1
|
Luo P, Jin Y, Zhao T, Bian C, Lv Z, Zhou N, Qin J, Sun S. Population structure and mitogenomic analyses reveal dispersal routes of Macrobrachium nipponense in China. BMC Genomics 2025; 26:497. [PMID: 40382535 PMCID: PMC12084929 DOI: 10.1186/s12864-025-11692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND The oriental river prawn Macrobrachium nipponense is widely distributed in China, but its origin and distribution routes remain largely unknown. We collected 126 oriental river prawn specimens from four lakes and one river across China, and sequenced their mitochondrial cytochrome C oxidase subunit I (cox1) genes. We performed whole-genome resequencing of 100 samples and assembled mitogenomes for population analysis, these two types of mitochondrial markers (cox1 and all 13 protein-coding genes-13 PCGs), a nuclear marker (28S rRNA) and SNPs to infer the relationships between the five populations, the population structure, and migratory routes. We also assembled complete mitogenome per sampled population (5 in total) and used them to conduct comparative mitogenomic analyses. RESULTS The complete mitogenomes comprised 15,774-15,784 base pairs (bp). The average nucleotide diversity (π) of the populations, inferred using the cox1 gene data, was 0.03013 ± 0.00618, ranging from 0.00500 ± 0.00110 (Fuxian Lake) to 0.03562 ± 0.02538 (Khanka Lake). The identified haplotypes (33 cox1 and 101 13 PCGs) clustered into three main geographical lineages. Lineage A included Khanka Lake and one clade from the Haihe River. The specimens from Fuxian Lake constituted lineage B. Lineage C comprised a majority of specimens from the Haihe River, Taihu Lake, and Poyang Lake, and a minority of specimens from Khanka Lake and Fuxian Lake. CONCLUSIONS This study indicates that native M. nipponense prawns in China originated from East China, subsequently spreading northward and westward into the inland regions along the Grand Canal and the Yangtze River system, forming distinct lineages. This proposed route improves our understanding of the geographic distribution and origin of M. nipponense in China.
Collapse
Grants
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2023YFE0205100 National Key Research and Development Program of China
- 2022ZDYF0569 Key Research and Development Program of Ningxia, China
- 2022ZDYF0569 Key Research and Development Program of Ningxia, China
- 2022ZDYF0569 Key Research and Development Program of Ningxia, China
- 2022ZDYF0569 Key Research and Development Program of Ningxia, China
- 2022ZDYF0569 Key Research and Development Program of Ningxia, China
- 23XD1421600, 22015820700 Shanghai Science and Technology Program, China
- 23XD1421600, 22015820700 Shanghai Science and Technology Program, China
- 23XD1421600, 22015820700 Shanghai Science and Technology Program, China
- 23XD1421600, 22015820700 Shanghai Science and Technology Program, China
- 23XD1421600, 22015820700 Shanghai Science and Technology Program, China
- TP2022078 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China
- TP2022078 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China
- TP2022078 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China
- TP2022078 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China
- TP2022078 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China
- FDCT0102/2023/AMJ Macau Science and Technology Development Fund
- FDCT0102/2023/AMJ Macau Science and Technology Development Fund
- FDCT0102/2023/AMJ Macau Science and Technology Development Fund
Collapse
Affiliation(s)
- Penghui Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiting Jin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Ting Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China
| | - Zhimin Lv
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Na Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, 5042, Australia
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Jiang W, Pan J, Lin T, Wang Y, Wang Y, Zhang R, Zhou X, Zhang Y. Mutational features of chromids and chromosomes in Pseudoalteromonas provide new insights into the evolution of secondary replicons. Microbiol Spectr 2025; 13:e0212724. [PMID: 40130865 PMCID: PMC12053903 DOI: 10.1128/spectrum.02127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The genomes of multi-replicon bacteria are composed of a primary replicon (the chromosome) and secondary replicons (chromids). Currently, there is a lack of understanding of the mutation features and evolutionary patterns of these different replicons. Specifically, in the genus Pseudoalteromonas, the chromids of multi-replicon species exhibit both unidirectional and bidirectional replication. Here, we investigated the similarities and differences between chromosomes and chromids in sequence composition and gene synteny of Pseudoalteromonas species by comparative genomic analysis, as well as the spontaneous mutation features of different replicons by mutation accumulation (MA) experiments combined with whole-genome sequencing strategy (MA-WGS). MA-WGS analysis revealed that there was no significant difference between chromids and chromosomes in the mutation rate or mutation spectrum of P. sp. LC0214 (where the chromid is unidirectional in replication) and P. sp. JCM12884T (where the chromid is bidirectional in replication). In addition, the context-dependence and variation pattern of the base-pair substitutions (BPSs) rates of the entire replicons exhibited differences that may be caused by the different replication directions of the chromids. The results of this study provide a new theoretical foundation for an in-depth understanding of the origin and evolution of chromids in multi-replicon bacterial species and facilitate further exploration of the complex mechanisms of bacterial diversity.IMPORTANCEDe novo mutations are a critical driving force in species evolution. Currently, there is a lack of sufficient research on the influence of replicon types on the occurrence of genomic mutations in bacteria. Moreover, the scarcity in systematic analysis and comparison of spontaneous mutation features between different replicons results in the limited information on the evolutionary dynamics of multi-replicon species. The diversity of replication direction in the multi-replicon species of the genus Pseudoalteromonas provides a unique opportunity for studying the impact of replication direction on the patterns of mutation. In addition to the composition characteristics between chromosomes and chromids, the spontaneous mutation rates in the context-dependence and variation pattern of the base-pair substitutions (BPSs) across different replicons within Pseudoalteromonas species revealed in this study provide valuable insights into the evolutionary dynamics of bacterial secondary replicons.
Collapse
Affiliation(s)
- Wanyue Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Tongtong Lin
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yanze Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Rongxiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
3
|
Arnab SP, Dos Santos ALC, Fumagalli M, DeGiorgio M. Efficient detection and characterization of targets of natural selection using transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641710. [PMID: 40093065 PMCID: PMC11908262 DOI: 10.1101/2025.03.05.641710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by utilizing a deep CNN pre-trained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Matteo Fumagalli
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, London, UK
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
4
|
Li L, Fu H, Altaf MA, Wang Z, Lu X. The complete mitochondrial genome assembly of Capsicum pubescens reveals key evolutionary characteristics of mitochondrial genes of two Capsicum subspecies. BMC Genomics 2024; 25:1064. [PMID: 39528932 PMCID: PMC11552386 DOI: 10.1186/s12864-024-10985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pepper (Capsicum pubescens), one of five domesticated pepper species, has unique characteristics, such as numerous hairs on the epidermis of its leaves and stems, black seeds, and vibrant purple flowers. To date, no studies have reported on the complete assembly of the mitochondrial genome (mitogenome) of C. pubescens. Understanding the mitogenome is crucial for further research on C. pubescens. RESULTS In our study, we successfully assembled the first mitogenome of C. pubescens, which was assigned the GenBank accession number OP957066. This mitogenome has a length of 454,165 bp and exhibits the typical circular structure observed in most mitogenomes. We annotated a total of 70 genes, including 35 protein-coding genes (PCGs), 30 tRNA genes, 3 rRNA genes, and 2 pseudogenes. Compared to the other three pepper mitogenomes (KJ865409, KJ865410, and MN196478), C. pubescens OP957066 exhibited four unique PCGs (atp4, atp8, mttB, and rps1), while two PCGs (rpl10 and rps3) were absent. Notably, each of the three pepper mitogenomes from C. annuum (KJ865409, KJ865410, and MN196478) experienced the loss of four PCGs (atp4, atp8, mttB, and rps1). To further explore the evolutionary relationships, we reconstructed a phylogenetic tree using the mitogenomes of C. pubescens and fourteen other species. Structural comparison and synteny analysis of the above four pepper mitogenomes revealed that C. pubescens shares high sequence similarity with KJ865409 and that C. pubescens has rearranged with the other three pepper mitogenomes. Interestingly, we observed 72 similar sequences between the mitochondrial and chloroplast genomes, which accounted for 12.60% of the mitogenome, with a total length of 57,207 bp. These sequences encompassed 12 tRNA genes and the rRNA gene (rrn18). Remarkably, selective pressure analysis suggested that the nad5 gene underwent obvious positive selection. Furthermore, a single-base mutation in three genes (nad1, nad2, and nad4) resulted in an amino acid change. CONCLUSION This study provides a high-quality mitogenome of pepper, providing valuable molecular data for future investigations into the exchange of genetic information between pepper organelle genomes.
