1
|
Li X, Yi S, Chen L, Hafeez M, Zhang Z, Zhang J, Zhou S, Dong W, Huang J, Lu Y. The application of entomopathogenic nematode modified microbial communities within nesting mounds of the red imported fire ants, Solenopsis invicta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168748. [PMID: 38008315 DOI: 10.1016/j.scitotenv.2023.168748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Entomopathogenic microorganisms (e.g., fungi, bacteria, nematodes) have been widely used in biological control of soil-dwelling pests, including the red imported fire ant (RIFA), Solenopsis invicta, a notorious invasive pest worldwide. The application of large amounts of entomopathogenic microorganisms to soil may affect the indigenous soil microbial communities. However, reports about the effect of entomopathogenic nematodes (EPN) on soil microbial communities are very few. In this study, the effects of EPN on RIFA populations and microbial communities in mounds were investigated. Our results showed that the application of the EPN Steinernema carpocapsae. All strain on mounds efficaciously suppressed RIFA worker populations, without forming significantly more satellite mounds compared with the control treatment. The application of EPN did not impact the bacterial and fungal diversity in soils derived from the RIFA mounds. However, it slightly altered the taxonomic make-up of the bacterial communities, but significantly altered the taxonomic composition of fungal communities at the phylum, family, and genus levels. The abundances of some beneficial bacteria and fungi, such as Streptomyces, decreased, while those of plant and animal pathogenic bacteria and fungi, dramatically increased, after EPN treatment. On the other hand, the abundances of some entomopathogenic fungi, such as Fusicolla, Clonostachys, and Mortierella, increased. Redundancy analysis or canonical correspondence analysis revealed a positive correlation between the efficacious EPN control and the presence of the insect-resistant bacteria, Sinomonas, as well as entomopathogenic fungi Fusicolla and Mortierella. This suggests that the interactions between EPN and entomopathogenic fungi may play a role in the biological control of RIFA. Our discoveries shed light on the interactions among EPN, RIFA, and soil microbial communities, and emphasize a possible mutualistic relationship between EPN and entomopathogenic fungi in the biological control of RIFA.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Songwang Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanying Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Bio-Interaction, Xianghu Laboratory, Hangzhou 311258, China.
| |
Collapse
|
2
|
Li B, Qiu D, Wang S. Complete Genome Sequence Data of Xenorhabdus budapestensis Strain C72, a Candidate Biological Control Agent from China. PLANT DISEASE 2021; 105:3276-3278. [PMID: 33970680 DOI: 10.1094/pdis-04-21-0701-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Xenorhabdus budapestensis strain C72 isolated from the entomopathogenic nematode of Steinernema bicornutum possesses an excellent biocontrol effect on southern corn leaf blight. However, its genomic information is lacking. Here, we report a high-quality complete and annotated genome sequence of X. budapestensis strain C72. Fifteen secondary metabolite biosynthetic gene clusters are identified in the genome, which are responsible for the production of a diverse group of antimicrobial compounds to help host plants against agricultural pathogenic diseases. This genome sequence could contribute to investigations of the molecular basis underlying the biocontrol activity of this Xenorhabdus strain.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
4
|
Prevalence of a nematode castrator of the carrot weevil and impact on fecundity and survival. Parasitology 2018; 146:702-707. [PMID: 30567618 DOI: 10.1017/s0031182018002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bradynema listronoti is a parasitic nematode described from infected specimens of the carrot weevil Listronotus oregonensis. Prevalence of infection by B. listronoti under field conditions was followed over a period of 16 years in an untreated carrot field. Susceptibility of different carrot weevil life stages was evaluated as well as the impact of infection on fecundity and mortality. Gene expression in infected and uninfected carrot weevils was also compared to evaluate the impact of the parasite on the host transcriptome. Prevalence of B. listronoti in carrot weevil populations was sustained over the years ranging from 20 to 63%. All the weevil stages exposed to B. listronoti inoculum were susceptible to infection, larvae being more vulnerable (59 ± 8% infected) compared with pupae (4 ± 3% infected) and adults (7 ± 3% infected). The fecundity of infected female weevils was greatly reduced (60-fold) due to an inhibition of the maturation of the reproductive system. Transcriptomic analyses revealed that this parasitic castration may have been triggered by the inhibition of reproductive hormone production. The B. listronoti-L. oregonensis interaction represents a case of parasitic castration with a unique potential for biological control of an important pest of carrots.
