1
|
Ågren JA, Patten MM. Genetic conflicts and the case for licensed anthropomorphizing. Behav Ecol Sociobiol 2022; 76:166. [DOI: 10.1007/s00265-022-03267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022]
Abstract
Abstract
The use of intentional language in biology is controversial. It has been commonly applied by researchers in behavioral ecology, who have not shied away from employing agential thinking or even anthropomorphisms, but has been rarer among researchers from more mechanistic corners of the discipline, such as population genetics. One research area where these traditions come into contact—and occasionally clash—is the study of genetic conflicts, and its history offers a good window to the debate over the use of intentional language in biology. We review this debate, paying particular attention to how this interaction has played out in work on genomic imprinting and sex chromosomes. In light of this, we advocate for a synthesis of the two approaches, a form of licensed anthropomorphizing. Here, agential thinking’s creative potential and its ability to identify the fulcrum of evolutionary pressure are combined with the rigidity of formal mathematical modeling.
Collapse
|
2
|
Genes with monoallelic expression contribute disproportionately to genetic diversity in humans. Nat Genet 2016; 48:231-237. [PMID: 26808112 PMCID: PMC4942303 DOI: 10.1038/ng.3493] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
An unexpectedly large number of human autosomal genes are subject to monoallelic expression (MAE). Our analysis of 4,227 such genes uncovers surprisingly high genetic variation across human populations. This increased diversity is unlikely to reflect relaxed purifying selection. Remarkably, MAE genes exhibit an elevated recombination rate and an increased density of hypermutable sequence contexts. However, these factors do not fully account for the increased diversity. We find that the elevated nucleotide diversity of MAE genes is also associated with greater allelic age: variants in these genes tend to be older and are enriched in polymorphisms shared by Neanderthals and chimpanzees. Both synonymous and nonsynonymous alleles of MAE genes have elevated average population frequencies. We also observed strong enrichment of the MAE signature among genes reported to evolve under balancing selection. We propose that an important biological function of widespread MAE might be the generation of cell-to-cell heterogeneity; the increased genetic variation contributes to this heterogeneity.
Collapse
|
3
|
Cook N, Pannebakker BA, Tauber E, Shuker DM. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis. Am Nat 2015; 186:513-8. [PMID: 26655574 DOI: 10.1086/682950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | |
Collapse
|
4
|
O'Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet 2015; 6:156. [PMID: 25964798 PMCID: PMC4408863 DOI: 10.3389/fgene.2015.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
Collapse
Affiliation(s)
- Alan M O'Doherty
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland
| | - David E MacHugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland ; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland ; Department of Animal Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
5
|
Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet 2014; 45 Suppl 1:25-39. [PMID: 24990393 DOI: 10.1111/age.12168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/30/2022]
Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes.
Collapse
Affiliation(s)
- D A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
6
|
Sánchez L. Sex-determining mechanisms in insects based on imprinting and elimination of chromosomes. Sex Dev 2013; 8:83-103. [PMID: 24296911 DOI: 10.1159/000356709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a rule, the sex of an individual is fixed at fertilization, and the chromosomal constitution of the zygote is a direct consequence of the chromosomal constitution of the gametes. However, there are cases in which the chromosomal differences determining sex are brought about by elimination or inactivation of chromosomes in the embryo. In Sciaridae insects, all zygotes start with the XXX constitution; the loss of either 1 or 2 X chromosomes determines whether the zygote becomes XX (female) or X0 (male). In Cecydomyiidae and Collembola insects, all zygotes start with the XXXX constitution. If the embryo does not eliminate any X chromosome, this remains XXXX and develops as female, whereas if 2 X chromosomes are eliminated, the embryo becomes XX0 and develops as a male. In the coccids (scale insects), the chromosomal differences between the sexes result from either the elimination or the heterochromatinization (inactivation) of half of the chromosomes giving rise to haploid males and diploid females. The chromosomes that are eliminated or inactivated are those inherited from the father. Therefore, in the formation of the sex-determining chromosomal signal in those insects, a marking ('imprinting') process must occur in one of the parents, which determines that the chromosomes to be eliminated or inactivated are of paternal origin. In this article, the sex determination mechanism of these insects and the associated imprinting process are reviewed.