Collapse
Affiliation(s)
- Lin Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Huizhen Fu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Muhammad Ahsan Altaf
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) , Hainan University, Sanya Hainan, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Xiong Y, Lei X, Xiong Y, Liu Y, Dong Z, Zhao J, Yu Q, Ma X. Factors contributing to organelle genomes size variation and the intracellular DNA transfer in Polygonaceae. BMC Genomics 2024; 25:994. [PMID: 39443865 PMCID: PMC11515532 DOI: 10.1186/s12864-024-10914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
The use of complete organelle genomes, including chloroplast and mitochondrial genomes, is a powerful molecular method for studying biological evolution and gene transfer. However, in the case of Polygonaceae, an important family with numerous edible, medicinal, and ornamental species, the mitochondrial genomes of only three species have been sequenced and analyzed. In this study, we present the mitochondrial and chloroplast genomes of two important Tibetan medicinal plants, Bistorta viviparum and B. macrophyllum. All the organelle genomes are assembled into a single circular structure and contain a common set of 32 protein-coding genes (PCGs). Some genes such as rps2 and ndhF were found to have high nucleotide polymorphism (Pi) in the chloroplast genomes, while cox1, mttB and rps12 showed pronounced Pi values in the mitochondrial genomes. Furthermore, our analysis revealed that most chloroplast genes and mitochondrial PCGs in Polygonaceae plants are under purifying selection. However, a few genes, including the chloroplast gene psaJ and the mitochondrial genes ccmFc, atp8 and nad4, showed positive selection in certain Polygonaceae plants, as indicated by a Ka/Ks ratio greater than one. Structural variation analysis revealed a wealth of differences between the mitochondrial genomes of five Polygonaceae species, with a particularly notable large-scale inversion observed between Reynoutria japonica and Fallopia aubertii. Furthermore, an analysis of the homologous sequences in the chloroplast and mitochondrial genomes revealed that the rps7 has been transferred from the chloroplast to the mitochondrial genome in all five Polygonaceae species. Finally, ecological niche models were constructed for B. viviparum and B. macrophyllum, indicating that mean annual temperature and altitude are the main climatic factors influencing the distribution of both species. Although the current distribution of B. viviparum is significantly wider than that of B. macrophyllum, projections suggest that the optimal growth ranges of both species will expand in the future, with B. macrophyllum potentially exceeding B. viviparum. This study not only contributes to the plastid genome database for Polygonaceae plants, but also provides theoretical insights into the adaptive evolution of these plants.
Collapse
Affiliation(s)
- Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiong Lei
- Sichuan Academy of Grassland Sciences, Chengdu, 611700, Sichuan, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingjie Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qingqing Yu
- Sichuan Academy of Grassland Sciences, Chengdu, 611700, Sichuan, China.
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Zhu Z, Trenner J, Delker C, Quint M. Tracing the Evolutionary History of the Temperature-Sensing Prion-like Domain in EARLY FLOWERING 3 Highlights the Uniqueness of AtELF3. Mol Biol Evol 2024; 41:msae205. [PMID: 39391982 PMCID: PMC11523139 DOI: 10.1093/molbev/msae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Plants have evolved mechanisms to anticipate and adjust their growth and development in response to environmental changes. Understanding the key regulators of plant performance is crucial to mitigate the negative influence of global climate change on crop production. EARLY FLOWERING 3 (ELF3) is one such regulator playing a critical role in the circadian clock and thermomorphogenesis. In Arabidopsis thaliana, ELF3 contains a prion-like domain (PrLD) that acts as a thermosensor, facilitating liquid-liquid phase separation at high ambient temperatures. To assess the conservation of this function across the plant kingdom, we traced the evolutionary emergence of ELF3, with a focus on the presence of PrLDs. We found that the PrLD, primarily influenced by the length of polyglutamine (polyQ) repeats, is most prominent in Brassicales. Analyzing 319 natural A. thaliana accessions, we confirmed the previously described wide range of polyQ length variation in AtELF3, but found it to be only weakly associated with geographic origin, climate conditions, and classic temperature-responsive phenotypes. Interestingly, similar polyQ length variation was not observed in several other investigated Bassicaceae species. Based on these findings, available prediction tools and limited experimental evidence, we conclude that the emergence of PrLD, and particularly polyQ length variation, is unlikely to be a key driver of environmental adaptation. Instead, it likely adds an additional layer to ELF3's role in thermomorphogenesis in A. thaliana, with its relevance in other species yet to be confirmed.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Zhou G, Zhang H, Chen W, Li Z, Zhang X, Fu Y. Morphological observation, molecular identification and evolutionary analysis of Hydatigera kamiyai found in Neodon fuscus from the Qinghai-Tibetan plateau. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105629. [PMID: 38936527 DOI: 10.1016/j.meegid.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Hydatigera kamiyai (H. kamiyai) is a new species within Hydatigera that has recently been resurrected. Voles and cats are hosts of H. kamiyai and have a certain impact on its health and economy. Moreover, the Qinghai-Tibetan plateau (QTP) is a research hotspot representing Earth's biodiversity, as its unique geographical environment and climatic conditions support the growth of a variety of mammals and provide favorable conditions for various parasites to complete their life history. The aim of this study was to reveal the phylogenetic relationships and divergence times of H. kamiyai strains isolated from Neodon fuscus on the QTP using morphological and molecular methods. In this study, we morphologically observed H. kamiyai and sequenced the whole mitochondrial genome. Then, we constructed phylogenetic trees with the maximum likelihood (ML) and Bayesian inference (BI) methods. The GTR alternative model was selected for divergence time analysis. These data demonstrated that the results were consistent with the general morphological characteristics of Hydatigera. The whole genome of H. kamiyai was 13,822 bp in size, and the A + T content (73%) was greater than the G + C content (27%). The Ka/Ks values were all <1, indicating that all 13 protein-coding genes (13 PCGs) underwent purifying selection during the process of evolution. The phylogenetic tree generated based on the 13 PCGs, cytochrom oxidase subunit I (COI), 18S rRNA and 28S rRNA revealed close phylogenetic relationships between H. kamiyai and Hydatigera, with high node support for the relationship. The divergence time based on 13 PCGs indicated that H. kamiyai diverged approximately 11.3 million years ago (Mya) in the Miocene. Interestingly, it diverged later than the period of rapid uplift in the QTP. We also speculated that H. kamiyai differentiation was caused by host differentiation due to the favorable living conditions brought about by the uplift of the QTP. As there have been relatively few investigations on the mitochondrial genome of H. kamiyai, our study could provide factual support for further studies of H. kamiyai on the QTP. We also emphasized the importance of further studies of its hosts, Neodon fuscus and cats, which will be important for further understanding the life cycle of H. kamiyai.
Collapse
Affiliation(s)
- Guoyan Zhou
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Haining Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Wangkai Chen
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Zhi Li
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Xueyong Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Yong Fu
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
| |
Collapse
|
8
|
Song W, Shi W, Wang H, Zhang Z, Tao R, Liu J, Wang S, Engel MS, Shi C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:425-441. [PMID: 39219675 PMCID: PMC11358372 DOI: 10.1007/s42995-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Huan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Zirui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Ruiqing Tao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Michael S. Engel
- American Museum of Natural History, New York, NY 10024-5192 USA
- Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204 China
| |
Collapse
|
9
|
Wang R, Luo Y, Lan Z, Qiu D. Insights into structure, codon usage, repeats, and RNA editing of the complete mitochondrial genome of Perilla frutescens (Lamiaceae). Sci Rep 2024; 14:13940. [PMID: 38886463 PMCID: PMC11637098 DOI: 10.1038/s41598-024-64509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îś-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.
