1
|
Liang Y, Luan YX. The functional evolution of collembolan Ubx on the regulation of abdominal appendage formation. Dev Genes Evol 2024; 234:135-151. [PMID: 38980376 PMCID: PMC7616481 DOI: 10.1007/s00427-024-00718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Folsomia candida is a tiny soil-living arthropod belonging to the Collembola, which is an outgroup to Insecta. It resembles insects as having a pair of antennae and three pairs of thorax legs, while it also possesses three abdominal appendages: a ventral tube located in the first abdominal segment (A1), a retinaculum in A3, and a furca in A4. Collembolan Ubx and AbdA specify abdominal appendages, but they are unable to repress appendage marker gene Dll. The genetic basis of collembolan appendage formation and the mechanisms by which Ubx and AbdA regulate Dll transcription and appendage development remains unknown. In this study, we analysed the developmental transcriptomes of F. candida and identified candidate appendage formation genes, including Ubx (FcUbx). The expression data revealed the dominance of Dll over Ubx during the embryonic 3.5 and 4.5 days, suggesting that Ubx is deficient in suppressing Dll at early appendage formation stages. Furthermore, via electrophoretic mobility shift assays and dual luciferase assays, we found that the binding and repression capacity of FcUbx on Drosophila Dll resembles those of the longest isoform of Drosophila Ubx (DmUbx_Ib), while the regulatory mechanism of the C-terminus of FcUbx on Dll repression is similar to that of the crustacean Artemia franciscana Ubx (AfUbx), demonstrating that the function of collembolan Ubx is intermediate between that of Insecta and Crustacea. In summary, our study provides novel insights into collembolan appendage formation and sheds light on the functional evolution of Ubx. Additionally, we propose a model that collembolan Ubx regulates abdominal segments in a context-specific manner.
Collapse
Affiliation(s)
- Yan Liang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Klementz BC, Brenneis G, Hinne IA, Laumer EM, Neu SM, Hareid GM, Gainett G, Setton EVW, Simian C, Vrech DE, Joyce I, Barnett AA, Patel NH, Harvey MS, Peretti AV, Gulia-Nuss M, Sharma PP. A Novel Expression Domain of extradenticle Underlies the Evolutionary Developmental Origin of the Chelicerate Patella. Mol Biol Evol 2024; 41:msae188. [PMID: 39235104 PMCID: PMC11422720 DOI: 10.1093/molbev/msae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2, suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2, disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio, which lacks dachshund-2. Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle. Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.
Collapse
Affiliation(s)
- Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Georg Brenneis
- Unit Integrative Zoologie, Department Evolutionsbiologie, Universität Wien, Vienna, Austria
| | - Isaac A Hinne
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Ethan M Laumer
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophie M Neu
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace M Hareid
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children,'s Hospital, Boston, MA, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Catalina Simian
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - David E Vrech
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Isabella Joyce
- Department of Biology, DeSales University, Center Valley, PA, USA
| | - Austen A Barnett
- Department of Biology, DeSales University, Center Valley, PA, USA
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA
- Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | - Alfredo V Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Klementz BC, Brenneis G, Hinne IA, Laumer EM, Neu SM, Hareid GM, Gainett G, Setton EVW, Simian C, Vrech DE, Joyce I, Barnett AA, Patel NH, Harvey MS, Peretti AV, Gulia-Nuss M, Sharma PP. A novel expression domain of extradenticle underlies the evolutionary developmental origin of the chelicerate patella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594547. [PMID: 38826321 PMCID: PMC11142128 DOI: 10.1101/2024.05.16.594547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2 , suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2 , disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio , which lacks dachshund-2 . Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle . Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.
Collapse
|
5
|
Wang YX, Chen HF, Yin ZY, Chen WL, Lu LT. The genetic adaptations of Toxoptera aurantii facilitated its rapid multiple plant hosts dispersal and invasion. Genomics 2022; 114:110472. [PMID: 36055573 DOI: 10.1016/j.ygeno.2022.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/14/2023]
Abstract
Toxoptera aurantii Boyer de Fonscolombe (Hemiptera: Aphididae) can attack many plant hosts, including tea (Camellia sinensis L.), citrus (Citrus spp.), lychee (Litchi chinensis Sonn.), banana (Musa spp.), and pineapple (Ananas comasus L.) among others. It is a widely distributed hexapod and one of the most destructive pests in tea plantations, causing enormous economic losses in tea production each year. A high-quality reference genome is important to study the phylogenetics and evolution of T. aurantii because its genome is highly heterozygous and repetitive. We obtained a de novo genome assembly of T. aurantii at the chromosome level using a combination of long Nanopore reads from sequencing with high-throughput chromosome conformation capture technology. When finally assembled, the genome was 318.95 Mb on four chromosomes with a 15.19 Mb scaffold N50. A total of 12,162 genes encoded proteins, while there were 22.01% repetitive sequences that totaled 67.73 Mb. Phylogenetic analyses revealed that T. aurantii and Aphis gossypii parted ways approximately 7.6 million years ago (Mya). We used a combination of long-read single-molecule sequencing with Hi-C-based chromatin interaction maps that resulted in a reference chromosomal level reference genome of T. aurantii that was high quality. Our results will enable the exploration of the genetics behind the special biological features of T. aurantii and also provide a source of data that should be useful to compare the compare genome among the Hemiptera.
Collapse
Affiliation(s)
- Yan-Xia Wang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Hu-Fang Chen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Zheng-Yan Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Wen-Long Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Li-Tang Lu
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Velten J, Gao X, Van Nierop y Sanchez P, Domsch K, Agarwal R, Bognar L, Paulsen M, Velten L, Lohmann I. Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in
Drosophila
embryos. Mol Syst Biol 2022; 18:e10255. [PMID: 35225419 PMCID: PMC8883443 DOI: 10.15252/msb.202110255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to precisely innervate a unique pre‐specified target cell are poorly understood. We investigated Drosophila embryonic motoneurons using single‐cell genomics, imaging, and genetics. We show that a cell‐specific combination of homeodomain transcription factors and downstream immunoglobulin domain proteins is expressed in individual cells and plays an important role in determining cell‐specific connections between differentiated motoneurons and target muscles. We provide genetic evidence for a functional role of five homeodomain transcription factors and four immunoglobulins in the neuromuscular wiring. Knockdown and ectopic expression of these homeodomain transcription factors induces cell‐specific synaptic wiring defects that are partly phenocopied by genetic modulations of their immunoglobulin targets. Taken together, our data suggest that homeodomain transcription factor and immunoglobulin molecule expression could be directly linked and function as a crucial determinant of neuronal circuit structure.