Collapse
|
5
|
Abstract
Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.
Collapse
Affiliation(s)
- Alexander Schouten
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
6
|
Abstract
Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.
Collapse
|
8
|
Hallem EA, Rengarajan M, Ciche TA, Sternberg PW. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 2007; 17:898-904. [PMID: 17475494 DOI: 10.1016/j.cub.2007.04.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/04/2007] [Accepted: 04/10/2007] [Indexed: 11/21/2022]
Abstract
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.
Collapse
Affiliation(s)
- Elissa A Hallem
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
9
|
Montiel R, Lucena MA, Medeiros J, Simões N. The complete mitochondrial genome of the entomopathogenic nematode Steinernema carpocapsae: insights into nematode mitochondrial DNA evolution and phylogeny. J Mol Evol 2006; 62:211-25. [PMID: 16474981 DOI: 10.1007/s00239-005-0072-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
We determined the complete sequence of the mitochondrial DNA of the entomopathogenic nematode Steinernema carpocapsae and analyzed its structure and composition as well as the secondary structures predicted for its tRNAs and rRNAs. Almost the complete genome has been amplified in one fragment with long PCR and sequenced using a shotgun strategy. The 13,925-bp genome contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins and lacks an ORF encoding ATPase subunit 8. Four initiation codons were inferred, TTT, TTA, ATA, and ATT, most of the genes ended with TAA or TAG, and only two had a T as an incomplete stop codon. All predicted tRNAs showed the nonconventional secondary structure typical of Secernentea. Although we were able to fold the sequences of trnN, trnD, and trnC into more conventional cloverleaf structures after adding adjacent nucleotides, northern blot experiments showed that the nonstandard tRNAs are actually expressed. Phylogenetic and comparative analyses showed that the mitochondrial genome of S. carpocapsae is more closely related to the genomes of A. suum and C. elegans than to that of Strongyloides stercoralis. This finding does not support the phylogeny based on nuclear small subunit ribosomal DNA sequences previously published. This discrepancy may result from differential reproductive strategies and/or differential selective pressure acting on nuclear and mitochondrial genes. The distinctive characteristics observed among mitochondrial genomes of Secernentea may have arisen to counteract the deleterious effects of Muller's ratchet, which is probably enhanced by the reproductive strategies and selective pressures referred to above.
Collapse
Affiliation(s)
- Rafael Montiel
- CIRN and Department of Biology, University of the Azores, Ponta Delgada, Açores, 9501-801, Portugal.
| | | | | | | |
Collapse
|
10
|
Arthurs S, Heinz KM, Prasifka JR. An analysis of using entomopathogenic nematodes against above-ground pests. BULLETIN OF ENTOMOLOGICAL RESEARCH 2004; 94:297-306. [PMID: 15301695 DOI: 10.1079/ber2003309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Applications of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae have traditionally been targeted against soil insects. Nonetheless, research over the last two decades highlights the potential of such agents against above-ground pests under certain circumstances. A general linear model was used to test for patterns in efficacy among 136 published trials with Steinernema carpocapsae Weiser, the most common species applied against foliar and other above-ground pests. The focus was on field and greenhouse assessments, rather than laboratory assays where relevant ecological barriers to infection are typically removed. The model showed differences in nematode treatment efficacy depending on the pests' target habitat (bore holes > cryptic foliage > exposed foliage) and trial location (greenhouse > field studies). Relative humidity and temperature during and up to 8 h post-application were also predicted to influence rates of nematode infection obtained. Conversely, spray adjuvants (both wetting agents and anti-desiccants) and nematode dosage applied (both concentration and use of consecutive applications 3-4 days apart) did not explain a significant amount of variance in nematode performance. With reference to case studies the model is used to discuss the relative importance of different factors on nematode efficacy and highlight priorities for workers considering using entomopathogenic nematodes to target pests in novel environments.
Collapse
Affiliation(s)
- S Arthurs
- Biological Control Laboratory, Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| | | | | |
Collapse
|