Collapse
Affiliation(s)
- Ru Wang
- Hubei Minzu University, School of Forestry and Horticulture, Enshi, 445000, China
| | - Yongjian Luo
- Hubei Minzu University, School of Forestry and Horticulture, Enshi, 445000, China
| | - Zheng Lan
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Daoshou Qiu
- Key Laboratory of Crops Genetics and Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Fu YT, Xun Y, Peng YY, Zhang Y, Wu X. The complete mitochondrial genome of the rodent flea Nosopsyllus laeviceps: genome description, comparative analysis, and phylogenetic implications. Parasit Vectors 2024; 17:253. [PMID: 38863074 PMCID: PMC11165799 DOI: 10.1186/s13071-024-06329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Fleas are one of the most common and pervasive ectoparasites worldwide, comprising at least 2500 valid species. They are vectors of several disease-causing agents, such as Yersinia pestis. Despite their significance, however, the molecular genetics, biology, and phylogenetics of fleas remain poorly understood. METHODS We sequenced, assembled, and annotated the complete mitochondrial (mt) genome of the rodent flea Nosopsyllus laeviceps using next-generation sequencing technology. Then we combined the new mitogenome generated here with mt genomic data available for 23 other flea species to perform comparative mitogenomics, nucleotide diversity, and evolutionary rate analysis. Subsequently, the phylogenetic relationship within the order Siphonaptera was explored using the Bayesian inference (BI) and maximum likelihood (ML) methods based on concentrated data for 13 mt protein-coding genes. RESULTS The complete mt genome of the rodent flea N. laeviceps was 16,533 base pairs (bp) in a circular DNA molecule, containing 37 typical genes (13 protein-coding genes, 22 transfer RNA [tRNA] genes, and two ribosomal RNA [rRNA] genes) with one large non-coding region (NCR). Comparative analysis among the order Siphonaptera showed a stable gene order with no gene arrangement, and high AT content (76.71-83.21%) with an apparent negative AT and GC skew except in three fleas Aviostivalius klossi bispiniformis, Leptopsylla segnis, and Neopsylla specialis. Moreover, we found robust evidence that the cytochrome c oxidase subunit 1 (cox1) gene was the most conserved protein-coding gene (Pi = 0.15, non-synonymous/synonymous [Ka/Ks] ratio = 0.13) of fleas. Phylogenomic analysis conducted using two methods revealed different topologies, but both results strongly indicated that (i) the families Ceratophyllidae and Leptopsyllidae were paraphyletic and were the closest to each other, and (ii) the family Ctenophthalmidae was paraphyletic. CONCLUSIONS In this study, we obtained a high-quality mt genome of the rodent flea N. laeviceps and performed comparative mitogenomics and phylogeny of the order Siphonaptera using the mt database. The results will enrich the mt genome data for fleas, lay a foundation for the phylogenetic analysis of fleas, and promote the evolutionary analysis of Siphonaptera.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Ying Xun
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yan-Yan Peng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yu Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Gong Y, Xie X, Zhou G, Chen M, Chen Z, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of Brassica rapa var. Purpuraria. BMC Genomics 2024; 25:546. [PMID: 38824587 PMCID: PMC11143693 DOI: 10.1186/s12864-024-10457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Purple flowering stalk (Brassica rapa var. purpuraria) is a widely cultivated plant with high nutritional and medicinal value and exhibiting strong adaptability during growing. Mitochondrial (mt) play important role in plant cells for energy production, developing with an independent genetic system. Therefore, it is meaningful to assemble and annotate the functions for the mt genome of plants independently. Though there have been several reports referring the mt genome of in Brassica species, the genome of mt in B. rapa var. purpuraria and its functional gene variations when compared to its closely related species has not yet been addressed. RESULTS The mt genome of B. rapa var. purpuraria was assembled through the Illumina and Nanopore sequencing platforms, which revealed a length of 219,775 bp with a typical circular structure. The base composition of the whole B. rapa var. purpuraria mt genome revealed A (27.45%), T (27.31%), C (22.91%), and G (22.32%). 59 functional genes, composing of 33 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes, were annotated. The sequence repeats, codon usage, RNA editing, nucleotide diversity and gene transfer between the cp genome and mt genome were examined in the B. rapa var. purpuraria mt genome. Phylogenetic analysis show that B. rapa var. Purpuraria was closely related to B. rapa subsp. Oleifera and B. juncea. Ka/Ks analysis reflected that most of the PCGs in the B. rapa var. Purpuraria were negatively selected, illustrating that those mt genes were conserved during evolution. CONCLUSIONS The results of our findings provide valuable information on the B.rapa var. Purpuraria genome, which might facilitate molecular breeding, genetic variation and evolutionary researches for Brassica species in the future.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China.
| | - Xin Xie
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Meiyu Chen
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Zhiyin Chen
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology , Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan, 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Guo L, Lao G, He L, Xiao D, Zhan J, Wang A. De Novo Assembly and Comparative Analysis of Mitochondrial Genomes of Two Pueraria montana Varieties. Int J Mol Sci 2024; 25:5656. [PMID: 38891844 PMCID: PMC11171644 DOI: 10.3390/ijms25115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Pueraria montana is a species with important medicinal value and a complex genetic background. In this study, we sequenced and assembled the mitochondrial (mt) genomes of two varieties of P. montana. The mt genome lengths of P. montana var. thomsonii and P. montana var. montana were 457,390 bp and 456,731 bp, respectively. Both P. montana mitogenomes showed a multi-branched structure consisting of two circular molecules, with 56 genes annotated, comprising 33 protein-coding genes, 18 tRNA genes (trnC-GCA and trnM-CAU are multi-copy genes), and 3 rRNA genes. Then, 207 pairs of long repeats and 96 simple sequence repeats (SSRs) were detected in the mt genomes of P. montana, and 484 potential RNA-editing sites were found across the 33 mitochondrial protein-coding genes of each variety. Additionally, a syntenic sequence analysis showed a high collinearity between the two mt genomes. This work is the first to analyze the mt genomes of P. montana. It can provide information that can be used to analyze the structure of mt genomes of higher plants and provide a foundation for future comparative genomic studies and evolutionary biology research in related species.
Collapse
Affiliation(s)
- Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
| | - Guoren Lao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
| | - Longfei He
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China;
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Chen S, Safiul Azam FM, Akter ML, Ao L, Zou Y, Qian Y. The first complete chloroplast genome of Thalictrum fargesii: insights into phylogeny and species identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1356912. [PMID: 38745930 PMCID: PMC11092384 DOI: 10.3389/fpls.2024.1356912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Introduction Thalictrum fargesii is a medicinal plant belonging to the genus Thalictrum of the Ranunculaceae family and has been used in herbal medicine in the Himalayan regions of China and India. This species is taxonomically challenging because of its morphological similarities to other species within the genus. Thus, herbal drugs from this species are frequently adulterated, substituted, or mixed with other species, thereby endangering consumer safety. Methods The present study aimed to sequence and assemble the entire chloroplast (cp) genome of T. fargesii using the Illumina HiSeq 2500 platform to better understand the genomic architecture, gene composition, and phylogenetic relationships within the Thalictrum. Results and discussion The cp genome was 155,929 bp long and contained large single-copy (85,395 bp) and small single-copy (17,576 bp) regions that were segregated by a pair of inverted repeat regions (26,479 bp) to form a quadripartite structure. The cp genome contains 133 genes, including 88 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. Additionally, this genome contains 64 codons that encode 20 amino acids, the most preferred of which are alanine and leucine. We identified 68 SSRs, 27 long repeats, and 242 high-confidence C-to-U RNA-editing sites in the cp genome. Moreover, we discovered seven divergent hotspot regions in the cp genome of T. fargesii, among which ndhD-psaC and rpl16-rps3 may be useful for developing molecular markers for identifying ethnodrug species and their contaminants. A comparative study with eight other species in the genus revealed that pafI and rps19 had highly variable sites in the cp genome of T. fargesii. Additionally, two special features, (i) the shortest length of the ycf1 gene at the IRA-SSC boundary and (ii) the distance between the rps19 fragment and trnH at the IRA-LSC junction, distinguish the cp genome of T. fargesii from those of other species within the genus. Furthermore, phylogenetic analysis revealed that T. fargesii was closely related to T. tenue and T. petaloidium. Conclusion Considering all these lines of evidence, our findings offer crucial molecular and evolutionary information that could play a significant role in further species identification, evolution, and phylogenetic studies on T. fargesii.