Collapse
Affiliation(s)
- L Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Magee DA, Sikora KM, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Spillane C, MacHugh DE. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle. BMC Genet 2010; 11:93. [PMID: 20942903 PMCID: PMC2965127 DOI: 10.1186/1471-2156-11-93] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Background Studies in mice and humans have shown that imprinted genes, whereby expression from one of the two parentally inherited alleles is attenuated or completely silenced, have a major effect on mammalian growth, metabolism and physiology. More recently, investigations in livestock species indicate that genes subject to this type of epigenetic regulation contribute to, or are associated with, several performance traits, most notably muscle mass and fat deposition. In the present study, a candidate gene approach was adopted to assess 17 validated single nucleotide polymorphisms (SNPs) and their association with a range of performance traits in 848 progeny-tested Irish Holstein-Friesian artificial insemination sires. These SNPs are located proximal to, or within, the bovine orthologs of eight genes (CALCR, GRB10, PEG3, PHLDA2, RASGRF1, TSPAN32, ZIM2 and ZNF215) that have been shown to be imprinted in cattle or in at least one other mammalian species (i.e. human/mouse/pig/sheep). Results Heterozygosities for all SNPs analysed ranged from 0.09 to 0.46 and significant deviations from Hardy-Weinberg proportions (P ≤ 0.01) were observed at four loci. Phenotypic associations (P ≤ 0.05) were observed between nine SNPs proximal to, or within, six of the eight analysed genes and a number of performance traits evaluated, including milk protein percentage, somatic cell count, culled cow and progeny carcass weight, angularity, body conditioning score, progeny carcass conformation, body depth, rump angle, rump width, animal stature, calving difficulty, gestation length and calf perinatal mortality. Notably, SNPs within the imprinted paternally expressed gene 3 (PEG3) gene cluster were associated (P ≤ 0.05) with calving, calf performance and fertility traits, while a single SNP in the zinc finger protein 215 gene (ZNF215) was associated with milk protein percentage (P ≤ 0.05), progeny carcass weight (P ≤ 0.05), culled cow carcass weight (P ≤ 0.01), angularity (P ≤ 0.01), body depth (P ≤ 0.01), rump width (P ≤ 0.01) and animal stature (P ≤ 0.01). Conclusions Of the eight candidate bovine imprinted genes assessed, DNA sequence polymorphisms in six of these genes (CALCR, GRB10, PEG3, RASGRF1, ZIM2 and ZNF215) displayed associations with several of the phenotypes included for analyses. The genotype-phenotype associations detected here are further supported by the biological function of these six genes, each of which plays important roles in mammalian growth, development and physiology. The associations between SNPs within the imprinted PEG3 gene cluster and traits related to calving, calf performance and gestation length suggest that this domain on chromosome 18 may play a role regulating pre-natal growth and development and fertility. SNPs within the bovine ZNF215 gene were associated with bovine growth and body conformation traits and studies in humans have revealed that the human ZNF215 ortholog belongs to the imprinted gene cluster associated with Beckwith-Wiedemann syndrome--a genetic disorder characterised by growth abnormalities. Similarly, the data presented here suggest that the ZNF215 gene may have an important role in regulating bovine growth. Collectively, our results support previous work showing that (candidate) imprinted genes/loci contribute to heritable variation in bovine performance traits and suggest that DNA sequence polymorphisms within these genes/loci represents an important reservoir of genomic markers for future genetic improvement of dairy and beef cattle populations.
Collapse
Affiliation(s)
- David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Van Cleve J, Feldman MW, Lehmann L. How demography, life history, and kinship shape the evolution of genomic imprinting. Am Nat 2010; 176:440-55. [PMID: 20738206 PMCID: PMC2989731 DOI: 10.1086/656277] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How phenomena like helping, dispersal, or the sex ratio evolve depends critically on demographic and life-history factors. One phenotype that is of particular interest to biologists is genomic imprinting, which results in parent-of-origin-specific gene expression and thus deviates from the predictions of Mendel's rules. The most prominent explanation for the evolution of genomic imprinting, the kinship theory, originally specified that multiple paternity can cause the evolution of imprinting when offspring affect maternal resource provisioning. Most models of the kinship theory do not detail how population subdivision, demography, and life history affect the evolution of imprinting. In this work, we embed the classic kinship theory within an island model of population structure and allow for diverse demographic and life-history features to affect the direction of selection on imprinting. We find that population structure does not change how multiple paternity affects the evolution of imprinting under the classic kinship theory. However, if the degree of multiple paternity is not too large, we find that sex-specific migration and survival and generation overlap are the primary factors determining which allele is silenced. This indicates that imprinting can evolve purely as a result of sex-related asymmetries in the demographic structure or life history of a species.
