Affiliation(s)
- Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Institute for Biotechnology, VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
32
|
Ronse De Craene L. Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. JOURNAL OF PLANT RESEARCH 2018; 131:367-393. [PMID: 29589194 DOI: 10.1007/s10265-018-1021-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/14/2018] [Indexed: 05/26/2023]
Abstract
Flower morphology results from the interaction of an established genetic program, the influence of external forces induced by pollination systems, and physical forces acting before, during and after initiation. Floral ontogeny, as the process of development from a meristem to a fully developed flower, can be approached either from a historical perspective, as a "recapitulation of the phylogeny" mainly explained as a process of genetic mutations through time, or from a physico-dynamic perspective, where time, spatial pressures, and growth processes are determining factors in creating the floral morphospace. The first (historical) perspective clarifies how flower morphology is the result of development over time, where evolutionary changes are only possible using building blocks that are available at a certain stage in the developmental history. Flowers are regulated by genetically determined constraints and development clarifies specific transitions between different floral morphs. These constraints are the result of inherent mutations or are induced by the interaction of flowers with pollinators. The second (physico-dynamic) perspective explains how changes in the physical environment of apical meristems create shifts in ontogeny and this is reflected in the morphospace of flowers. Changes in morphology are mainly induced by shifts in space, caused by the time of initiation (heterochrony), pressure of organs, and alterations of the size of the floral meristem, and these operate independently or in parallel with genetic factors. A number of examples demonstrate this interaction and its importance in the establishment of different floral forms. Both perspectives are complementary and should be considered in the understanding of factors regulating floral development. It is suggested that floral evolution is the result of alternating bursts of physical constraints and genetic stabilization processes following each other in succession. Future research needs to combine these different perspectives in understanding the evolution of floral systems and their diversification.
Collapse
|
33
|
Monniaux M, Vandenbussche M. How to Evolve a Perianth: A Review of Cadastral Mechanisms for Perianth Identity. FRONTIERS IN PLANT SCIENCE 2018; 9:1573. [PMID: 30420867 PMCID: PMC6216099 DOI: 10.3389/fpls.2018.01573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/09/2018] [Indexed: 05/12/2023]
Abstract
The flower of angiosperms is considered to be a major evolutionary innovation that impacted the whole biome. In particular, two properties of the flower are classically linked to its ecological success: bisexuality and a differentiated perianth with sepals and petals. Although the molecular basis for floral organ identity is well understood in extant species and summarized in the famous ABC model, how perianth identity appeared during evolution is still unknown. Here we propose that cadastral mechanisms that maintain reproductive organ identities to the center of the flower could have supported perianth evolution. In particular, repressing B- and C-class genes expression toward the inner whorls of the flower, is a key process to isolate domains with sepal and petal identity in the outer whorls. We review from the literature in model species the diverse regulators that repress B- and C-class genes expression to the center of the flower. This review highlights the existence of both unique and conserved repressors between species, and possible candidates to investigate further in order to shed light on perianth evolution.
Collapse
|
34
|
Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK, Bailes EJ, Barroso de Morais E, Bull-Hereñu K, Carrive L, Chartier M, Chomicki G, Coiro M, Cornette R, El Ottra JHL, Epicoco C, Foster CSP, Jabbour F, Haevermans A, Haevermans T, Hernández R, Little SA, Löfstrand S, Luna JA, Massoni J, Nadot S, Pamperl S, Prieu C, Reyes E, dos Santos P, Schoonderwoerd KM, Sontag S, Soulebeau A, Staedler Y, Tschan GF, Wing-Sze Leung A, Schönenberger J. The ancestral flower of angiosperms and its early diversification. Nat Commun 2017; 8:16047. [PMID: 28763051 PMCID: PMC5543309 DOI: 10.1038/ncomms16047] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/18/2017] [Indexed: 01/05/2023] Open
Abstract
Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms.