Collapse
Affiliation(s)
- Shixi Chen
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Fardous Mohammad Safiul Azam
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Mst. Lovely Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Li Ao
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Yuanchao Zou
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Ye Qian
- Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| |
Collapse
|
14
|
Zhang L, Meng Y, Wang D, He GH, Zhang JM, Wen J, Nie ZL. Plastid genome data provide new insights into the dynamic evolution of the tribe Ampelopsideae (Vitaceae). BMC Genomics 2024; 25:247. [PMID: 38443830 PMCID: PMC10916268 DOI: 10.1186/s12864-024-10149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.
Collapse
Affiliation(s)
- Lei Zhang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Ying Meng
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Da Wang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Guan-Hao He
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Jun-Ming Zhang
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Ze-Long Nie
- Hunan Provincial key Laboratory of Ecological Conservation and Sustainable Utilization of Wulingshan Resources, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, 416000, China.
| |
Collapse
|
15
|
Feng G, Jiao Y, Ma H, Bian H, Nie G, Huang L, Xie Z, Ran Q, Fan W, He W, Zhang X. The first two whole mitochondrial genomes for the genus Dactylis species: assembly and comparative genomics analysis. BMC Genomics 2024; 25:235. [PMID: 38438835 PMCID: PMC10910808 DOI: 10.1186/s12864-024-10145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjuan Jiao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huizhen Ma
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Haoyang Bian
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Wenwen Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Li R, Gao X, Wu Y, Wei C, Li MH, Liu DK, Liu ZJ. Identification and Analysis of PEPC Gene Family Reveals Functional Diversification in Orchidaceae and the Regulation of Bacterial-Type PEPC. Int J Mol Sci 2024; 25:2055. [PMID: 38396732 PMCID: PMC10888551 DOI: 10.3390/ijms25042055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.
Collapse
Affiliation(s)
- Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Xuyong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Yuwei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Chunyi Wei
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Ferreiro D, Khalil R, Sousa SF, Arenas M. Substitution Models of Protein Evolution with Selection on Enzymatic Activity. Mol Biol Evol 2024; 41:msae026. [PMID: 38314876 PMCID: PMC10873502 DOI: 10.1093/molbev/msae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Substitution models of evolution are necessary for diverse evolutionary analyses including phylogenetic tree and ancestral sequence reconstructions. At the protein level, empirical substitution models are traditionally used due to their simplicity, but they ignore the variability of substitution patterns among protein sites. Next, in order to improve the realism of the modeling of protein evolution, a series of structurally constrained substitution models were presented, but still they usually ignore constraints on the protein activity. Here, we present a substitution model of protein evolution with selection on both protein structure and enzymatic activity, and that can be applied to phylogenetics. In particular, the model considers the binding affinity of the enzyme-substrate complex as well as structural constraints that include the flexibility of structural flaps, hydrogen bonds, amino acids backbone radius of gyration, and solvent-accessible surface area that are quantified through molecular dynamics simulations. We applied the model to the HIV-1 protease and evaluated it by phylogenetic likelihood in comparison with the best-fitting empirical substitution model and a structurally constrained substitution model that ignores the enzymatic activity. We found that accounting for selection on the protein activity improves the fitting of the modeled functional regions with the real observations, especially in data with high molecular identity, which recommends considering constraints on the protein activity in the development of substitution models of evolution.
Collapse
Affiliation(s)
- David Ferreiro
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| | - Ruqaiya Khalil
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| | - Sergio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
18
|
Rivas-Santisteban J, Yubero P, Robaina-Estévez S, González JM, Tamames J, Pedrós-Alió C. Quantifying microbial guilds. ISME COMMUNICATIONS 2024; 4:ycae042. [PMID: 38707845 PMCID: PMC11069341 DOI: 10.1093/ismeco/ycae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024]
Abstract
The ecological role of microorganisms is of utmost importance due to their multiple interactions with the environment. However, assessing the contribution of individual taxonomic groups has proven difficult despite the availability of high throughput data, hindering our understanding of such complex systems. Here, we propose a quantitative definition of guild that is readily applicable to metagenomic data. Our framework focuses on the functional character of protein sequences, as well as their diversifying nature. First, we discriminate functional sequences from the whole sequence space corresponding to a gene annotation to then quantify their contribution to the guild composition across environments. In addition, we identify and distinguish functional implementations, which are sequence spaces that have different ways of carrying out the function. In contrast, we found that orthology delineation did not consistently align with ecologically (or functionally) distinct implementations of the function. We demonstrate the value of our approach with two case studies: the ammonia oxidation and polyamine uptake guilds from the Malaspina circumnavigation cruise, revealing novel ecological dynamics of the latter in marine ecosystems. Thus, the quantification of guilds helps us to assess the functional role of different taxonomic groups with profound implications on the study of microbial communities.
Collapse
Affiliation(s)
- Juan Rivas-Santisteban
- Microbiome Analysis Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin no. 3, Madrid, 28049, Spain
| | - Pablo Yubero
- Logic of Genomic Systems Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Spain
| | | | | | - Javier Tamames
- Microbiome Analysis Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin no. 3, Madrid, 28049, Spain
| | - Carlos Pedrós-Alió
- Microbiome Analysis Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, Calle Darwin no. 3, Madrid, 28049, Spain
| |
Collapse
|
19
|
Zhou CY, Lin WJ, Li R, Wu Y, Liu ZJ, Li MH. Characterization of Angraecum (Angraecinae, Orchidaceae) Plastomes and Utility of Sequence Variability Hotspots. Int J Mol Sci 2023; 25:184. [PMID: 38203355 PMCID: PMC10779182 DOI: 10.3390/ijms25010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Angraecum, commonly known as Darwin's orchid, is the largest genus of Angraecinae (Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly reported and the potential variability hotspots were explored. The plastomes possessed the typical quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine-cytosine (GC) content of 36.6-36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified. Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome evolution and DNA barcoding for Angraecum.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Wen-Jun Lin
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
20
|
He Y, Liu W, Wang J. Assembly and comparative analysis of the complete mitochondrial genome of Trigonella foenum-graecum L. BMC Genomics 2023; 24:756. [PMID: 38066419 PMCID: PMC10704837 DOI: 10.1186/s12864-023-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Trigonella foenum-graecum L. is a Leguminosae plant, and the stems, leaves, and seeds of this plant are rich in chemical components that are of high research value. The chloroplast (cp) genome of T. foenum-graecum has been reported, but the mitochondrial (mt) genome remains unexplored. RESULTS In this study, we used second- and third-generation sequencing methods, which have the dual advantage of combining high accuracy and longer read length. The results showed that the mt genome of T. foenum-graecum was 345,604 bp in length and 45.28% in GC content. There were 59 genes, including: 33 protein-coding genes (PCGs), 21 tRNA genes, 4 rRNA genes and 1 pseudo gene. Among them, 11 genes contained introns. The mt genome codons of T. foenum-graecum had a significant A/T preference. A total of 202 dispersed repetitive sequences, 96 simple repetitive sequences (SSRs) and 19 tandem repetitive sequences were detected. Nucleotide diversity (Pi) analysis counted the variation in each gene, with atp6 being the most notable. Both synteny and phylogenetic analyses showed close genetic relationship among Trifolium pratense, Trifolium meduseum, Trifolium grandiflorum, Trifolium aureum, Medicago truncatula and T. foenum-graecum. Notably, in the phylogenetic tree, Medicago truncatula demonstrated the highest level of genetic relatedness to T. foenum-graecum, with a strong support value of 100%. The interspecies non-synonymous substitutions (Ka)/synonymous substitutions (Ks) results showed that 23 PCGs had Ka/Ks < 1, indicating that these genes would continue to evolve under purifying selection pressure. In addition, setting the similarity at 70%, 23 homologous sequences were found in the mt genome of T. foenum-graecum. CONCLUSIONS This study explores the mt genome sequence information of T. foenum-graecum and complements our knowledge of the phylogenetic diversity of Leguminosae plants.