Collapse
Affiliation(s)
- Jeremy Van Cleve
- Department of Biology, Stanford University, California 94305, USA.
| | | | | |
Collapse
|
9
|
Patten MM, Haig D. MAINTENANCE OR LOSS OF GENETIC VARIATION UNDER SEXUAL AND PARENTAL ANTAGONISM AT A SEX-LINKED LOCUS. Evolution 2009; 63:2888-95. [DOI: 10.1111/j.1558-5646.2009.00764.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Yuen RKC, Avila L, Peñaherrera MS, von Dadelszen P, Lefebvre L, Kobor MS, Robinson WP. Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS One 2009; 4:e7389. [PMID: 19838307 PMCID: PMC2760756 DOI: 10.1371/journal.pone.0007389] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022] Open
Abstract
Interindividual variation in DNA-methylation level is widespread in the human genome, despite its critical role in regulating gene expression. The nature of this variation, including its tissue-specific nature, and the role it may play in human phenotypic variation and disease is still poorly characterized. The placenta plays a critical role in regulating fetal growth and development in ways that have lifelong effects on health. To identify genes with a high degree of interindividual DNA methylation variation in the human placenta, we surveyed the human genome using the Illumina GoldenGate Methylation Cancer panel targeting 1505 CpG sites of 807 genes. While many sites show a continuous pattern of methylation levels, WNT2, TUSC3 and EPHB4 were identified to have a polymorphic "on-or-off" pattern of DNA methylation variation at their promoter region which was confirmed by pyrosequencing. Methylation of these genes can be found in 7%-25% of over 100 placentas tested. The methylation state at the promoter of these genes is concordant with mRNA allelic expression. In three informative cases TUSC3 was observed to be methylated on the maternal allele, and it is thus possible this represents a polymorphically imprinted gene. Furthermore, TUSC3 promoter methylation showed evidence for association with preeclampsia. A biological significance of these methylation allelic polymorphisms (MAPs) to human placental diversity is further implied by their placental specificity and absence in mouse. An extended study of blood suggests that MAPs may also be found in other tissues, implicating their utility for tissue-specific association with complex disorders. The identification of such "epipolymorphism" in other tissues and their use in association studies, should improve our understanding of interindividual phenotypic variability and complex disease susceptibility.
Collapse
Affiliation(s)
- Ryan K. C. Yuen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luana Avila
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria S. Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter von Dadelszen
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wendy P. Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
11
|
Munshi A, Duvvuri S. Genomic imprinting - the story of the other half and the conflicts of silencing. J Genet Genomics 2009; 34:93-103. [PMID: 17469781 DOI: 10.1016/s1673-8527(07)60010-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/26/2006] [Indexed: 11/20/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that produces functional differences between the paternal and maternal genomes and plays an essential role in mammalian development and growth. There are a number of genes in our genomes that are subject to genomic imprinting where one parent's copy of the gene is expressed while the other is silent. Silencing of one allele predetermines that any function ascribed to that gene are now dependant on the single active copy. Possession of only a single active allele can lead to deleterious health consequences in humans. If imprinted genes are crucial in mammalian development, one would also expect mutations in these genes to cause diseases. Since imprinting is an epigenetic mechanism, mistakes in maintaining epigenetic mark also cause imprinting disorders. Here we in this review focus on the current understanding of this unique genetic mechanism more than two decades after the first description of the imprinting phenomenon was given by McGrath and Solter. Although the possible molecular mechanisms by which imprinting is imposed and maintained are being identified, we have a long way to go in understanding the molecular mechanisms that regulate the expression of these oddly behaving genes, the function of imprinting and the evolution. Post genomic technologies might ultimately lead to a better understanding of the 'imprinting effects'.