Collapse
Affiliation(s)
- Jessica Velten
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Xuefan Gao
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | | | - Katrin Domsch
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- Developmental Biology Erlangen‐Nürnberg University Erlangen Germany
| | - Rashi Agarwal
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Lena Bognar
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Lars Velten
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| | - Ingrid Lohmann
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| |
Collapse
|
7
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
8
|
Li X, Zhao MH, Tian MM, Zhao J, Cai WL, Hua HX. An InR/mir-9a/NlUbx regulatory cascade regulates wing diphenism in brown planthoppers. INSECT SCIENCE 2021; 28:1300-1313. [PMID: 32935926 DOI: 10.1111/1744-7917.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Wing polymorphism significantly contributes to the ecological success of some insect species. For example, the brown planthopper (BPH) Nilaparvata lugens, which is one of the most destructive rice pests in Asia, can develop into either highly mobile long-winged or highly fecund short-winged adult morphs. A recent study reported a highly provocative result that the Hox gene Ultrabithorax (Ubx) is expressed in BPH forewings and showed that this wing development gene is differentially expressed in nymphs that develop into long-winged versus short-winged morphs. Here, we found that Ubx may be a mir-9a target, and used dual luciferase reporter assays and injected micro RNA (miRNA) mimics and inhibitors to confirm the interactions between mir-9a and NlUbx. We measured the mir-9a and NlUbx expression profiles in nymphs and found that the expression of these two biomolecules was negatively correlated. By rearing BPH nymphs on host rice plants with different nutritional status, we were able to characterize a regulatory cascade between insulin receptor genes, mir-9a, and NlUbx that regulate wing length in BPHs. When host quality was low, NlInR1 expression in the nymph terga increased and NlInR2 expression decreased; this led to a higher mir-9a level, which in turn reduced the NlUbx transcript level and ultimately resulted in longer wing lengths. Beyond extending our understanding of the interplay between host plant status and genetic events that modulate polymorphism, we demonstrated both the upstream signal and miRNA-based regulatory mechanism that control Ubx expression in BPH forewings.
Collapse
Affiliation(s)
- Xiang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mu-Hua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miao-Miao Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wan-Lun Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong-Xia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Matsuoka Y, Monteiro A. Hox genes are essential for the development of eyespots in Bicyclus anynana butterflies. Genetics 2021; 217:1-9. [PMID: 33683353 DOI: 10.1093/genetics/iyaa005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The eyespot patterns found on the wings of nymphalid butterflies are novel traits that originated first in hindwings and subsequently in forewings, suggesting that eyespot development might be dependent on Hox genes. Hindwings differ from forewings in the expression of Ultrabithorax (Ubx), but the function of this Hox gene in eyespot development as well as that of another Hox gene Antennapedia (Antp), expressed specifically in eyespots centers on both wings, are still unclear. We used CRISPR-Cas9 to target both genes in Bicyclus anynana butterflies. We show that Antp is essential for eyespot development on the forewings and for the differentiation of white centers and larger eyespots on hindwings, whereas Ubx is essential not only for the development of at least some hindwing eyespots but also for repressing the size of other eyespots. Additionally, Antp is essential for the development of silver scales in male wings. In summary, Antp and Ubx, in addition to their conserved roles in modifying serially homologous segments along the anterior-posterior axis of insects, have acquired a novel role in promoting the development of a new set of serial homologs, the eyespot patterns, in both forewings (Antp) and hindwings (Antp and Ubx) of B. anynana butterflies. We propose that the peculiar pattern of eyespot origins on hindwings first, followed by forewings, could be due to an initial co-option of Ubx into eyespot development followed by a later, partially redundant, co-option of Antp into the same network.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore.,Science Division, Yale-NUS College, 138609 Singapore, Singapore
| |
Collapse
|
10
|
Porto DS, Almeida EAB, Pennell MW. Investigating Morphological Complexes Using Informational Dissonance and Bayes Factors: A Case Study in Corbiculate Bees. Syst Biol 2021; 70:295-306. [PMID: 32722788 PMCID: PMC7882150 DOI: 10.1093/sysbio/syaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022] Open
Abstract
It is widely recognized that different regions of a genome often have different evolutionary histories and that ignoring this variation when estimating phylogenies can be misleading. However, the extent to which this is also true for morphological data is still largely unknown. Discordance among morphological traits might plausibly arise due to either variable convergent selection pressures or else phenomena such as hemiplasy. Here, we investigate patterns of discordance among 282 morphological characters, which we scored for 50 bee species particularly targeting corbiculate bees, a group that includes the well-known eusocial honeybees and bumblebees. As a starting point for selecting the most meaningful partitions in the data, we grouped characters as morphological modules, highly integrated trait complexes that as a result of developmental constraints or coordinated selection we expect to share an evolutionary history and trajectory. In order to assess conflict and coherence across and within these morphological modules, we used recently developed approaches for computing Bayesian phylogenetic information allied with model comparisons using Bayes factors. We found that despite considerable conflict among morphological complexes, accounting for among-character and among-partition rate variation with individual gamma distributions, rate multipliers, and linked branch lengths can lead to coherent phylogenetic inference using morphological data. We suggest that evaluating information content and dissonance among partitions is a useful step in estimating phylogenies from morphological data, just as it is with molecular data. Furthermore, we argue that adopting emerging approaches for investigating dissonance in genomic datasets may provide new insights into the integration and evolution of anatomical complexes. [Apidae; entropy; morphological modules; phenotypic integration; phylogenetic information.].
Collapse
Affiliation(s)
- Diego S Porto
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 926 West Campus Drive, Blacksburg, VA 24061 USA
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Matthew W Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Clark-Hachtel C, Fernandez-Nicolas A, Belles X, Tomoyasu Y. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings. Evol Dev 2021; 23:100-116. [PMID: 33503322 DOI: 10.1111/ede.12372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 01/03/2023]
Abstract
The acquisition of wings has facilitated the massive evolutionary success of pterygotes (winged insects), which now make up nearly three-quarters of described metazoans. However, our understanding of how this crucial structure has evolved remains quite elusive. Historically, two ideas have dominated in the wing origin debate, one placing the origin in the dorsal body wall (tergum) and the other in the lateral pleural plates and the branching structures associated with these plates. Through studying wing-related tissues in the wingless segments (such as wing serial homologs) of the beetle, Tribolium castaneum, we obtained several crucial pieces of evidence that support a third idea, the dual origin hypothesis, which proposes that wings evolved from a combination of tergal and pleural tissues. Here, we extended our analysis outside of the beetle lineage and sought to identify wing-related tissues from the wingless segments of the cockroach, Blattella germanica. Through detailed functional and expression analyses for a critical wing gene, vestigial (vg), along with re-evaluating the homeotic transformation of a wingless segment induced by an improved RNA interference protocol, we demonstrate that B. germanica possesses two distinct tissues in their wingless segments, one with tergal and one with pleural nature, that might be evolutionarily related to wings. This outcome appears to parallel the reports from other insects, which may further support a dual origin of insect wings. However, we also identified a vg-independent tissue that contributes to wing formation upon homeotic transformation, as well as vg-dependent tissues that do not appear to participate in wing formation, in B. germanica, indicating a more complex evolutionary history of the tissues that contributed to the emergence of insect wings.