Collapse
Affiliation(s)
- Yanfeng He
- College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Wenya Liu
- College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Jiuli Wang
- The College of Ecological Environment and Resources, Qinghai Minzu University, Xining, 810007, Qinghai, China.
| |
Collapse
|
21
|
Wang J, Tai J, Zhang W, He K, Lan H, Liu H. Comparison of seven complete mitochondrial genomes from Lamprologus and Neolamprologus (Chordata, Teleostei, Perciformes) and the phylogenetic implications for Cichlidae. Zookeys 2023; 1184:115-132. [PMID: 38314327 PMCID: PMC10838552 DOI: 10.3897/zookeys.1184.107091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/27/2023] [Indexed: 02/06/2024] Open
Abstract
In this study, mitochondrial genomes (mitogenomes) of seven cichlid species (Lamprologuskungweensis, L.meleagris, L.ornatipinnis, Neolamprologusbrevis, N.caudopunctatus, N.leleupi, and N.similis) are characterized for the first time. The newly sequenced mitogenomes contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. The mitogenomes were 16,562 ~ 16,587 bp in length with an A + T composition of 52.1~58.8%. The cichlid mitogenomes had a comparable nucleotide composition, A + T content was higher than the G + C content. The AT-skews of most mitogenomes were inconspicuously positive and the GC-skews were negative, indicating higher occurrences of C than G. Most PCGs started with the conventional start codon, ATN. There was no essential difference in the codon usage patterns of these seven species. Using Ka/Ks, we found the fastest-evolving gene were atp8. But the results of p-distance indicated that the fastest-evolving gene was nad6. Phylogenetic analysis revealed that L.meleagris did not cluster with Lamprologus species, but with species from the genus Neolamprologus. The novel information obtained about these mitogenomes will contribute to elucidating the complex relationships among cichlid species.
Collapse
Affiliation(s)
- Jiachen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Jingzhe Tai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Wenwen Zhang
- Institute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and Biosafety, Nanjing 210042, ChinaInstitute of Environmental Sciences, Ministry of Ecology and Environment of China State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains Research Center for Biodiversity Conservation and BiosafetyNanjingChina
| | - Ke He
- Zhejiang Agriculture and Forestry University, Hangzhou 311300, ChinaZhejiang Agriculture and Forestry UniversityHangzhouChina
| | - Hong Lan
- Zhejiang Open University, Hangzhou 310012, ChinaZhejiang Open UniversityHangzhouChina
| | - Hongyi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
22
|
Le Naour—Vernet M, Charriat F, Gracy J, Cros-Arteil S, Ravel S, Veillet F, Meusnier I, Padilla A, Kroj T, Cesari S, Gladieux P. Adaptive evolution in virulence effectors of the rice blast fungus Pyricularia oryzae. PLoS Pathog 2023; 19:e1011294. [PMID: 37695773 PMCID: PMC10513199 DOI: 10.1371/journal.ppat.1011294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/21/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023] Open
Abstract
Plant pathogens secrete proteins called effectors that target host cellular processes to promote disease. Recently, structural genomics has identified several families of fungal effectors that share a similar three-dimensional structure despite remarkably variable amino-acid sequences and surface properties. To explore the selective forces that underlie the sequence variability of structurally-analogous effectors, we focused on MAX effectors, a structural family of effectors that are major determinants of virulence in the rice blast fungus Pyricularia oryzae. Using structure-informed gene annotation, we identified 58 to 78 MAX effector genes per genome in a set of 120 isolates representing seven host-associated lineages. The expression of MAX effector genes was primarily restricted to the early biotrophic phase of infection and strongly influenced by the host plant. Pangenome analyses of MAX effectors demonstrated extensive presence/absence polymorphism and identified gene loss events possibly involved in host range adaptation. However, gene knock-in experiments did not reveal a strong effect on virulence phenotypes suggesting that other evolutionary mechanisms are the main drivers of MAX effector losses. MAX effectors displayed high levels of standing variation and high rates of non-synonymous substitutions, pointing to widespread positive selection shaping the molecular diversity of MAX effectors. The combination of these analyses with structural data revealed that positive selection acts mostly on residues located in particular structural elements and at specific positions. By providing a comprehensive catalog of amino acid polymorphism, and by identifying the structural determinants of the sequence diversity, our work will inform future studies aimed at elucidating the function and mode of action of MAX effectors.
Collapse
Affiliation(s)
- Marie Le Naour—Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Florian Charriat
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Gracy
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrine Cros-Arteil
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sébastien Ravel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Florian Veillet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Isabelle Meusnier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
23
|
Hou M, Shi J, Gong Z, Wen H, Lan Y, Deng X, Fan Q, Li J, Jiang M, Tang X, Wu CI, Li F, Ruan Y. Intra- vs. Interhost Evolution of SARS-CoV-2 Driven by Uncorrelated Selection-The Evolution Thwarted. Mol Biol Evol 2023; 40:msad204. [PMID: 37707487 PMCID: PMC10521905 DOI: 10.1093/molbev/msad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
In viral evolution, a new mutation has to proliferate within the host (Stage I) in order to be transmitted and then compete in the host population (Stage II). We now analyze the intrahost single nucleotide variants (iSNVs) in a set of 79 SARS-CoV-2 infected patients with most transmissions tracked. Here, every mutation has two measures: 1) iSNV frequency within each individual host in Stage I; 2) occurrence among individuals ranging from 1 (private), 2-78 (public), to 79 (global) occurrences in Stage II. In Stage I, a small fraction of nonsynonymous iSNVs are sufficiently advantageous to rise to a high frequency, often 100%. However, such iSNVs usually fail to become public mutations. Thus, the selective forces in the two stages of evolution are uncorrelated and, possibly, antagonistic. For that reason, successful mutants, including many variants of concern, have to avoid being eliminated in Stage I when they first emerge. As a result, they may not have the transmission advantage to outcompete the dominant strains and, hence, are rare in the host population. Few of them could manage to slowly accumulate advantageous mutations to compete in Stage II. When they do, they would appear suddenly as in each of the six successive waves of SARS-CoV-2 strains. In conclusion, Stage I evolution, the gate-keeper, may contravene the long-term viral evolution and should be heeded in viral studies.
Collapse
Affiliation(s)
- Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingrong Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zanke Gong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengling Jiang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Arnab SP, Amin MR, DeGiorgio M. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics. Mol Biol Evol 2023; 40:msad157. [PMID: 37433019 PMCID: PMC10365025 DOI: 10.1093/molbev/msad157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
25
|
Lee HJ, Lee Y, Lee SC, Kim CK, Kang JN, Kwon SJ, Kang SH. Comparative analysis of mitochondrial genomes of Schisandra repanda and Kadsura japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1183406. [PMID: 37469771 PMCID: PMC10352487 DOI: 10.3389/fpls.2023.1183406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.
Collapse
Affiliation(s)
- Hyo Ju Lee
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
26
|
Del Amparo R, Arenas M. Influence of substitution model selection on protein phylogenetic tree reconstruction. Gene 2023; 865:147336. [PMID: 36871672 DOI: 10.1016/j.gene.2023.147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Probabilistic phylogenetic tree reconstruction is traditionally performed under a best-fitting substitution model of molecular evolution previously selected according to diverse statistical criteria. Interestingly, some recent studies proposed that this procedure is unnecessary for phylogenetic tree reconstruction leading to a debate in the field. In contrast to DNA sequences, phylogenetic tree reconstruction from protein sequences is traditionally based on empirical exchangeability matrices that can differ among taxonomic groups and protein families. Considering this aspect, here we investigated the influence of selecting a substitution model of protein evolution on phylogenetic tree reconstruction by the analyses of real and simulated data. We found that phylogenetic tree reconstructions based on a selected best-fitting substitution model of protein evolution are the most accurate, in terms of topology and branch lengths, compared with those derived from substitution models with amino acid replacement matrices far from the selected best-fitting model, especially when the data has large genetic diversity. Indeed, we found that substitution models with similar amino acid replacement matrices produce similar reconstructed phylogenetic trees, suggesting the use of substitution models as similar as possible to a selected best-fitting model when the latter cannot be used. Therefore, we recommend the use of the traditional protocol of selection among substitution models of evolution for protein phylogenetic tree reconstruction.
Collapse
Affiliation(s)
- Roberto Del Amparo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain.
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain.
| |
Collapse
|
27
|
Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. THE NEW PHYTOLOGIST 2023; 238:1263-1277. [PMID: 36721257 DOI: 10.1111/nph.18782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.