Collapse
Affiliation(s)
- Anjana Munshi
- Department of Genetics, Shadan PG Centre for Biosciences, Khairtabad Hyderabad 500016, India.
| | | |
Collapse
|
12
|
Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc Lond B Biol Sci 2009; 364:1107-15. [PMID: 19324615 PMCID: PMC2666680 DOI: 10.1098/rstb.2008.0238] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Maternal effects can play an important role in a diversity of ecological and evolutionary processes such as population dynamics, phenotypic plasticity, niche construction, life-history evolution and the evolutionary response to selection. However, although maternal effects were defined by quantitative geneticists well over half a century ago, there remains some confusion over exactly what phenomena should be characterized as maternal effects and, more importantly, why it matters and how they are defined. We suggest a definition of maternal effects as the causal influence of the maternal genotype or phenotype on the offspring phenotype. This definition differs from some definitions in that it treats maternal effects as a phenomenon, not as a statistical construct. The causal link to maternal genotype or phenotype is the critical component of this definition providing the link between maternal effects and evolutionary and ecological processes. We show why phenomena such as maternal cytoplasmic inheritance and genomic imprinting are distinct genetically from and have different evolutionary consequences than true maternal effects. We also argue that one should consider cases where the maternal effect is conditional on offspring genotype as a class of maternal effects.
Collapse
Affiliation(s)
- Jason B Wolf
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK.
| | | |
Collapse
|
13
|
One- and two-locus population models with differential viability between sexes: parallels between haploid parental selection and genomic imprinting. Genetics 2009; 182:1117-27. [PMID: 19448271 DOI: 10.1534/genetics.109.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A model of genomic imprinting with complete inactivation of the imprinted allele is shown to be formally equivalent to the haploid model of parental selection. When single-locus dynamics are considered, an internal equilibrium is possible only if selection acts in the opposite directions in males and females. I study a two-locus version of the latter model, in which maternal and paternal effects are attributed to the single alleles at two different loci. A necessary condition for the allele frequency equilibria to remain on the linkage equilibrium surface is the multiplicative interaction between maternal and paternal fitness parameters. In this case the equilibrium dynamics are independent at both loci and results from the single-locus model apply. When fitness parameters are additive, analytic treatment was not possible but numerical simulations revealed that stable polymorphism characterized by association between loci is possible only in several special cases in which maternal and paternal fitness contributions are precisely balanced. As in the single-locus case, antagonistic selection in males and females is a necessary condition for the maintenance of polymorphism. I also show that the above two-locus results of the parental selection model are very sensitive to the inclusion of weak directional selection on the individual's own genotypes.
Collapse
|
14
|
Spencer HG. Effects of genomic imprinting on quantitative traits. Genetica 2008; 136:285-93. [PMID: 18690543 DOI: 10.1007/s10709-008-9300-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 07/16/2008] [Indexed: 02/03/2023]
Abstract
Standard Mendelian genetic processes incorporate several symmetries, one of which is that the level of expression of a gene inherited from an organism's mother is identical to the level should that gene have been inherited paternally. For a small number of loci in a variety of taxa, this symmetry does not hold; such genes are said to be "genomically imprinted" (or simply "imprinted"). The best known examples of imprinted loci come from mammals and angiosperms, although there are also cases from several insects and some data suggesting that imprinting exists in zebra fish. Imprinting means that reciprocal heterozygotes need not be, on average, phenotypically identical. When this difference is incorporated into the standard quantitative-genetic model for two alleles at a single locus, a number of standard expressions are altered in fundamental ways. Most importantly, in contrast to the case with euMendelian expression, the additive and dominance deviations are correlated. It would clearly be of interest to be able to separate imprinting effects from maternal genetic effects, but when the latter are added to the model, the well-known generalized least-squares approach to deriving breeding values cannot be applied. Distinguishing these two types of parent-of-origin effects is not a simple problem and requires further research.
Collapse
Affiliation(s)
- Hamish G Spencer
- National Research Centre for Growth & Development and Allan Wilson Centre for Molecular Ecology & Evolution, Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
15
|
Keverne EB, Curley JP. Epigenetics, brain evolution and behaviour. Front Neuroendocrinol 2008; 29:398-412. [PMID: 18439660 DOI: 10.1016/j.yfrne.2008.03.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/30/2007] [Accepted: 03/01/2008] [Indexed: 12/14/2022]
Abstract
Molecular modifications to the structure of histone proteins and DNA (chromatin) play a significant role in regulating the transcription of genes without altering their nucleotide sequence. Certain epigenetic modifications to DNA are heritable in the form of genomic imprinting, whereby subsets of genes are silenced according to parent-of-origin. This form of gene regulation is primarily under matrilineal control and has evolved partly to co-ordinate in-utero development with maternal resource availability. Changes to epigenetic mechanisms in post-mitotic neurons may also be activated during development in response to environmental stimuli such as maternal care and social interactions. This results in long-lasting stable, or short-term dynamic, changes to the neuronal phenotype producing long-term behavioural consequences. Use of evolutionary conserved mechanisms have thus been adapted to modify the control of gene expression and embryonic growth of the brain as well as allowing for plastic changes in the post-natal brain in response to external environmental and social cues.