Collapse
Affiliation(s)
- Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México City 04510, México
| | - James A. Doyle
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Peter K. Endress
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| | - Emily J. Bailes
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Erica Barroso de Morais
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| | - Kester Bull-Hereñu
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Laetitia Carrive
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Marion Chartier
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Guillaume Chomicki
- Systematic Botany and Mycology, Department of Biology, University of Munich LMU, Munich 80638, Germany
| | - Mario Coiro
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Juliana H. L. El Ottra
- Laboratório de Sistemática Vegetal, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277. Cidade Universitária, São Paulo 05508-090, Brazil
| | - Cyril Epicoco
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Charles S. P. Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Agathe Haevermans
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Thomas Haevermans
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Rebeca Hernández
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México City 04510, México
| | - Stefan A. Little
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Stefan Löfstrand
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Javier A. Luna
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Julien Massoni
- Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Sophie Nadot
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Susanne Pamperl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Charlotte Prieu
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Elisabeth Reyes
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, Orsay 91405, France
| | - Patrícia dos Santos
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Kristel M. Schoonderwoerd
- Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Susanne Sontag
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Anaëlle Soulebeau
- Institut de Systématique, Evolution, Biodiversité, Muséum National d’Histoire Naturelle, UMR 7205 ISYEB MNHN/CNRS/UPMC/EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Yannick Staedler
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Georg F. Tschan
- Department of Plant and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Göteborg 413 19, Sweden
| | - Amy Wing-Sze Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| |
Collapse
|
35
|
Abstract
The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth's biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems,Arabidopsis thalianaandAntirrhinum majus Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of "model clades" for genomic and evolutionary-developmental analyses, instead of the primary use of single "model organisms." We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution.
Collapse
|
36
|
Barth E, Hübler R, Baniahmad A, Marz M. The Evolution of COP9 Signalosome in Unicellular and Multicellular Organisms. Genome Biol Evol 2016; 8:1279-89. [PMID: 27044515 PMCID: PMC4860701 DOI: 10.1093/gbe/evw073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex, recently being crystallized for human. In mammals and plants the COP9 complex consists of nine subunits, CSN 1–8 and CSNAP. The CSN regulates the activity of culling ring E3 ubiquitin and plays central roles in pleiotropy, cell cycle, and defense of pathogens. Despite the interesting and essential functions, a thorough analysis of the CSN subunits in evolutionary comparative perspective is missing. Here we compared 61 eukaryotic genomes including plants, animals, and yeasts genomes and show that the most conserved subunits of eukaryotes among the nine subunits are CSN2 and CSN5. This may indicate a strong evolutionary selection for these two subunits. Despite the strong conservation of the protein sequence, the genomic structures of the intron/exon boundaries indicate no conservation at genomic level. This suggests that the gene structure is exposed to a much less selection compared with the protein sequence. We also show the conservation of important active domains, such as PCI (proteasome lid-CSN-initiation factor) and MPN (MPR1/PAD1 amino-terminal). We identified novel exons and alternative splicing variants for all CSN subunits. This indicates another level of complexity of the CSN. Notably, most COP9-subunits were identified in all multicellular and unicellular eukaryotic organisms analyzed, but not in prokaryotes or archaeas. Thus, genes encoding CSN subunits present in all analyzed eukaryotes indicate the invention of the signalosome at the root of eukaryotes. The identification of alternative splice variants indicates possible “mini-complexes” or COP9 complexes with independent subunits containing potentially novel and not yet identified functions.