Collapse
Affiliation(s)
- Sonal Gupta
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Alex Harkess
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Anah Soble
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Megan Van Etten
- Biology Department, Pennsylvania State University, Dunmore, PA, 18512, USA
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Regina S Baucom
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
28
|
Guo S, Gao W, Zeng M, Liu F, Yang Q, Chen L, Wang Z, Jin Y, Xiang P, Chen H, Wen Z, Shi Q, Song Z. Characterization of TLR1 and expression profiling of TLR signaling pathway related genes in response to Aeromonas hydrophila challenge in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). Front Immunol 2023; 14:1163781. [PMID: 37056759 PMCID: PMC10086376 DOI: 10.3389/fimmu.2023.1163781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Toll‐like receptor 1 (TLR1) mediates the innate immune response to a variety of microbes through recognizing cell wall components (such as bacterial lipoproteins) in mammals. However, the detailed molecular mechanism of TLR1 involved in pathogen immunity in the representative hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) has not been well studied. In the present study, we identified the TLR1 gene from the hybrid yellow catfish, and further comparative synteny data from multiple species confirmed that the TLR1 gene is highly conserved in teleosts. Phylogenetic analysis revealed distinguishable TLR1s in diverse taxa, suggesting consistence in evolution of the TLR1 proteins with various species. Structural prediction indicated that the three-dimensional structures of TLR1 proteins are relatively conserved among different taxa. Positive selection analysis showed that purifying selection dominated the evolutionary process of TLR1s and TLR1-TIR domain in both vertebrates and invertebrates. Expression pattern analysis based on the tissue distribution showed that TLR1 mainly transcribed in the gonad, gallbladder and kidney, and the mRNA levels of TLR1 in kidney were remarkably up-regulated after Aeromonas hydrophila stimulation, indicating that TLR1 participates in the inflammatory responses to exogenous pathogen infection in hybrid yellow catfish. Homologous sequence alignment and chromosomal location indicated that the TLR signaling pathway is very conserved in the hybrid yellow catfish. The expression patterns of TLR signaling pathway related genes (TLR1- TLR2 - MyD88 - FADD - Caspase 8) were consistent after pathogen stimulation, revealing that the TLR signaling pathway is triggered and activated after A. hydrophila infection. Our findings will lay a solid foundation for better understanding the immune roles of TLR1 in teleosts, as well as provide basic data for developing strategies to control disease outbreak in hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenxue Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fenglin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zesong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanjun Jin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hanxi Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Qiong Shi
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| |
Collapse
|
29
|
Wang J, Xu W, Liu Y, Bai Y, Liu H. Comparative mitochondrial genomics and phylogenetics for species of the snakehead genus Channa Scopoli, 1777 (Perciformes: Channidae). Gene X 2023; 857:147186. [PMID: 36627090 DOI: 10.1016/j.gene.2023.147186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The family Channidae, members of which are commonly known as snakehead fish, includes 53 Channa species and three Parachanna species. In this study, we characterized mitochondrial genomes (mitogenomes) of five Channa species (C. andrao, C. bleheri, C. ornatipinnis, C. pulchra, and C. stewartii) for the first time. We compared the mitogenomes with the mitogenomes of 11 other Channidae fish. The newly sequenced mitogenomes were 16,714 - 16,895 bp in length and contained 37 typical genes [13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs) and 22 transfer RNA genes (tRNAs)]. Positive AT-skews and negative GC-skews were found in the mitogenomes of Channidae. Most PCGs started with the conventional start codon, ATN; however, the sequence of the stop codon was variable. There was no essential difference in relative synonymous codon usage (RSCU) among the Channidae mitogenomes. The fastest-evolving gene atp8 and slowest-evolving gene cox1 were identified using Ka/Ks and pairwise relative genetic distance (p-distance). The displacement loop (D-loop) regions showed great variability, which affected the size of Channa mitogenomes. One origin of replication on the light strand (OL) region was found between trnN and trnC in the mitogenomes of Channidae. Phylogenetic analysis revealed three new sister pairs (C. andrao + C. bleheri, C. ornatipinnis + C. pulchra, and C. stewartii + C. gachua). Phylogenetic relationships established between the five Channa species based on mitogenomes were also supported by their morphological characteristics and geographical distribution. The novel information we obtained about these mitogenomes will contribute to elucidating the complex relationships among Channa species.
Collapse
Affiliation(s)
- Jiachen Wang
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Xu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyao Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yawen Bai
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyi Liu
- The Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Genome-Wide Identification and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Cymbidium ensifolium. Int J Mol Sci 2023; 24:ijms24043825. [PMID: 36835234 PMCID: PMC9963586 DOI: 10.3390/ijms24043825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors are widely distributed across eukaryotic kingdoms and participate in various physiological processes. To date, the bHLH family has been identified and functionally analyzed in many plants. However, systematic identification of bHLH transcription factors has yet to be reported in orchids. Here, 94 bHLH transcription factors were identified from the Cymbidium ensifolium genome and divided into 18 subfamilies. Most CebHLHs contain numerous cis-acting elements associated with abiotic stress responses and phytohormone responses. A total of 19 pairs of duplicated genes were found in the CebHLHs, of which 13 pairs were segmentally duplicated genes and six pairs were tandemly duplicated genes. Expression pattern analysis based on transcriptome data revealed that 84 CebHLHs were differentially expressed in four different color sepals, especially CebHLH13 and CebHLH75 of the S7 subfamily. The expression profiles of CebHLH13 and CebHLH75 in sepals, which are considered potential genes regulating anthocyanin biosynthesis, were confirmed through the qRT-PCR technique. Furthermore, subcellular localization results showed that CebHLH13 and CebHLH75 were located in the nucleus. This research lays a foundation for further exploration of the mechanism of CebHLHs in flower color formation.
Collapse
|
31
|
Common and selective signal transduction mechanisms of GPCRs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:89-100. [PMID: 36707157 DOI: 10.1016/bs.pmbts.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are coupled by four major subfamilies of G proteins. GPCR coupling is processed through a combination of common and selective activation mechanisms together. Common mechanisms are shared for a group of receptors. Recently, researchers managed to identify shared activation pathways for the GPCRs belonging to the same subfamilies. On the other hand, selective mechanisms are responsible for the variations within activation mechanisms. Selective processes can regulate subfamily-specific interactions between the receptor and the G proteins, and intermediate receptor conformations are required to couple particular G proteins through G protein-specific activation mechanisms. Moreover, G proteins can also selectively interact with RGS (regulators of G protein signaling) proteins as well. Selective processes modulate the signaling profile of the receptor and the tissue they are present. This chapter summarizes the recent research conducted on common and selective signal transduction mechanisms within GPCRs from an evolutionary perspective.
Collapse
|
32
|
Deng YP, Suleman, Zhang XL, Li R, Li LY, Fu YT, Liu GH, Yao C. Aonchotheca (Nematoda: Capillariidae) is validated as a separated genus from Capillaria by both mitochondrial and nuclear ribosomal DNA. Parasit Vectors 2022; 15:493. [PMID: 36585724 PMCID: PMC9805247 DOI: 10.1186/s13071-022-05609-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The family Capillariidae is a group of thread-like nematodes of 27 genera and over 300 species that infect a great variety of hosts including humans. Among these, some taxa such as the genus Aonchotheca have remained controversial regarding their systematic status for decades. The aim of the current study was to verify Aonchotheca's systemic status and to further determine whether it is a distinct genus from Capillaria using molecular and phylogenetic analyses. RESULTS We sequenced the mitochondrial (mt) genome and nuclear small subunit (18S) rRNA gene of Aonchotheca putorii, a representative species of the genus, and investigated its systematic status in Trichinellida using maximum likelihood and Bayesian inference. The differences in amino acid sequences of 13 protein-coding genes were 12.69-67.35% among Aonchotheca, Capillaria, Eucoleus, and Pseudocapillaria with cox1 (12.69%) and atp8 (67.35%) as the most and the least conserved gene, respectively, and the difference of two mt rRNAs was 18.61-34.15%. Phylogenetic analyses of the complete mt genome and 18S rRNAs unequivocally showed that Aonchotheca was a distinct genus from Capillaria. CONCLUSIONS Large difference exists among Aonchotheca, Capillaria, Eucoleus, and Pseudocapillarias. Aonchotheca putorii is the first species in the genus Aonchotheca for which a complete mitogenome has been sequenced. These data are useful for phylogenetics, systematics and the evolution of Capillariidae.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Suleman
- grid.502337.00000 0004 4657 4747Department of Zoology, University of Swabi, Swabi, 23561 Khyber Pakhtunkhwa Pakistan
| | - Xue-Ling Zhang
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Rong Li
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Le-Yan Li
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Yi-Tian Fu
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Chaoqun Yao
- grid.412247.60000 0004 1776 0209Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
33
|
Li R, Wang HM, Liu GH, Tu Y, Deng YP. Characterization of the complete mitochondrial genome of the fluke of turdus, Plagiorchis elegans, and phylogenetic implications. Exp Parasitol 2022; 242:108387. [PMID: 36170911 DOI: 10.1016/j.exppara.2022.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Plagiorchis elegans (Trematoda: Digenea) is mainly parasitic in the intestines of vertebrate animals, including humans, causing irreversible pathological damage and herd-spherical influences. However, little information is available about its molecular epidemiology, population genetics, and phylogeny. In the present study, we sequenced, assembled, and annotated the complete mitochondrial (mt) genome of P. elegans. Combining with the available mitochondrial data of subclass Digenea, phylogenetic analysis was performed based on Bayesian inference (BI). The results showed that the complete length of P. elegans is 13,862 bp, including 12 PCGs, 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and one non-coding gene (NCR). There was an obvious A + T content from 61.0% to 71.3% and the values of the Ka/Ks ratio ranged from 0.119 (cox1) to 1.053 (nad6). In the BI analysis, different from previous studies, phylogenetic analysis showed genus Glypthelmins was paraphyletic rather than monophyletic and had a closer relationship with Plagiorchis and Orientocreadium. Additionally, the BI tree also presented that the genus Echinostoma was monophyletic. Our results provided molecular data in the family Plagiorchiidae proposing new insight within Xiphidiata and Echinostomata.