Collapse
Affiliation(s)
| | | | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
12
|
Mohren TL, Daniel TL, Eberle AL, Reinhall PG, Fox JL. Coriolis and centrifugal forces drive haltere deformations and influence spike timing. J R Soc Interface 2020; 16:20190035. [PMID: 31014202 PMCID: PMC6505556 DOI: 10.1098/rsif.2019.0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The halteres of flies are mechanosensory organs that serve a crucial role in the control of agile flight, providing sensory input for rapid course corrections to perturbations. Derived from hind wings, halteres are actively flapped and are thus subject to a variety of inertial forces as the fly undergoes complex flight trajectories. Previous analyses of halteres modelled them as a point mass, showing that Coriolis forces lead to subtle deflections orthogonal to the plane of flapping. By design, these models could not consider the effects of force gradients associated with a mass distribution, nor could they reveal three-dimensional spatio-temporal patterns of strain that result from those forces. In addition, diversity in the geometry of halteres, such as shape and asymmetries, could not be simply modelled with a point mass on a massless rod. To study the effects of mass distributions and asymmetries, we examine the haltere subject to both flapping and body rotations using three-dimensional finite-element simulations. We focus on a set of simplified geometries, in which we vary the stalk and bulb shape. We find that haltere mass distribution gives rise to two unreported deformation modes: (i) halteres twist with a magnitude that strongly depends on stalk and bulb geometry and (ii) halteres with an asymmetric mass distribution experience out-of-plane bending due to centrifugal forces, independent of body rotation. Since local strains at the base of the haltere drive deformations of mechanosensory neurons, we combined measured neural encoding mechanisms with our structural analyses to predict the spatial and temporal patterns of neural activity. This activity depends on both the flapping and rotation dynamics, and we show how the timing of neural activity is a viable mechanism for rotation-rate encoding. Our results provide new insights in haltere dynamics and show the viability for timing-based encoding of fly body rotations by halteres.
Collapse
Affiliation(s)
- T L Mohren
- 1 Department of Mechanical Engineering, University of Washington , Seattle, WA , USA
| | - T L Daniel
- 1 Department of Mechanical Engineering, University of Washington , Seattle, WA , USA.,2 Department of Biology, University of Washington , Seattle, WA , USA
| | - A L Eberle
- 1 Department of Mechanical Engineering, University of Washington , Seattle, WA , USA
| | - P G Reinhall
- 1 Department of Mechanical Engineering, University of Washington , Seattle, WA , USA
| | - J L Fox
- 3 Department of Biology, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
13
|
Hernandez J, Pick L, Reding K. Oncopeltus-like gene expression patterns in Murgantia histrionica, a new hemipteran model system, suggest ancient regulatory network divergence. EvoDevo 2020; 11:9. [PMID: 32337018 PMCID: PMC7178596 DOI: 10.1186/s13227-020-00154-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Much has been learned about basic biology from studies of insect model systems. The pre-eminent insect model system, Drosophila melanogaster, is a holometabolous insect with a derived mode of segment formation. While additional insect models have been pioneered in recent years, most of these fall within holometabolous lineages. In contrast, hemimetabolous insects have garnered less attention, although they include agricultural pests, vectors of human disease, and present numerous evolutionary novelties in form and function. The milkweed bug, Oncopeltus fasciatus (order: Hemiptera)—close outgroup to holometabolous insects—is an emerging model system. However, comparative studies within this order are limited as many phytophagous hemipterans are difficult to stably maintain in the lab due to their reliance on fresh plants, deposition of eggs within plant material, and long development time from embryo to adult. Results Here we present the harlequin bug, Murgantia histrionica, as a new hemipteran model species. Murgantia—a member of the stink bug family Pentatomidae which shares a common ancestor with Oncopeltus ~ 200 mya—is easy to rear in the lab, produces a large number of eggs, and is amenable to molecular genetic techniques. We use Murgantia to ask whether Pair-Rule Genes (PRGs) are deployed in ways similar to holometabolous insects or to Oncopeltus. Specifically, PRGs even-skipped, odd-skipped, paired and sloppy-paired are initially expressed in PR-stripes in Drosophila and a number of holometabolous insects but in segmental-stripes in Oncopeltus. We found that these genes are likewise expressed in segmental-stripes in Murgantia, while runt displays partial PR-character in both species. Also like Oncopeltus, E75A is expressed in a clear PR-pattern in blastoderm- and germband-stage Murgantia embryos, although it plays no role in segmentation in Drosophila. Thus, genes diagnostic of the split between holometabolous insects and Oncopeltus are expressed in an Oncopeltus-like fashion during Murgantia development. Conclusions The similarity in gene expression between Murgantia and Oncopeltus suggests that Oncopeltus is not a sole outlier species in failing to utilize orthologs of Drosophila PRGs for PR-patterning. Rather, strategies deployed for PR-patterning, including the use of E75A in the PRG-network, are likely conserved within Hemiptera, and possibly more broadly among hemimetabolous insects.
Collapse
Affiliation(s)
- Jessica Hernandez
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Leslie Pick
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| | - Katie Reding
- Department of Entomology, University of Maryland, 4291 Fieldhouse Drive, College Park, MD 20742 USA
| |
Collapse
|
14
|
Schomburg C, Turetzek N, Prpic NM. Candidate gene screen for potential interaction partners and regulatory targets of the Hox gene labial in the spider Parasteatoda tepidariorum. Dev Genes Evol 2020; 230:105-120. [PMID: 32036446 PMCID: PMC7128011 DOI: 10.1007/s00427-020-00656-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.