Collapse
Affiliation(s)
- Emanuel Barth
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University, Jena, Germany FLI Leibniz Institute for Age Research, Jena, Germany
| | - Ron Hübler
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University, Jena, Germany Institute of Human Genetics, Jena University Hospital, Jena, Germany Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University, Jena, Germany FLI Leibniz Institute for Age Research, Jena, Germany
| |
Collapse
|
37
|
Monniaux M, Pieper B, Hay A. Stochastic variation in Cardamine hirsuta petal number. ANNALS OF BOTANY 2016; 117:881-7. [PMID: 26346720 PMCID: PMC4845797 DOI: 10.1093/aob/mcv131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Floral development is remarkably robust in terms of the identity and number of floral organs in each whorl, whereas vegetative development can be quite plastic. This canalization of flower development prevents the phenotypic expression of cryptic genetic variation, even in fluctuating environments. A cruciform perianth with four petals is a hallmark of the Brassicaceae family, typified in the model species Arabidopsis thaliana However, variable petal loss is found in Cardamine hirsuta, a genetically tractable relative of A. thaliana Cardamine hirsuta petal number varies in response to stochastic, genetic and environmental perturbations, which makes it an interesting model to study mechanisms of decanalization and the expression of cryptic variation. METHODS Multitrait quantitative trait locus (QTL) analysis in recombinant inbred lines (RILs) was used to identify whether the stochastic variation found in C. hirsuta petal number had a genetic basis. KEY RESULTS Stochastic variation (standard error of the average petal number) was found to be a heritable phenotype, and four QTL that influenced this trait were identified. The sensitivity to detect these QTL effects was increased by accounting for the effect of ageing on petal number variation. All QTL had significant effects on both average petal number and its standard error, indicating that these two traits share a common genetic basis. However, for some QTL, a degree of independence was found between the age of the flowers where allelic effects were significant for each trait. CONCLUSIONS Stochastic variation in C. hirsuta petal number has a genetic basis, and common QTL influence both average petal number and its standard error. Allelic variation at these QTL can, therefore, modify petal number in an age-specific manner via effects on the phenotypic mean and stochastic variation. These results are discussed in the context of trait evolution via a loss of robustness.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| |
Collapse
|
38
|
Bartlett M, Thompson B, Brabazon H, Del Gizzi R, Zhang T, Whipple C. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions. Mol Biol Evol 2016; 33:1486-501. [PMID: 26908583 PMCID: PMC4868119 DOI: 10.1093/molbev/msw031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein–protein interactions (PPIs) have widely acknowledged roles in the regulation of development, but few studies have addressed the timing and mechanism of shifting PPIs over evolutionary history. The B-class MADS-box transcription factors, PISTILLATA (PI) and APETALA3 (AP3) are key regulators of floral development. PI-like (PIL) and AP3-like (AP3L) proteins from a number of plants, including Arabidopsis thaliana (Arabidopsis) and the grass Zea mays (maize), bind DNA as obligate heterodimers. However, a PIL protein from the grass relative Joinvillea can bind DNA as a homodimer. To ascertain whether Joinvillea PIL homodimerization is an anomaly or indicative of broader trends, we characterized PIL dimerization across the Poales and uncovered unexpected evolutionary lability. Both obligate B-class heterodimerization and PIL homodimerization have evolved multiple times in the order, by distinct molecular mechanisms. For example, obligate B-class heterodimerization in maize evolved very recently from PIL homodimerization. A single amino acid change, fixed during domestication, is sufficient to toggle one maize PIL protein between homodimerization and obligate heterodimerization. We detected a signature of positive selection acting on residues preferentially clustered in predicted sites of contact between MADS-box monomers and dimers, and in motifs that mediate MADS PPI specificity in Arabidopsis. Changing one positively selected residue can alter PIL dimerization activity. Furthermore, ectopic expression of a Joinvillea PIL homodimer in Arabidopsis can homeotically transform sepals into petals. Our results provide a window into the evolutionary remodeling of PPIs, and show that novel interactions have the potential to alter plant form in a context-dependent manner.
Collapse
Affiliation(s)
- Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst Department of Biology, Brigham Young University
| | | | | | | | - Thompson Zhang
- Department of Biology, University of Massachusetts Amherst
| | | |
Collapse
|
39
|
Niu S, Yuan H, Sun X, Porth I, Li Y, El-Kassaby YA, Li W. A transcriptomics investigation into pine reproductive organ development. THE NEW PHYTOLOGIST 2016; 209:1278-1289. [PMID: 26406997 DOI: 10.1111/nph.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The development of reproductive structures in gymnosperms is still poorly studied because of a lack of genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution. To extend our understanding of the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays. Expression patterns of genes during progression of sexual cone development were analysed using RNA-seq. The results showed that, overall, the transcriptomes of male structures in bisexual cones were more similar to those of female cones. However, the expression of several MADS-box genes in the bisexual cones was similar to that of male cones at the more juvenile developmental stage, while despite these expression shifts, male structures of bisexual cones and normal male cones were histologically indistinguishable and cone development was continuous. This study represents a starting point for in-depth analysis of the molecular regulation of cone development and also the origin of hermaphroditism in pine.