Collapse
Affiliation(s)
- Eric B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge, CB23 8AA, UK.
| | | |
Collapse
|
16
|
Abstract
Our knowledge of the mechanisms that specify and propagate epigenetic states of gene expression is expanding rapidly; however, the significance of variation in epigenetic states at the population level remains largely unexplored. Population epigenetics, emerging as an active subfield at the interface of molecular genetics, genomics, and population biology, addresses questions concerning the prevalence and importance of epigenetic variation in the natural world.
Collapse
|
17
|
Kawabe A, Fujimoto R, Charlesworth D. High Diversity Due to Balancing Selection in the Promoter Region of the Medea Gene in Arabidopsis lyrata. Curr Biol 2007; 17:1885-9. [DOI: 10.1016/j.cub.2007.09.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 09/07/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
|
18
|
Tuiskula-Haavisto M, Vilkki J. Parent-of-origin specific QTL--a possibility towards understanding reciprocal effects in chicken and the origin of imprinting. Cytogenet Genome Res 2007; 117:305-12. [PMID: 17675872 DOI: 10.1159/000103192] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 10/06/2006] [Indexed: 01/16/2023] Open
Abstract
Reciprocal effects for sexual maturity, egg production, egg quality traits and viability are well known in poultry crosses. They have been used in an optimal way to form profitable production hybrids. These effects have been hypothesized to originate from sex-linked genes, maternal effects or a combination of both. However, these may not be the only explanations for reciprocal effects. Recent mapping of quantitative trait loci (QTL) has revealed autosomal areas with parent-of-origin specific effects in the chicken. In mammals, parental imprinting, i.e. the specifically regulated expression of either maternal or paternal allele in the offspring, is the main cause of such effects. The most commonly accepted hypothesis for the origin of imprinting, the conflict hypothesis, assumes a genetic conflict of interest between the maternal and paternal genomes regarding the allocation of resources to the offspring. It also intrinsically implies that imprinting should not occur in oviparous taxa. However, new molecular genetic information has raised a need to review the possible involvement of imprinting or some related phenomena as a putative cause of reciprocal effects in poultry. Comparative mapping provides strong evidence for the conservation of orthologous imprinted gene clusters on chicken macrochromosomes. Furthermore, these gene clusters exhibit asynchronous DNA replication, an epigenetic mark specific for all imprinted regions. It has been proposed that these intrinsic chromosomal properties have been important for the evolution of imprinted gene expression in the mammalian lineage. Many of the mapped parent-of-origin specific QTL effects in chicken locate in or close to these conserved regions that show some of the basic features involved in monoallelic expression. If monoallelic expression in these regions would be observed in birds, the actual mechanism and cause may be different from the imprinting that evolved later in the mammalian lineage. In this review we discuss recent molecular genetic results that may provide tools for understanding of reciprocal differences in poultry breeding and the evolution of imprinting.
Collapse
Affiliation(s)
- M Tuiskula-Haavisto
- Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland.
| | | |
Collapse
|
19
|
Ross CN, French JA, Ortí G. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proc Natl Acad Sci U S A 2007; 104:6278-82. [PMID: 17389380 PMCID: PMC1851065 DOI: 10.1073/pnas.0607426104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Indexed: 11/18/2022] Open
Abstract
The formation of viable genetic chimeras in mammals through the transfer of cells between siblings in utero is rare. Using microsatellite DNA markers, we show here that chimerism in marmoset (Callithrix kuhlii) twins is not limited to blood-derived hematopoietic tissues as was previously described. All somatic tissue types sampled were found to be chimeric. Notably, chimerism was demonstrated to be present in germ-line tissues, an event never before documented as naturally occurring in a primate. In fact, we found that chimeric marmosets often transmit sibling alleles acquired in utero to their own offspring. Thus, an individual that contributes gametes to an offspring is not necessarily the genetic parent of that offspring. The presence of somatic and germ-line chimerism may have influenced the evolution of the extensive paternal and alloparental care system of this taxon. Although the exact mechanisms of sociobiological change associated with chimerism have not been fully explored, we show here that chimerism alters relatedness between twins and may alter the perceived relatedness between family members, thus influencing the allocation of parental care. Consistent with this prediction, we found a significant correlation between paternal care effort and the presence of epithelial chimerism, with males carrying chimeric infants more often than nonchimeric infants. Therefore, we propose that the presence of placental chorionic fusion and the exchange of cell lines between embryos may represent a unique adaptation affecting the evolution of cooperative care in this group of primates.