Collapse
Affiliation(s)
- Christoph Schomburg
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Natascha Turetzek
- Ludwig-Maximilians-Universität München, Lehrstuhl für Evolutionäre Ökologie, Biozentrum II, Großhadernerstraße 2, 82152, Planegg-Martinsried, Germany
| | - Nikola-Michael Prpic
- Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
15
|
Decapentaplegic function in wing vein development and wing morph transformation in brown planthopper, Nilaparvata lugens. Dev Biol 2019; 449:143-150. [DOI: 10.1016/j.ydbio.2019.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/08/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
|
16
|
Tan D, Hu H, Tong X, Han M, Wu S, Ding X, Dai F, Lu C. Comparative Analysis of the Integument Transcriptomes between Stick Mutant and Wild-Type Silkworms. Int J Mol Sci 2018; 19:ijms19103158. [PMID: 30322193 PMCID: PMC6214029 DOI: 10.3390/ijms19103158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
In insects, the integument provides mechanical support for the whole body and protects them from infections, physical and chemical injuries, and dehydration. Diversity in integument properties is often related to body shape, behavior, and survival rate. The stick (sk) silkworm is a spontaneous mutant with a stick-like larval body that is firm to the touch and, thus, less flexible. Analysis of the mechanical properties of the cuticles at day 3 of the fifth instar (L5D3) of sk larvae revealed higher storage modulus and lower loss tangent. Transcriptome sequencing identified a total of 19,969 transcripts that were expressed between wild-type Dazao and the sk mutant at L5D2, of which 11,596 transcripts were novel and detected in the integument. Differential expression analyses identified 710 upregulated genes and 1009 downregulated genes in the sk mutant. Gene Ontology (GO) enrichment analysis indicated that four chitin-binding peritrophin A domain genes and a chitinase gene were upregulated, whereas another four chitin-binding peritrophin A domain genes, a trehalase, and nine antimicrobial peptides were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two functional pathways, namely, fructose and mannose metabolism and tyrosine metabolism, were significantly enriched with differentially-expressed transcripts. This study provides a foundation for understanding the molecular mechanisms underlying the development of the stiff exoskeleton in the sk mutant.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
18
|
Witteveen J. Typological thinking: Then and now. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:123-131. [PMID: 29578654 PMCID: PMC6001556 DOI: 10.1002/jez.b.22796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 02/08/2018] [Accepted: 02/27/2018] [Indexed: 11/08/2022]
Abstract
A popular narrative about the history of modern biology has it that Ernst Mayr introduced the distinction between "typological thinking" and "population thinking" to mark a contrast between a metaphysically problematic and a promising foundation for (evolutionary) biology, respectively. This narrative sometimes continues with the observation that, since the late-20th century, typological concepts have been making a comeback in biology, primarily in the context of evolutionary developmental biology. It is hard to square this narrative with the historical and philosophical literature on the typology/population distinction from the last decade or so. The conclusion that emerges from this literature is that the very distinction between typological thinking and population thinking is a piece of mere rhetoric that was concocted and rehearsed for purely strategic, programmatic reasons. If this is right, it becomes hard to make sense of recent criticisms (and sometimes: espousals) of the purportedly typological underpinnings of certain contemporary research programs. In this article, I offer a way out of this apparent conflict. I show that we can make historical and philosophical sense of the continued accusations of typological thinking by looking beyond Mayr, to his contemporary and colleague George Gaylord Simpson. I show that before Mayr discussed the typology/population distinction as an issue in scientific metaphysics, Simpson introduced it to mark several contrasts in methodology and scientific practice. I argue that Simpson's insightful discussion offers useful resources for classifying and assessing contemporary attributions of typological thinking.
Collapse
Affiliation(s)
- Joeri Witteveen
- Descartes Centre for the History and Philosophy of the Sciences and the HumanitiesUtrecht UniversityUtrechtThe Netherlands
- Department of Science EducationSection for History and Philosophy of ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
19
|
Schiffer PH, Polsky AL, Cole AG, Camps JIR, Kroiher M, Silver DH, Grishkevich V, Anavy L, Koutsovoulos G, Hashimshony T, Yanai I. The gene regulatory program of Acrobeloides nanus reveals conservation of phylum-specific expression. Proc Natl Acad Sci U S A 2018; 115:4459-4464. [PMID: 29626130 PMCID: PMC5924915 DOI: 10.1073/pnas.1720817115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of development has been studied through the lens of gene regulation by examining either closely related species or extremely distant animals of different phyla. In nematodes, detailed cell- and stage-specific expression analyses are focused on the model Caenorhabditis elegans, in part leading to the view that the developmental expression of gene cascades in this species is archetypic for the phylum. Here, we compared two species of an intermediate evolutionary distance: the nematodes C. elegans (clade V) and Acrobeloides nanus (clade IV). To examine A. nanus molecularly, we sequenced its genome and identified the expression profiles of all genes throughout embryogenesis. In comparison with C. elegans, A. nanus exhibits a much slower embryonic development and has a capacity for regulative compensation of missing early cells. We detected conserved stages between these species at the transcriptome level, as well as a prominent middevelopmental transition, at which point the two species converge in terms of their gene expression. Interestingly, we found that genes originating at the dawn of the Ecdysozoa supergroup show the least expression divergence between these two species. This led us to detect a correlation between the time of expression of a gene and its phylogenetic age: evolutionarily ancient and young genes are enriched for expression in early and late embryogenesis, respectively, whereas Ecdysozoa-specific genes are enriched for expression during the middevelopmental transition. Our results characterize the developmental constraints operating on each individual embryo in terms of developmental stages and genetic evolutionary history.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Avital L Polsky
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Alison G Cole
- Department of Molecular Evolution and Development, University of Vienna, 1090 Vienna, Austria
| | - Julia I R Camps
- Molecular Cell Biology, Institute I for Anatomy University Clinic Cologne, University of Cologne, 50937 Cologne, Germany
| | - Michael Kroiher
- Zoological Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - David H Silver
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Leon Anavy
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Georgios Koutsovoulos
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JW, United Kingdom
| | - Tamar Hashimshony
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Itai Yanai
- Institute for Computational Medicine, NYU School of Medicine, New York, NY 10016
| |
Collapse
|
20
|
Abstract
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
21
|
Tweedt SM. Gene Regulatory Networks, Homology, and the Early Panarthropod Fossil Record. Integr Comp Biol 2017; 57:477-487. [PMID: 28957522 DOI: 10.1093/icb/icx095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The arthropod body plan is widely believed to have derived from an ancestral form resembling Cambrian-aged fossil lobopodians, and interpretations of morphological and molecular data have long favored this hypothesis. It is possible, however, that appendages and other morphologies observed in extinct and living panarthropods evolved independently. The key to distinguishing between morphological homology and homoplasy lies in the study of developmental gene regulatory networks (GRNs), and specifically, in determining the unique genetic circuits that construct characters. In this study, I discuss character identity and panarthropod appendage evolution within a developmental GRN framework, with a specific focus on potential limb character identity networks ("ChINs"). I summarize recent molecular studies, and argue that current data do not rule out the possibility of independent panarthropod limb evolution. The link between character identity and GRN architecture has broad implications for homology assessment, and this genetic framework offers alternative approaches to fossil character coding, phylogenetic analyses, and future research into the origin of the arthropod body plan.
Collapse
Affiliation(s)
- Sarah M Tweedt
- Department of Geology & Geophysics, Yale University, New Haven, CT 06520-8109, USA
| |
Collapse
|
22
|
Perspectives on Gene Regulatory Network Evolution. Trends Genet 2017; 33:436-447. [PMID: 28528721 DOI: 10.1016/j.tig.2017.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022]
Abstract
Animal development proceeds through the activity of genes and their cis-regulatory modules (CRMs) working together in sets of gene regulatory networks (GRNs). The emergence of species-specific traits and novel structures results from evolutionary changes in GRNs. Recent work in a wide variety of animal models, and particularly in insects, has started to reveal the modes and mechanisms of GRN evolution. I discuss here various aspects of GRN evolution and argue that developmental system drift (DSD), in which conserved phenotype is nevertheless a result of changed genetic interactions, should regularly be viewed from the perspective of GRN evolution. Advances in methods to discover related CRMs in diverse insect species, a critical requirement for detailed GRN characterization, are also described.