Collapse
Affiliation(s)
- Shihui Niu
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinrui Sun
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Ilga Porth
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yue Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Li
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
40
|
Pieper B, Monniaux M, Hay A. The genetic architecture of petal number in Cardamine hirsuta. THE NEW PHYTOLOGIST 2016; 209:395-406. [PMID: 26268614 DOI: 10.1111/nph.13586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/04/2015] [Indexed: 05/22/2023]
Abstract
Invariant petal number is a characteristic of most flowers and is generally robust to genetic and environmental variation. We took advantage of the natural variation found in Cardamine hirsuta petal number to investigate the genetic basis of this trait in a case where robustness was lost during evolution. We used quantitative trait locus (QTL) analysis to characterize the genetic architecture of petal number. Αverage petal number showed transgressive variation from zero to four petals in five C. hirsuta mapping populations, and this variation was highly heritable. We detected 15 QTL at which allelic variation affected petal number. The effects of these QTL were relatively small in comparison with alleles induced by mutagenesis, suggesting that natural selection may act to maintain petal number within its variable range below four. Petal number showed a temporal trend during plant ageing, as did sepal trichome number, and multi-trait QTL analysis revealed that these age-dependent traits share a common genetic basis. Our results demonstrate that petal number is determined by many genes of small effect, some of which are age-dependent, and suggests a mechanism of trait evolution via the release of cryptic variation.
Collapse
Affiliation(s)
- Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| |
Collapse
|
41
|
Benedict JC, Smith SY, Specht CD, Collinson ME, Leong-Škorničková J, Parkinson DY, Marone F. Species diversity driven by morphological and ecological disparity: a case study of comparative seed morphology and anatomy across a large monocot order. AOB PLANTS 2016; 8:plw063. [PMID: 27594701 PMCID: PMC5091906 DOI: 10.1093/aobpla/plw063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/17/2016] [Indexed: 05/14/2023]
Abstract
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales.
Collapse
Affiliation(s)
- John C Benedict
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Selena Y Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| | - Chelsea D Specht
- Department of Plant and Microbial Biology, Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley, CA 94750-2465, USA
| | - Margaret E Collinson
- Department of Earth Sciences, Royal Holloway University of London, London TW20 0EX, UK
| | | | | | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
42
|
Wagner GP. What is “homology thinking” and what is it for? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 326:3-8. [DOI: 10.1002/jez.b.22656] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Günter P. Wagner
- Departments of Ecology and Evolutionary Biology, Obstetrics, Gynecology and Reproductive SciencesYale Systems Biology InstituteYale UniversityNew HavenConnecticut
- Department of Obstetrics and GynecologyWayne State UniversityDetroitMichigan
| |
Collapse
|
43
|
Functional modularity in a forcible flower mechanism: relationships among morphology, biomechanical features and fitness. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Qiu ZJ, Lu YX, Li CQ, Dong Y, Smith JF, Wang YZ. Origin and evolution of Petrocosmea (Gesneriaceae) inferred from both DNA sequence and novel findings in morphology with a test of morphology-based hypotheses. BMC PLANT BIOLOGY 2015; 15:167. [PMID: 26135135 PMCID: PMC4489212 DOI: 10.1186/s12870-015-0540-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/04/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Petrocosmea Oliver (Gesneriaceae) currently comprises 38 species with four non-nominate varieties, nearly all of which have been described solely from herbarium specimens. However, the dried specimens have obscured the full range of extremely diverse morphological variation that exists in the genus and has resulted in a poor subgeneric classification system that does not reflect the evolutionary history of this group. It is important to develop innovative methods to find new morphological traits and reexamine and reevaluate the traditionally used morphological data based on new hypothesis. In addition, Petrocosmea is a mid-sized genus but exhibits extreme diverse floral variants. This makes the genus of particular interest