Collapse
Affiliation(s)
- C N Ross
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
20
|
Spencer HG, Clark AG. A chip off the old block: a model for the evolution of genomic imprinting via selection for parental similarity. Genetics 2006; 174:931-5. [PMID: 16951072 PMCID: PMC1602075 DOI: 10.1534/genetics.106.060475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A consequence of genomic imprinting is that offspring are more similar to one parent than to the other, depending on which parent's genes are inactivated in those offspring. We hypothesize that genomic imprinting may have evolved at some loci because of selection to be similar to the parent of one sex or the other. We construct and analyze an evolutionary-genetic model of a two-locus two-deme system, in which one locus codes for a character under local selection and the second locus is a potential cis-acting modifier of imprinting. A proportion of males only migrate between demes every generation, and prebreeding males are less fit, on average, than females. We examine the conditions in which an imprinting modifier allele can invade a population fixed for a nonimprinting modifier allele and vice versa. We find that the conditions under which the imprinting modifier invades are biologically restrictive (high migration rates and high values of recombination between the two loci) and thus this hypothesis is unlikely to explain the evolution of imprinting. Our modeling also shows that, as with several other hypotheses, polymorphism of imprinting status may evolve under certain circumstances, a feature not predicted by verbal accounts.
Collapse
Affiliation(s)
- Hamish G Spencer
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, New Zealand.
| | | |
Collapse
|
21
|
Furney SJ, Albà MM, López-Bigas N. Differences in the evolutionary history of disease genes affected by dominant or recessive mutations. BMC Genomics 2006; 7:165. [PMID: 16817963 PMCID: PMC1534034 DOI: 10.1186/1471-2164-7-165] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/03/2006] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance. RESULTS We examine differences in protein and coding sequence conservation between dominant and recessive human disease genes. Our analysis shows that disease genes affected by dominant mutations are more conserved than those affected by recessive mutations. This could be a consequence of the fact that recessive mutations remain hidden from selection while heterozygous. Furthermore, we employ functional annotation analysis and investigations into disease severity to support this hypothesis. CONCLUSION This study elucidates important differences between dominantly- and recessively-acting disease genes in terms of protein and DNA sequence conservation, paralogy and essentiality. We propose that the division of disease genes by mode of inheritance will enhance both understanding of the disease process and prediction of candidate disease genes in the future.
Collapse
Affiliation(s)
- Simon J Furney
- Genome Bioinformatics Laboratory. Centre for Genomic Regulation, Universitat Pompeu Fabra, Pg. Maritim de la Barceloneta 37-49, E-08003, Barcelona, Spain
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Mar Albà
- ICREA – Institut Municipal d'Investigació Mèdica. Universitat Pompeu Fabra, Dr. Aiguader 80, 08003, Barcelona, Spain
| | - Núria López-Bigas
- Genome Bioinformatics Laboratory. Centre for Genomic Regulation, Universitat Pompeu Fabra, Pg. Maritim de la Barceloneta 37-49, E-08003, Barcelona, Spain
| |
Collapse
|
22
|
Spencer HG, Dorn T, LoFaro T. Population models of genomic imprinting. II. Maternal and fertility selection. Genetics 2006; 173:2391-8. [PMID: 16783015 PMCID: PMC1569727 DOI: 10.1534/genetics.106.057539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under several hypotheses for the evolutionary origin of imprinting, genes with maternal and reproductive effects are more likely to be imprinted. We thus investigate the effect of genomic imprinting in single-locus diallelic models of maternal and fertility selection. First, the model proposed by Gavrilets for maternal selection is expanded to include the effects of genomic imprinting. This augmented model exhibits novel behavior for a single-locus model: long-period cycling between a pair of Hopf bifurcations, as well as two-cycling between conjoined pitchfork bifurcations. We also examine several special cases: complete inactivation of one allele and when the maternal and viability selection parameters are independent. Second, we extend the standard model of fertility selection to include the effects of imprinting. Imprinting destroys the "sex-symmetry" property of the standard model, dramatically increasing the number of degrees of freedom of the selection parameter set. Cycling in all these models is rare in parameter space.