Collapse
|
23
|
Abstract
Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings.
Collapse
Affiliation(s)
- Yoshinori Tomoyasu
- Department of Biology, Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, USA
| | - Takahiro Ohde
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Courtney Clark-Hachtel
- Department of Biology, Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, USA
| |
Collapse
|
24
|
Clark-Hachtel CM, Tomoyasu Y. Exploring the origin of insect wings from an evo-devo perspective. CURRENT OPINION IN INSECT SCIENCE 2016; 13:77-85. [PMID: 27436556 DOI: 10.1016/j.cois.2015.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 06/06/2023]
Abstract
Although insect wings are often used as an example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a major conundrum in biology. Over a century of debates and observations have culminated in two prominent hypotheses on the origin of insect wings: the tergal hypothesis and the pleural hypothesis. However, despite accumulating efforts to unveil the origin of insect wings, neither hypothesis has been able to surpass the other. Recent investigations using the evolutionary developmental biology (evo-devo) approach have started shedding new light on this century-long debate. Here, we review these evo-devo studies and discuss how their findings may support a dual origin of insect wings, which could unify the two major hypotheses.
Collapse
Affiliation(s)
| | - Yoshinori Tomoyasu
- Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, USA.
| |
Collapse
|
25
|
Pass G, Tögel M, Krenn H, Paululat A. The circulatory organs of insect wings: Prime examples for the origin of evolutionary novelties. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Smith FW, Jockusch EL. The metameric pattern of Hypsibius dujardini(Eutardigrada) and its relationship to that of other panarthropods. Front Zool 2014. [DOI: 10.1186/s12983-014-0066-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
27
|
Della Pina S, Souer E, Koes R. Arguments in the evo-devo debate: say it with flowers! JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2231-42. [PMID: 24648567 DOI: 10.1093/jxb/eru111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A key question in evolutionary developmental biology is how DNA sequence changes have directed the evolution of morphological diversity. The widely accepted view was that morphological changes resulted from differences in number and/or type of transcription factors, or even from small changes in the amino acid sequence of similar proteins. Research over the last two decades indicated that most of the developmental and genetic mechanisms that produce new structures involve proteins that are deeply conserved. These proteins are encoded by a type of genes known as 'toolkit' genes that control a plethora of processes essential for the correct development of the organism. Mutations in these toolkit genes produce deleterious pleiotropic effects. In contrast, alterations in regulatory regions affect their expression only at specific sites in the organism, facilitating morphological change at the tissue and organ levels. However, some examples from the animal and plant fields indicate that coding mutations also contributed to phenotypic evolution. Therefore, the main question at this point is to what extent these mechanisms have contributed to the evolution of morphological diversity. Today, an increasing amount of data, especially from the plant field, implies that changes in cis-regulatory sequences in fact played a major role in evolution.
Collapse
Affiliation(s)
- Serena Della Pina
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Erik Souer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Heffer A, Grubbs N, Mahaffey J, Pick L. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene. Evol Dev 2014; 15:406-17. [PMID: 24261442 DOI: 10.1111/ede.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | | | | | | |
Collapse
|
29
|
Ninova M, Ronshaugen M, Griffiths-Jones S. Fast-evolving microRNAs are highly expressed in the early embryo of Drosophila virilis. RNA (NEW YORK, N.Y.) 2014; 20:360-72. [PMID: 24448446 PMCID: PMC3923130 DOI: 10.1261/rna.041657.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/02/2013] [Indexed: 05/27/2023]
Abstract
MicroRNAs are short non-protein-coding RNAs that regulate gene expression at the post-transcriptional level and are essential for the embryonic development of multicellular animals. Comparative genome-scale analyses have revealed that metazoan evolution is accompanied by the continuous acquisition of novel microRNA genes. This suggests that novel microRNAs may promote innovation and diversity in development. We determined the evolutionary origins of extant Drosophila microRNAs and estimated the sequence divergence between the 130 orthologous microRNAs in Drosophila melanogaster and Drosophila virilis, separated by 63 million years of evolution. We then generated small RNA sequencing data sets covering D. virilis development and explored the relationship between microRNA conservation and expression in a developmental context. We find that late embryonic, larval, and adult stages are dominated by conserved microRNAs. This pattern, however, does not hold for the early embryo, where rapidly evolving microRNAs are uniquely present at high levels in both species. The group of fast-evolving microRNAs that are highly expressed in the early embryo belong to two Drosophilid lineage-specific clusters: mir-310 ∼ 313 and mir-309 ∼ 6. These clusters have particularly complex evolutionary histories of duplication, gain, and loss. Our analyses suggest that the early embryo is a more permissive environment for microRNA changes and innovations. Fast-evolving microRNAs, therefore, have the opportunity to become preferentially integrated in early developmental processes, and may impact the evolution of development. The relationship between microRNA conservation and expression throughout the development of Drosophila differs from that previously observed for protein-coding genes.
Collapse
|
30
|
Heffer A, Pick L. Conservation and variation in Hox genes: how insect models pioneered the evo-devo field. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:161-179. [PMID: 23317041 DOI: 10.1146/annurev-ento-120811-153601] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Evolutionary developmental biology, or evo-devo, broadly investigates how body plan diversity and morphological novelties have arisen and persisted in nature. The discovery of Hox genes in Drosophila, and their subsequent identification in most other metazoans, led biologists to try to understand how embryonic genes crucial for proper development have changed to promote the vast morphological variation seen in nature. Insects are ideal model systems for studying this diversity and the mechanisms underlying it because phylogenetic relationships are well established, powerful genetic tools have been developed, and there are many examples of evolutionary specializations that have arisen in nature in different insect lineages, such as the jumping leg of orthopterans and the helmet structures of treehoppers. Here, we briefly introduce the field of evo-devo and Hox genes, discuss functional tools available to study early developmental genes in insects, and provide examples in which changes in Hox genes have contributed to changes in body plan or morphology.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
31
|
Williams T, Blachuta B, Hegna TA, Nagy LM. Decoupling elongation and segmentation: notch involvement in anostracan crustacean segmentation. Evol Dev 2012; 14:372-82. [PMID: 22765208 DOI: 10.1111/j.1525-142x.2012.00555.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Repeated body segments are a key feature of arthropods. The formation of body segments occurs via distinct developmental pathways within different arthropod clades. Although some species form their segments simultaneously without any accompanying measurable growth, most arthropods add segments sequentially from the posterior of the growing embryo or larva. The use of Notch signaling is increasingly emerging as a common feature of sequential segmentation throughout the Bilateria, as inferred from both the expression of proteins required for Notch signaling and the genetic or pharmacological disruption of Notch signaling. In this study, we demonstrate that blocking Notch signaling by blocking γ-secretase activity causes a specific, repeatable effect on segmentation in two different anostracan crustaceans, Artemia franciscana and Thamnocephalus platyurus. We observe that segmentation posterior to the third or fourth trunk segment is arrested. Despite this marked effect on segment addition, other aspects of segmentation are unaffected. In the segments that develop, segment size and boundaries between segments appear normal, engrailed stripes are normal in size and alignment, and overall growth is unaffected. By demonstrating Notch involvement in crustacean segmentation, our findings expand the evidence that Notch plays a crucial role in sequential segmentation in arthropods. At the same time, our observations contribute to an emerging picture that loss-of-function Notch phenotypes differ significantly between arthropods suggesting variability in the role of Notch in the regulation of sequential segmentation. This variability in the function of Notch in arthropod segmentation confounds inferences of homology with vertebrates and lophotrochozoans.