in addressing the question whether there are any key factors that is specifically associated with their evolution and diversification. RESULTS Here we present the first phylogenetic analyses of the genus based on dense taxonomic sampling and multiple genes combined with a comprehensive morphological investigation. Maximum-parsimony, maximum likelihood and Bayesian analyses of molecular data from two nuclear DNA and six cpDNA regions support the monophyly of Petrocosmea and recover five major clades within the genus, which is strongly corroborated by the reconstruction of ancestral states for twelve new morphological characters directly observed from living material. Ancestral area reconstruction shows that its most common ancestor was likely located east and southeast of the Himalaya-Tibetan plateau. The origin of Petrocosmea from a potentially Raphiocarpus-like ancestor might have involved a series of morphological modifications from caulescent to acaulescent habit as well as from a tetrandrous flower with a long corolla-tube to a diandrous flower with a short corolla-tube, also evident in the vestigial caulescent habit and transitional floral form in clade A that is sister to the remainder of the genus. Among the five clades in Petrocosmea, the patterns of floral morphological differentiation are consistent with discontinuous lineage-associated morphotypes as a repeated adaptive response to alternative environments. CONCLUSION Our results suggest that the lineage-specific morphological differentiations reflected in the upper lip, a functional organ for insect pollination, are likely adaptive responses to pollinator shifts. We further recognize that the floral morphological diversification in Petrocosmea involves several evolutionary phenomena, i.e. evolutionary successive specialization, reversals, parallel evolution, and convergent evolution, which are probably associated with adaptation to pollination against the background of heterogeneous abiotic and biotic environments in the eastern wing regions of Himalaya-Tibetan plateau.
Collapse
Affiliation(s)
- Zhi-Jing Qiu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 nanxincun, Beijing, 100093, China.
- Key Laboratory of Southern Subtropical Plant Diversity, Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China.
| | - Yuan-Xue Lu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Chao-Qun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 nanxincun, Beijing, 100093, China.
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 nanxincun, Beijing, 100093, China.
| | - James F Smith
- Boise State University, Department of Biological Sciences, Boise, ID, 83725-1515, USA.
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 nanxincun, Beijing, 100093, China.
| |
Collapse
|
45
|
Rocha de Almeida AM, Yockteng R, Specht CD. Evolution of petaloidy in the zingiberales: An assessment of the relationship between ultrastructure and gene expression patterns. Dev Dyn 2015; 244:1121-1132. [DOI: 10.1002/dvdy.24280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ana Maria Rocha de Almeida
- Programa de Pós-Graduação em Genética e Biodiversidade, Universidade Federal da Bahia; Campus Ondina Salvador/BA Brazil
- Departments of Plant and Microbial Biology and Integrative Biology and the University and Jepson Herbaria; University of California; Berkeley California
| | - Roxana Yockteng
- Departments of Plant and Microbial Biology and Integrative Biology and the University and Jepson Herbaria; University of California; Berkeley California
- Corporación Colombiana de Investigación (CORPOICA); Bogotá Colombia
| | - Chelsea D. Specht
- Departments of Plant and Microbial Biology and Integrative Biology and the University and Jepson Herbaria; University of California; Berkeley California
| |
Collapse
|
46
|
Sharov AA, Igamberdiev AU. Inferring directions of evolution from patterns of variation: the legacy of Sergei Meyen. Biosystems 2014; 123:67-73. [PMID: 25072709 PMCID: PMC4254149 DOI: 10.1016/j.biosystems.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022]
Abstract