Collapse
Affiliation(s)
- Rong Li
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province, 410128, China
| | - Hui-Mei Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province, 410128, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province, 410128, China
| | - Ya Tu
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, 101300, China.
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan province, 410128, China.
| |
Collapse
|
34
|
Qiao Y, Zhang X, Li Z, Song Y, Sun Z. Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC. BMC Genomics 2022; 23:664. [PMID: 36131243 PMCID: PMC9490909 DOI: 10.1186/s12864-022-08892-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bupleurum chinense(B. chinense) is a plant that is widely distributed globally and has strong pharmacological effects. Though the chloroplast(cp) genome of B. chinense has been studied, no reports regarding the mitochondrial(mt) genome of B. chinense have been published yet. RESULTS The mt genome of B.chinense was assembled and functionally annotated. The circular mt genome of B. chinense was 435,023 bp in length, and 78 genes, including 39 protein-coding genes, 35 tRNA genes, and 4 rRNA genes, were annotated. Repeat sequences were analyzed and sites at which RNA editing would occur were predicted. Gene migration was observed to occur between the mt and cp genomes of B. chinense via the detection of homologous gene fragments. In addition, the sizes of plant mt genomes and their GC content were analyzed and compared. The sizes of mt genomes of plants varied greatly, but their GC content was conserved to a greater extent during evolution. Ka/Ks analysis was based on code substitutions, and the results showed that most of the coding genes were negatively selected. This indicates that mt genes were conserved during evolution. CONCLUSION In this study, we assembled and annotated the mt genome of the medicinal plant B. chinense. Our findings provide extensive information regarding the mt genome of B. chinense, and help lay the foundation for future studies on the genetic variations, phylogeny, and breeding of B. chinense via an analysis of the mt genome.
Collapse
Affiliation(s)
- Yonggang Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xinrui Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zheng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yun Song
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhe Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| |
Collapse
|
35
|
Immunoglobulin heavy constant gamma gene evolution is modulated by both the divergent and birth-and-death evolutionary models. Primates 2022; 63:611-625. [DOI: 10.1007/s10329-022-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
|
36
|
Kim KS, Kang DW, Kim KY, Heo JS, Song HY, Yoon JD. Characterization of the complete mitogenome of the endangered freshwater fish Gobiobotia naktongensis from the Geum River in South Korea: evidence of stream connection with the Paleo-Huanghe. Genes Genomics 2022; 44:945-956. [PMID: 35674881 PMCID: PMC9273560 DOI: 10.1007/s13258-022-01265-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The freshwater fish Gobiobotia naktongensis (Teleostei, Cypriniformes, and Gobionidae) is an endangered class I species whose population size has been greatly reduced. OBJECTIVE To successfully protect and restore the highly endangered freshwater fish G. naktongensis from the Geum River in South Korea. METHODS The mitogenome was characterized using the primer walking method with phylogenetic relationships. RESULTS The complete mitogenome of G. naktongensis Geum River was 16,607 bp, comprising 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA (tRNA) genes. Seventeen substitutions were found by comparing the tRNA regions between G. naktongensis Geum and Nakdong Rivers and G. pappenheimi; most were specific to G. naktongensis Nakdong River, with changes in their secondary structures. The comparison between G. naktongensis Geum River and G. pappenheimi revealed differences in the lengths of the D-loop and two tRNAs (tRNAArg and tRNATrp) and the secondary structures in the TΨC-arm of tRNAHis. In the phylogenetic tree, G. naktongensis Geum River did not cluster with its conspecific specimen from the Nakdong River in South Korea, but showed the closest relationship to G. pappenheimi in mainland China. CONCLUSIONS Our results support the existence of the Paleo-Huanghe River connecting the Korean peninsula and mainland China, suggesting that G. naktongensis in the Geum River should be treated as a different evolutionarily significant unit separated from that in the Nakdong River. The complete mitogenome of G. naktongensis Geum River provides essential baseline data to establish strategies for its conservation and restoration.
Collapse
Affiliation(s)
- Keun-Sik Kim
- Restoration Research Team (Fishes/Amphibians & Reptiles), Research Center for Endangered Species, National Institute of Ecology, 23 Gowol-gil, Yeongyang-gun, Gyeongsangbuk-do, 36531, Republic of Korea
| | - Dong-Won Kang
- Restoration Research Team (Fishes/Amphibians & Reptiles), Research Center for Endangered Species, National Institute of Ecology, 23 Gowol-gil, Yeongyang-gun, Gyeongsangbuk-do, 36531, Republic of Korea
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd, 48300, Busan, Republic of Korea
| | - Jung Soo Heo
- Department of Genetic Analysis, AquaGenTech Co., Ltd, 48300, Busan, Republic of Korea
| | - Ha-Yoon Song
- Inland Fisheries Research Institute, National Institute of Fisheries Science, 32762, Geumsan, Republic of Korea
| | - Ju-Duk Yoon
- Restoration Research Team (Fishes/Amphibians & Reptiles), Research Center for Endangered Species, National Institute of Ecology, 23 Gowol-gil, Yeongyang-gun, Gyeongsangbuk-do, 36531, Republic of Korea.
| |
Collapse
|
37
|
White H, Vos M, Sheppard SK, Pascoe B, Raymond B. Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among Bacillus cereus clades. Mol Ecol 2022; 31:3584-3597. [PMID: 35510788 PMCID: PMC9324797 DOI: 10.1111/mec.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Bacterial clades are often ecologically distinct, despite extensive horizontal gene transfer (HGT). How selection works on different parts of bacterial pan-genomes to drive and maintain the emergence of clades is unclear. Focusing on the three largest clades in the diverse and well-studied Bacillus cereus sensu lato group, we identified clade-specific core genes (present in all clade members) and then used clade-specific allelic diversity to identify genes under purifying and diversifying selection. Clade-specific accessory genes (present in a subset of strains within a clade) were characterized as being under selection using presence/absence in specific clades. Gene ontology analyses of genes under selection revealed that different gene functions were enriched in different clades. Furthermore, some gene functions were enriched only amongst clade-specific core or accessory genomes. Genes under purifying selection were often clade-specific, while genes under diversifying selection showed signs of frequent HGT. These patterns are consistent with different selection pressures acting on both the core and the accessory genomes of different clades and can lead to ecological divergence in both cases. Examining variation in allelic diversity allows us to uncover genes under clade-specific selection, allowing ready identification of strains and their ecological niche.