Collapse
Affiliation(s)
- Terri Williams
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | | | |
Collapse
|
32
|
Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate. PLoS One 2012; 7:e34682. [PMID: 22685537 PMCID: PMC3369913 DOI: 10.1371/journal.pone.0034682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 01/10/2023] Open
Abstract
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.
Collapse
Affiliation(s)
- Heike Hadrys
- ITZ, Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
El-Sherif E, Lynch JA, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:16-39. [PMID: 23801665 PMCID: PMC5323069 DOI: 10.1002/wdev.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Program of Genetics, Kansas State University, Manhattan, Kansas
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
34
|
Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature 2011; 473:83-6. [DOI: 10.1038/nature09977] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/02/2011] [Indexed: 11/08/2022]
|
35
|
Selection of distinct Hox-Extradenticle interaction modes fine-tunes Hox protein activity. Proc Natl Acad Sci U S A 2011; 108:2276-81. [PMID: 21262810 DOI: 10.1073/pnas.1006964108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes encode transcription factors widely used for diversifying animal body plans in development and evolution. To achieve functional specificity, Hox proteins associate with PBC class proteins, Pre-B cell leukemia homeobox (Pbx) in vertebrates, and Extradenticle (Exd) in Drosophila, and were thought to use a unique hexapeptide-dependent generic mode of interaction. Recent findings, however, revealed the existence of an alternative, UbdA-dependent paralog-specific interaction mode providing diversity in Hox-PBC interactions. In this study, we investigated the basis for the selection of one of these two Hox-PBC interaction modes. Using naturally occurring variations and mutations in the Drosophila Ultrabithorax protein, we found that the linker region, a short domain separating the hexapeptide from the homeodomain, promotes an interaction mediated by the UbdA domain in a context-dependent manner. While using a UbdA-dependent interaction for the repression of the limb-promoting gene Distalless, interaction with Exd during segment-identity specification still relies on the hexapeptide motif. We further show that distinctly assembled Hox-PBC complexes display subtle but distinct repressive activities. These findings identify Hox-PBC interaction as a template for subtle regulation of Hox protein activity that may have played a major role in the diversification of Hox protein function in development and evolution.
Collapse
|
36
|
Strausfeld NJ. Brain Homology: Dohrn of a New Era? BRAIN, BEHAVIOR AND EVOLUTION 2010; 76:165-7. [DOI: 10.1159/000322150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Evolution of insect development: to the hemimetabolous paradigm. Curr Opin Genet Dev 2010; 20:355-61. [PMID: 20462751 DOI: 10.1016/j.gde.2010.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/23/2022]
Abstract
Mechanisms of insect development have been extensively studied in Drosophila melanogaster, a holometabolous insect. However, recent studies on other insects have gradually revealed that there exist new developmental paradigms. In this review, we focus on the new hemimetabolous paradigm. We highlight how hemimetabolous short-germ or intermediate-germ embryos establish the anterior/posterior (A/P) pattern and the importance of dynamic cell movement during germband formation. In hemimetabolous insects, orthodenticle, encoding a homeodomain-containing transcription factor, and wingless/Wnt signaling could play crucial roles in the A/P pattern formation. We also discuss recent evidence suggesting that insect developmental modes may have evolved by heterochronic shifts, while retaining certain universal metazoan features.
Collapse
|
38
|
Hrycaj S, Chesebro J, Popadić A. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana. Dev Biol 2010; 341:324-34. [PMID: 20171962 PMCID: PMC2856087 DOI: 10.1016/j.ydbio.2010.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.
Collapse
Affiliation(s)
- Steven Hrycaj
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| | - John Chesebro
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| | - Aleksandar Popadić
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| |
Collapse
|
39
|
Montagné N, Desdevises Y, Soyez D, Toullec JY. Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans. BMC Evol Biol 2010; 10:62. [PMID: 20184761 PMCID: PMC2841656 DOI: 10.1186/1471-2148-10-62] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/25/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. RESULTS CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. CONCLUSIONS Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence.
Collapse
Affiliation(s)
- Nicolas Montagné
- UPMC Univ Paris 06, UMR A 1272 INRA - Physiologie de l'Insecte: Signalisation et Communication, F-75005, Paris, France
| | - Yves Desdevises
- UPMC Univ Paris 06, FRE 3247 CNRS - Modèles en Biologie Cellulaire et Évolutive, Observatoire Océanologique, F-66651, Banyuls-sur-Mer, France
| | - Daniel Soyez
- UPMC Univ Paris 06, ER3 - Biogenèse des Signaux Peptidiques, F-75005, Paris, France
| | - Jean-Yves Toullec
- UPMC Univ Paris 06, UMR 7144 CNRS - Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, F-29682, Roscoff, France
| |
Collapse
|
40
|
Thomson SA, Baldwin WS, Wang YH, Kwon G, LeBlanc GA. Annotation, phylogenetics, and expression of the nuclear receptors in Daphnia pulex. BMC Genomics 2009; 10:500. [PMID: 19863811 PMCID: PMC2774871 DOI: 10.1186/1471-2164-10-500] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 10/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear receptor superfamily currently consists of seven gene subfamilies that encompass over 80 distinct receptor proteins. These transcription factors typically share a common five-domain structure with a highly conserved DNA-binding domain. Some nuclear receptors are ubiquitous among the metazoans, while others are unique to specific phylogenetic groups. Crustaceans represent the second largest group of arthropods with insects being the largest. However, relative to insects, little is known about the nuclear receptors of crustaceans. The aim of this study was to identify putative nuclear receptors from the first assembled genome of a crustacean Daphnia pulex http://wFleaBase.org. Nuclear receptor expression was evaluated and receptors were subjected to phylogenetic analyses to gain insight into evolution and function. RESULTS Twenty-five putative nuclear receptors were identified in D. pulex based on the presence of a conserved DNA-binding domain. All of the nuclear receptor protein sequences contain a highly homologous DNA-binding domain and a less conserved ligand-binding domain with the exception of the NR0A group. These receptors lack a ligand-binding domain. Phylogenetic analysis revealed the presence of all seven receptor subfamilies. The D. pulex genome contains several nuclear receptors that have vertebrate orthologs. However, several nuclear receptor members that are represented in vertebrates are absent from D. pulex. Notable absences include receptors of the 1C group (peroxisome proliferators-activated receptors), the 3A group (estrogen receptor), and the 3C group (androgen, progestogen, mineralcorticoid, and glucocorticoid receptors). The D. pulex genome also contains nuclear receptor orthologs that are present in insects and nematodes but not vertebrates, including putative nuclear receptors within the NR0A group. A novel group of receptors, designated HR97, was identified in D. pulex that groups with the HR96/CeNHR8/48/DAF12 clade, but forms its own sub-clade. Gene products were detected in adult female D. pulex for 21 of the 25 receptors. CONCLUSION Nuclear receptors are ancient proteins with highly conserved DNA-binding domains. The DNA-binding domains of the nuclear receptors of D. pulex contain the same degree of conservation that is typically found within nuclear receptors of other species. Most of the receptors identified in D. pulex have orthologs within the vertebrate and invertebrate lineages examined with the exception of the novel HR97 group and the Dappu-HR10 and potentially the Dappu-HR11 receptors found in D. pulex. These groups of receptors may harbour functions that are intrinsic to crustacean physiology.