Collapse
Affiliation(s)
- Hamish G Spencer
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
23
|
|
24
|
Abstract
In female heterogamous (ZW) species, sex-linked genes coding for maternal products that are packaged into the egg open a unique arena for genetic conflict that does not occur in male heterogamous (XY) species. Z-linked maternal-effect alleles that help sons and harm daughters are expected to go to fixation, as are W-linked alleles that help daughters and harm sons. This conflict differs from known cases of meiotic drive, because sex-specific ontogeny, physiology, and gene expression greatly simplify the genetic interactions that lead to sexual conflict. Selection on maternal-effect genes may substantially alter the evolution of ZW compared with XY systems.
Collapse
Affiliation(s)
- Paige M Miller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
25
|
Affiliation(s)
- H G Spencer
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
26
|
Mills W, Moore T. Polyandry, life-history trade-offs and the evolution of imprinting at Mendelian loci. Genetics 2005; 168:2317-27. [PMID: 15611195 PMCID: PMC1448752 DOI: 10.1534/genetics.104.030098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic imprinting causes parental origin-dependent differential expression of a small number of genes in mammalian and angiosperm plant embryos, resulting in non-Mendelian inheritance of phenotypic traits. The "conflict" theory of the evolution of imprinting proposes that reduced genetic relatedness of paternally, relative to maternally, derived alleles in offspring of polygamous females supports parental sex-specific selection at gene loci that influence maternal investment. While the theory's physiological predictions are well supported by observation, the requirement of polyandry in the evolution of imprinting from an ancestral Mendelian state has not been comprehensively analyzed. Here, we use diallelic models to examine the influence of various degrees of polyandry on the evolution of both Mendelian and imprinted autosomal gene loci that influence trade-offs between maternal fecundity and offspring viability. We show that, given a plausible assumption on the physiological relationship between maternal fecundity and offspring viability, low levels of polyandry are sufficient to reinforce exclusively the fixation of "greedy" paternally imprinted alleles that increase offspring viability at the expense of maternal fecundity and "thrifty" maternally imprinted alleles of opposite effect. We also show that, for all levels of polyandry, Mendelian alleles at genetic loci that influence the trade-off between maternal fecundity and offspring viability reach an evolutionary stable state, whereas pairs of reciprocally imprinted alleles do not.
Collapse
Affiliation(s)
- Walter Mills
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | |
Collapse
|
27
|
Abstract
We present a one-locus model that breaks two symmetries of Mendelian genetics. Whereas symmetry of transmission is breached by allowing sex-specific segregation distortion, symmetry of expression is breached by allowing genomic imprinting. Simple conditions for the existence of at least one polymorphic stable equilibrium are provided. In general, population mean fitness is not maximized at polymorphic equilibria. However, mean fitness at a polymorphic equilibrium with segregation distortion may be higher than mean fitness at the corresponding equilibrium with Mendelian segregation if one (or both) of the heterozygote classes has higher fitness than both homozygote classes. In this case, mean fitness is maximized by complete, but opposite, drive in the two sexes. We undertook an extensive numerical analysis of the parameter space, finding, for the first time in this class of models, parameter sets yielding two stable polymorphic equilibria. Multiple equilibria exist both with and without genomic imprinting, although they occurred in a greater proportion of parameter sets with genomic imprinting.