In the era of the extended evolutionary synthesis, which no longer considers natural selection as the only leading factor of evolution, it is meaningful to revisit the legacy of biologists who discussed the role of alternative factors. Here we analyze the evolutionary views of Sergei Meyen (1935-1987), a paleobotanist who argued that the theory of evolution should incorporate a "nomothetical" approach which infers the laws of morphogenesis (i.e., form generation) from the observed patterns of variation in living organisms and in the fossil records. Meyen developed a theory of "repeated polymorphic sets" (RPSs), which he applied consistently to describe inter-organism variation in populations, intra-organism variation of metameric organs, variation of abnormalities, heterotopy, changes during embryo development, and inter-species variation within evolutionary lineages. The notion of RPS assumes the active nature of organisms that possess hidden morphogenic and behavioral capacities. Meyen's theory is compatible with Darwin's natural selection; however, Meyen emphasized the importance of other forms of selection (e.g., selection of developmental trajectories, habitats, and behaviors) in choosing specific elements from the RPS. Finally, Meyen developed a new typological concept of time, where time represents variability (i.e., change) of real objects such as living organisms or geological formations.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Genetics Laboratory, Baltimore, MD 21224, USA
| | - Abir U Igamberdiev
- Memorial University of Newfoundland, Department of Biology, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
47
|
Käfer J, de Boer HJ, Mousset S, Kool A, Dufay M, Marais GAB. Dioecy is associated with higher diversification rates in flowering plants. J Evol Biol 2014; 27:1478-90. [PMID: 24797166 DOI: 10.1111/jeb.12385] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
In angiosperms, dioecious clades tend to have fewer species than their nondioecious sister clades. This departure from the expected equal species richness in the standard sister clade test has been interpreted as implying that dioecious clades diversify less and has initiated a series of studies suggesting that dioecy might be an 'evolutionary dead end'. However, two of us recently showed that the 'equal species richness' null hypothesis is not valid in the case of derived char acters, such as dioecy, and proposed a new test for sister clade comparisons; preliminary results, using a data set available in the litterature, indicated that dioecious clades migth diversify more than expected. However, it is crucial for this new test to distinguish between ancestral and derived cases of dioecy, a criterion that was not taken into account in the available data set. Here, we present a new data set that was obtained by searching the phylogenetic literature on more than 600 completely dioecious angiosperm genera and identifying 115 sister clade pairs for which dioecy is likely to be derived (including > 50% of the dioecious species). Applying the new sister clade test to this new dataset, we confirm the preliminary result that dioecy is associated with an increased diversification rate, a result that does not support the idea that dioecy is an evolutionary dead end in angiosperms. The traits usually associated with dioecy, that is, an arborescent growth form, abiotic pollination, fleshy fruits or a tropical distribution, do not influence the diversification rate. Rather than a low diversification rate, the observed species richness patterns of dioecious clades seem to be better explained by a low transition rate to dioecy and frequent losses.
Collapse
Affiliation(s)
- J Käfer
- Université Lyon 1, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
48
|
Vega-Frutis R, Macías-Ordóñez R, Guevara R, Fromhage L. Sex change in plants and animals: a unified perspective. J Evol Biol 2014; 27:667-75. [DOI: 10.1111/jeb.12333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Vega-Frutis
- Red de Biología Evolutiva; Instituto de Ecología, A.C.; Xalapa Veracruz México
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - R. Macías-Ordóñez
- Red de Biología Evolutiva; Instituto de Ecología, A.C.; Xalapa Veracruz México
| | - R. Guevara
- Red de Biología Evolutiva; Instituto de Ecología, A.C.; Xalapa Veracruz México
| | - L. Fromhage
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|
49
|
Bartlett ME, Thompson B. Meristem identity and phyllotaxis in inflorescence development. FRONTIERS IN PLANT SCIENCE 2014; 5:508. [PMID: 25352850 PMCID: PMC4196479 DOI: 10.3389/fpls.2014.00508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/10/2014] [Indexed: 05/21/2023]
Abstract
Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology.
Collapse
Affiliation(s)
- Madelaine E. Bartlett
- Biology Department, University of Massachusetts AmherstAmherst, MA, USA
- *Correspondence:
| | - Beth Thompson
- Biology Department, East Carolina UniversityGreenville, NC, USA
| |
Collapse
|
50
|
Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLoS One 2013; 8:e74803. [PMID: 24019982 PMCID: PMC3760840 DOI: 10.1371/journal.pone.0074803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 11/24/2022] Open
Abstract
TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.
Collapse
|