Collapse
Affiliation(s)
- Susanne A Thomson
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - William S Baldwin
- Environmental Toxicology Program and Biological Sciences Department, Clemson University, Pendleton, South Carolina, USA
| | - Ying H Wang
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - Gwijun Kwon
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - Gerald A LeBlanc
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
41
|
Germann C, Pollet M, Tanner S, Backeljau T, Bernasconi MV. Legs of deception: disagreement between molecular markers and morphology of long-legged flies (Diptera, Dolichopodidae). J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2009.00549.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Chesebro J, Hrycaj S, Mahfooz N, Popadić A. Diverging functions of Scr between embryonic and post-embryonic development in a hemimetabolous insect, Oncopeltus fasciatus. Dev Biol 2009; 329:142-51. [PMID: 19382295 PMCID: PMC2775506 DOI: 10.1016/j.ydbio.2009.01.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hemimetabolous insects undergo an ancestral mode of development in which embryos hatch into first nymphs that resemble miniature adults. While recent studies have shown that homeotic (hox) genes establish segmental identity of first nymphs during embryogenesis, no information exists on the function of these genes during post-embryogenesis. To determine whether and to what degree hox genes influence the formation of adult morphologies, we performed a functional analysis of Sex combs reduced (Scr) during post-embryonic development in Oncopeltus fasciatus. The main effect was observed in prothorax of Scr-RNAi adults, and ranged from significant alterations in its size and shape to a near complete transformation of its posterior half toward a T2-like identity. Furthermore, while the consecutive application of Scr-RNAi at both of the final two post-embryonic stages (fourth and fifth) did result in formation of ectopic wings on T1, the individual applications at each of these stages did not. These experiments provide two new insights into evolution of wings. First, the role of Scr in wing repression appears to be conserved in both holo- and hemimetabolous insects. Second, the prolonged Scr-depletion (spanning at least two nymphal stages) is both necessary and sufficient to restart wing program. At the same time, other structures that were previously established during embryogenesis are either unaffected (T1 legs) or display only minor changes (labium) in adults. These observations reveal a temporal and spatial divergence of Scr roles during embryonic (main effect in labium) and post-embryonic (main effect in prothorax) development.
Collapse
Affiliation(s)
| | | | - Najmus Mahfooz
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| | - Aleksandar Popadić
- Department of Biological Sciences; Wayne State University; Detroit, MI 48202; USA
| |
Collapse
|
43
|
Veenstra JA. Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res 2009; 336:309-23. [PMID: 19319573 DOI: 10.1007/s00441-009-0769-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/22/2009] [Indexed: 12/30/2022]
Abstract
Endocrine cells in the larval midgut of Drosophila melanogaster are recognized by antisera to seven regulatory peptides: the allatostatins A, B, and C, short neuropeptide F, neuropeptide F, diuretic hormone 31, and the tachykinins. These are the same peptides that are produced by the endocrine cells of the adult midgut, except for short neuropeptide F, which is absent in adult midgut endocrine cells. The anterior larval midgut contains two types of endocrine cells. The first produces short neuropeptide F, which is also recognized by an antiserum to the receptor for the diuretic hormone leucokinin. The second type in the anterior midgut is recognized by an antiserum to diuretic hormone 31. The latter cell type is also found in the junction between the anterior and middle midgut; an additional type of endocrine cell in this region produces allatostatin B, a peptide also known as myoinhibitory peptide. Both types of endocrine cells in the junction between the anterior and middle midgut can express the homeodomain transcription factor labial. The copper cell region contains small cells that either produce allatostatin C or a combination of neuropeptide F, allatostatin B, and diuretic hormone 31. The latter cell type is also found in the region of the large flat cells. The posterior midgut possesses strongly immunoreactive allatostatin C endocrine cells immediately behind the iron cells. In the next part of the posterior midgut, two cell types have been found: one produces diuretic hormone 31, and a second is strongly immunoreactive to antiserum against the leucokinin receptor and weakly immunoreactive to antisera against allatostatins B and C and short neuropeptide F. The last part of the posterior midgut again has two types of endocrine cells: those that produce allatostatin A, and those that produce tachykinins. Many of the latter cells are also weakly immunoreactive to the antiserum against diuretic hormone 31. As in the adult, the insulin-like peptide 3 gene appears to be expressed by midgut muscles, but not by midgut endocrine cells.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNIC CNRS UMR 5228, Talence, France.