Collapse
Affiliation(s)
- Francisco Ubeda
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
28
|
Spencer HG, Feldman MW, Clark AG, Weisstein AE. The effect of genetic conflict on genomic imprinting and modification of expression at a sex-linked locus. Genetics 2004; 166:565-79. [PMID: 15020445 PMCID: PMC1470692 DOI: 10.1534/genetics.166.1.565] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examine how genomic imprinting may have evolved at an X-linked locus, using six diallelic models of selection in which one allele is imprintable and the other is not. Selection pressures are generated by genetic conflict between mothers and their offspring. The various models describe cases of maternal and paternal inactivation, in which females may be monogamous or bigamous. When inactivation is maternal, we examine the situations in which only female offspring exhibit imprinting as well as when both sexes do. We compare our results to those previously obtained for an autosomal locus and to four models in which a dominant modifier of biallelic expression is subjected to the same selection pressures. We find that, in accord with verbal predictions, maternal inactivation of growth enhancers and paternal inactivation of growth inhibitors are more likely than imprinting in the respective opposite directions, although these latter outcomes are possible for certain parameter combinations. The expected outcomes are easier to evolve than the same outcomes for autosomal loci, contradicting the available evidence concerning the direction of imprinting on mammalian sex chromosomes. In most of our models stable polymorphism of imprinting status is possible, a behavior not predicted by verbal accounts.
Collapse
Affiliation(s)
- Hamish G Spencer
- Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
29
|
Wilkins JF, Haig D. What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 2003; 4:359-68. [PMID: 12728278 DOI: 10.1038/nrg1062] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parent-specific gene expression (genomic imprinting) is an evolutionary puzzle because it forgoes an important advantage of diploidy--protection against the effects of deleterious recessive mutations. Three hypotheses claim to have found a countervailing selective advantage of parent-specific expression. Imprinting is proposed to have evolved because it enhances evolvability in a changing environment, protects females against the ravages of invasive trophoblast, or because natural selection acts differently on genes of maternal and paternal origin in interactions among kin. The last hypothesis has received the most extensive theoretical development and seems the best supported by the properties of known imprinted genes. However, the hypothesis is yet to provide a compelling explanation for many examples of imprinting.
Collapse
Affiliation(s)
- Jon F Wilkins
- Society of Fellows, 7 Divinity Avenue, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
30
|
Weisstein AE, Feldman MW, Spencer HG. Evolutionary Genetic Models of the Ovarian Time Bomb Hypothesis for the Evolution of Genomic Imprinting. Genetics 2002; 162:425-39. [PMID: 12242251 PMCID: PMC1462244 DOI: 10.1093/genetics/162.1.425] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
At a small number of loci in eutherian mammals, only one of the two copies of a gene is expressed; the other is silenced. Such loci are said to be “imprinted,” with some having the maternally inherited allele inactivated and others showing paternal inactivation. Several hypotheses have been proposed to explain how such a genetic system could evolve in the face of the selective advantages of diploidy. In this study, we examine the “ovarian time bomb” hypothesis, which proposes that imprinting arose through selection for reduced risk of ovarian trophoblastic disease in females. We present three evolutionary genetic models that incorporate both this selection pressure and the effect of deleterious mutations to elucidate the conditions under which imprinting could evolve. Our findings suggest that the ovarian time bomb hypothesis can explain why some growth-enhancing genes active in early embryogenesis [e.g., mouse insulin-like growth factor 2 (Igf2)] have evolved to be maternally rather than paternally inactive and why the opposite imprinting status has evolved at some growth-inhibiting loci [e.g., mouse insulin-like growth factor 2 receptor (Igf2r)].
Collapse
Affiliation(s)
- Anton E Weisstein
- Department of Zoology, University of Otago, Dunedin 9001, New Zealand.
| | | | | |
Collapse
|
31
|
Abstract
Standard genetic analyses assume that reciprocal heterozygotes are, on average, phenotypically identical. If a locus is subject to genomic imprinting, however, this assumption does not hold. We incorporate imprinting into the standard quantitative-genetic model for two alleles at a single locus, deriving expressions for the additive and dominance components of genetic variance, as well as measures of resemblance among relatives. We show that, in contrast to the case with Mendelian expression, the additive and dominance deviations are correlated. In principle, this correlation allows imprinting to be detected solely on the basis of different measures of familial resemblances, but in practice, the standard error of the estimate is likely to be too large for a test to have much statistical power. The effects of genomic imprinting will need to be incorporated into quantitative-genetic models of many traits, for example, those concerned with mammalian birthweight.
Collapse
Affiliation(s)
- Hamish G Spencer
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
32
|
Greenwood-Lee JM, Taylor PD, Haig D. The Inclusive Fitness Dynamics of Genomic Imprinting. ACTA ACUST UNITED AC 2002. [DOI: 10.1556/select.2.2001.1-2.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|