| |
Collapse
|
44
|
Kutschera U, Niklas KJ. Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci 2008; 127:277-89. [DOI: 10.1007/s12064-008-0046-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
|
45
|
Nahmad M, Glass L, Abouheif E. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model. Evol Dev 2008; 10:360-74. [DOI: 10.1111/j.1525-142x.2008.00244.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Colbourne JK, Eads BD, Shaw J, Bohuski E, Bauer DJ, Andrews J. Sampling Daphnia's expressed genes: preservation, expansion and invention of crustacean genes with reference to insect genomes. BMC Genomics 2007; 8:217. [PMID: 17612412 PMCID: PMC1940262 DOI: 10.1186/1471-2164-8-217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 07/06/2007] [Indexed: 11/11/2022] Open
Abstract
Background Functional and comparative studies of insect genomes have shed light on the complement of genes, which in part, account for shared morphologies, developmental programs and life-histories. Contrasting the gene inventories of insects to those of the nematodes provides insight into the genomic changes responsible for their diversification. However, nematodes have weak relationships to insects, as each belongs to separate animal phyla. A better outgroup to distinguish lineage specific novelties would include other members of Arthropoda. For example, crustaceans are close allies to the insects (together forming Pancrustacea) and their fascinating aquatic lifestyle provides an important comparison for understanding the genetic basis of adaptations to life on land versus life in water. Results This study reports on the first characterization of cDNA libraries and sequences for the model crustacean Daphnia pulex. We analyzed 1,546 ESTs of which 1,414 represent approximately 787 nuclear genes, by measuring their sequence similarities with insect and nematode proteomes. The provisional annotation of genes is supported by expression data from microarray studies described in companion papers. Loci expected to be shared between crustaceans and insects because of their mutual biological features are identified, including genes for reproduction, regulation and cellular processes. We identify genes that are likely derived within Pancrustacea or lost within the nematodes. Moreover, lineage specific gene family expansions are identified, which suggest certain biological demands associated with their ecological setting. In particular, up to seven distinct ferritin loci are found in Daphnia compared to three in most insects. Finally, a substantial fraction of the sampled gene transcripts shares no sequence similarity with those from other arthropods. Genes functioning during development and reproduction are comparatively well conserved between crustaceans and insects. By contrast, genes that were responsive to environmental conditions (metal stress) and not sex-biased included the greatest proportion of genes with no matches to insect proteomes. Conclusion This study along with associated microarray experiments are the initial steps in a coordinated effort by the Daphnia Genomics Consortium to build the necessary genomic platform needed to discover genes that account for the phenotypic diversity within the genus and to gain new insights into crustacean biology. This effort will soon include the first crustacean genome sequence.
Collapse
Affiliation(s)
- John K Colbourne
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Brian D Eads
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph Shaw
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Elizabeth Bohuski
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Darren J Bauer
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Justen Andrews
- The Center for Genomics and Bioinformatics, and Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
47
|
Patel M, Farzana L, Robertson LK, Hutchinson J, Grubbs N, Shepherd MN, Mahaffey JW. The appendage role of insect disco genes and possible implications on the evolution of the maggot larval form. Dev Biol 2007; 309:56-69. [PMID: 17643406 DOI: 10.1016/j.ydbio.2007.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 06/08/2007] [Accepted: 06/21/2007] [Indexed: 11/19/2022]
Abstract
Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.
Collapse
Affiliation(s)
- Mukund Patel
- Department of Genetics, Campus Box 7614, North Carolina State University, Raleigh, NC 27695-7614, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Shigeno S, Sasaki T, Moritaki T, Kasugai T, Vecchione M, Agata K. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: Evidence fromNautilus embryonic development. J Morphol 2007; 269:1-17. [PMID: 17654542 DOI: 10.1002/jmor.10564] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cephalopod head parts are among the most complex occurring in all invertebrates. Hypotheses for the evolutionary process require a drastic body-plan transition in relation to the life-style changes from benthos to active nekton. Determining these transitions, however, has been elusive because of scarcity of fossil records of soft tissues and lack of some of the early developmental stages of the basal species. Here we report the first embryological evidence in the nautiloid cephalopod Nautilus pompilius for the morphological development of the head complex by a unique assembly of multiple archetypical molluscan body parts. Using a specialized aquarium system, we successfully obtained a series of developmental stages that enabled us to test previous controversial scenarios. Our results demonstrate that the embryonic organs exhibit body plans that are primarily bilateral and antero-posteriorly elongated at stereotyped positions. The distinct cephalic compartment, foot, brain cords, mantle, and shell resemble the body plans of monoplacophorans and basal gastropods. The numerous digital tentacles of Nautilus develop from simple serial and spatially-patterned bud-like anlagen along the anterior-posterior axis, indicating that origins of digital tentacles or arms of all other cephalopods develop not from the head but from the foot. In middle and late embryos, the primary body plans largely change to those of juveniles or adults, and finally form a "head" complex assembled by anlagen of the foot, cephalic hood, collar, hyponome (funnel), and the foot-derived epidermal covers. We suggest that extensions of the collar-funnel compartment and free epidermal folds derived from multiple topological foot regions may play an important role in forming the head complex, which is thought to be an important feature during the body plan transition.
Collapse
Affiliation(s)
- Shuichi Shigeno
- Group for Evolutionary Regeneration Biology, Center for Developmental Biology, RIKEN Kobe, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Clark AG. Genomics of the evolutionary process. Trends Ecol Evol 2006; 21:316-21. [PMID: 16769431 DOI: 10.1016/j.tree.2006.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 03/27/2006] [Accepted: 04/18/2006] [Indexed: 12/29/2022]
Abstract
Comparative analysis of genome sequences has become the primary means by which functional elements are first identified, often preceding even the identification of their function. Although this approach capitalizes on the conservation of homologous functions, it has also been successful in identifying evolutionary novelties, including new genes and pathways. As I discuss here, the analysis of multiple alignments of sequences from species on a known phylogeny has provided rich detail about the heterogeneities in the process of genome changes. Inferences of positive selection acting on protein-encoding genes have provided clues about the role of adaptive evolution in the past. These methods also identify negatively selected genes, providing some clue to genes that are most likely to be mutable to a disease-causing state.
Collapse
Affiliation(s)
- Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
50
|
Meier S, Sprecher SG, Reichert H, Hirth F. ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development of Drosophila. Mech Dev 2006; 123:76-83. [PMID: 16326080 DOI: 10.1016/j.mod.2005.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/16/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
The homeotic or Hox genes encode a network of conserved transcription factors which provide axial positional information and control segment morphology in development and evolution. During embryonic brain development of Drosophila, the Hox gene labial (lab) is essential for tritocerebral neuromere specification; lab loss of function results in tritocerebral cells that fail to adopt a neuronal identity, causing axonal pathfinding defects. Here we present evidence that the POU-homeodomain DNA-binding protein ventral veins lacking (vvl) acts genetically downstream of lab in the specification of the tritocerebral neuromere. In the embryonic brain, vvl expression is seen in all brain neuromeres, including the tritocerebral lab domain. Lab mutant analysis shows that vvl expression in the tritocerebrum is dependent on lab activity. Loss-of-function analysis focussed on the tritocerebrum reveals that inactivation of vvl results in patterning defects which are comparable to the brain phenotype caused by null mutation of lab. In the absence of vvl, mutant tritocerebral cells are generated and positioned correctly, but these cells fail to express neuronal markers indicating defects in neuronal differentiation. Moreover, longitudinal axon pathways in the tritocerebrum are severely reduced or absent and the tritocerebral commissure is missing in the vvl mutant brain. Genetic rescue experiments show that vvl is able to partially replace lab in the specification of the tritocerebral neuromere. Our results indicate that vvl acts downstream of the Hox gene lab and regulates specific aspects of neuronal differentiation within the tritocerebral neuromere during embryonic brain development of Drosophila.
Collapse
Affiliation(s)
- Stefan Meier
- Biozentrum/Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|