Collapse
Affiliation(s)
- Hugh White
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolEnvironment and Sustainability InstitutePenryn CampusUK
| | - Samuel K. Sheppard
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Pascoe
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Raymond
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
38
|
Xu Y, Dong Y, Cheng W, Wu K, Gao H, Liu L, Xu L, Gong B. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Diospyros oleifera, the first representative from the family Ebenaceae. Heliyon 2022; 8:e09870. [PMID: 35847622 PMCID: PMC9283892 DOI: 10.1016/j.heliyon.2022.e09870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 01/30/2023] Open
Abstract
Plant mitochondrial genomes are a valuable source of genetic information for a better understanding of phylogenetic relationships. However, no mitochondrial genome of any species in Ebenaceae has been reported. In this study, we reported the first mitochondrial genome of an Ebenaceae model plant Diospyros oleifera. The mitogenome was 493,958 bp in length, contained 39 protein-coding genes, 27 transfer RNA genes, and 3 ribosomal RNA genes. The rps2 and rps11 genes were missing in the D. oleifera mt genome, while the rps10 gene was identified. The length of the repetitive sequence in the D. oleifera mt genome was 31 kb, accounting for 6.33%. A clear bias in RNA-editing sites were found in the D. oleifera mt genome. We also detected 28 chloroplast-derived fragments significantly associated with D. oleifera mt genes, indicating intracellular tRNA genes transferred frequently from chloroplasts to mitochondria in D. oleifera. Phylogenetic analysis based on the mt genomes of D. oleifera and 27 other taxa reflected the exact evolutionary and taxonomic status of D. oleifera. Ka/Ks analysis revealed that 95.16% of the protein-coding genes in the D. oleifera mt genome had undergone negative selections. But, the rearrangement of mitochondrial genes has been widely occur among D. oleifera and these observed species. These results will lay the foundation for identifying further evolutionary relationships within Ebenaceae.
Collapse
Affiliation(s)
- Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yi Dong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Wenqiang Cheng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Kaiyun Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Haidong Gao
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Liu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Lei Xu
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210023, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| |
Collapse
|
39
|
Sheikh-Assadi M, Naderi R, Kafi M, Fatahi R, Salami SA, Shariati V. Complete chloroplast genome of Lilium ledebourii (Baker) Boiss and its comparative analysis: lights into selective pressure and adaptive evolution. Sci Rep 2022; 12:9375. [PMID: 35672390 PMCID: PMC9174193 DOI: 10.1038/s41598-022-13449-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Lilium ledebourii (Baker) Boiss is a rare species, which exhibits valuable traits. However, before its genetic diversity and evolutionary were uncovered, its wild resources were jeopardized. Moreover, some ambiguities in phylogenetic relationships of this genus remain unresolved. Therefore, obtaining the whole chloroplast sequences of L. ledebourii and its comparative analysis along with other Lilium species is crucial and pivotal to understanding the evolution of this genus as well as the genetic populations. A multi-scale genome-level analysis, especially selection pressure, was conducted. Detailed third‑generation sequencing and analysis revealed a whole chloroplast genome of 151,884 bp, with an ordinary quadripartite and protected structure comprising 37.0% GC. Overall, 113 different genes were recognized in the chloroplast genome, consisting of 30 distinct tRNA genes, four distinct ribosomal RNAs genes, and 79 unique protein-encoding genes. Here, 3234 SSRs and 2053 complex repeats were identified, and a comprehensive analysis was performed for IR expansion and contraction, and codon usage bias. Moreover, genome-wide sliding window analysis revealed the variability of rpl32-trnL-ccsA, petD-rpoA, ycf1, psbI-trnS-trnG, rps15-ycf1, trnR, trnT-trnL, and trnP-psaJ-rpl33 were higher among the 48 Lilium cp genomes, displaying higher variability of nucleotide in SC regions. Following 1128 pairwise comparisons, ndhB, psbJ, psbZ, and ycf2 exhibit zero synonymous substitution, revealing divergence or genetic restriction. Furthermore, out of 78 protein-coding genes, we found that accD and rpl36 under positive selection: however, at the entire-chloroplast protein scale, the Lilium species have gone through a purifying selection. Also, a new phylogenetic tree for Lilium was rebuilt, and we believe that the Lilium classification is clearer than before. The genetic resources provided here will aid future studies in species identification, population genetics, and Lilium conservation.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
40
|
Comprehensive Analysis of the Nocardia cyriacigeorgica Complex Reveals Five Species-Level Clades with Different Evolutionary and Pathogenicity Characteristics. mSystems 2022; 7:e0140621. [PMID: 35430877 PMCID: PMC9239197 DOI: 10.1128/msystems.01406-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nocardia cyriacigeorgica is a common etiological agent of nocardiosis that has increasingly been implicated in serious pulmonary infections, especially in immunocompromised individuals. However, the evolution, diversity, and pathogenesis of N. cyriacigeorgica have remained unclear. Here, we performed a comparative genomic analysis using 91 N. cyriacigeorgica strains, 45 of which were newly sequenced in this study. Phylogenetic and average nucleotide identity (ANI) analyses revealed that N. cyriacigeorgica contained five species-level clades (8.6 to 14.6% interclade genetic divergence), namely, the N. cyriacigeorgica complex (NCC). Further pan-genome analysis revealed extensive differences among the five clades in nine functional categories, such as energy production, lipid metabolism, secondary metabolites, and signal transduction mechanisms. All 2,935 single-copy core genes undergoing purifying selection were highly conserved across NCC. However, clades D and E exhibited reduced selective constraints, compared to clades A to C. Horizontal gene transfer (HGT) and mobile genetic elements contributed to genomic plasticity, and clades A and B had experienced a higher level of HGT events than other clades. A total of 129 virulence factors were ubiquitous across NCC, such as the mce operon, hemolysin, and type VII secretion system (T7SS). However, different distributions of three toxin-coding genes and two new types of mce operons were detected, which might contribute to pathogenicity differences among the members of the NCC. Overall, our study provides comprehensive insights into the evolution, genetic diversity, and pathogenicity of NCC, facilitating the prevention of infections. IMPORTANCENocardia species are opportunistic bacterial pathogens that can affect all organ systems, primarily the skin, lungs, and brain. N. cyriacigeorgica is the most prevalent species within the genus, exhibits clinical significance, and can cause severe infections when disseminated throughout the body. However, the evolution, diversity, and pathogenicity of N. cyriacigeorgica remain unclear. Here, we have conducted a comparative genomic analysis of 91 N. cyriacigeorgica strains and revealed that N. cyriacigeorgica is not a single species but is composed of five closely related species. In addition, we discovered that these five species differ in many ways, involving selection pressure, horizontal gene transfer, functional capacity, pathogenicity, and antibiotic resistance. Overall, our work provides important clues in dissecting the evolution, genetic diversity, and pathogenicity of NCC, thereby advancing prevention measures against these infections.
Collapse
|
41
|
Schott RK, Perez L, Kwiatkowski MA, Imhoff V, Gumm JM. Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecol Evol 2022; 12:e8595. [PMID: 35154658 PMCID: PMC8820127 DOI: 10.1002/ece3.8595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/12/2023] Open
Abstract
Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of BiologyYork UniversityTorontoOntarioCanada
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Leah Perez
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
| | | | - Vance Imhoff
- Southern Nevada Fish and Wildlife OfficeUS Fish and Wildlife ServiceLas VegasNevadaUSA
| | - Jennifer M. Gumm
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
- Ash Meadows Fish Conservation FacilityUS Fish and Wildlife ServiceAmargosa ValleyNevadaUSA
| |
Collapse
|
42
|
Chen Q, Yang H, Feng X, Chen Q, Shi S, Wu CI, He Z. Two decades of suspect evidence for adaptive molecular evolution – Negative selection confounding positive selection signals. Natl Sci Rev 2021; 9:nwab217. [PMID: 35663241 PMCID: PMC9154339 DOI: 10.1093/nsr/nwab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
There has been a large literature in the last two decades affirming adaptive DNA sequence evolution between species. The main lines of evidence are from (i) the McDonald-Kreitman (MK) test, which compares divergence and polymorphism data, and (ii) the phylogenetic analysis by maximum likelihood (PAML) test, which analyzes multispecies divergence data. Here, we apply these two tests concurrently to genomic data of Drosophila and Arabidopsis. To our surprise, the >100 genes identified by the two tests do not overlap beyond random expectation. Because the non-concordance could be due to low powers leading to high false negatives, we merge every 20–30 genes into a ‘supergene’. At the supergene level, the power of detection is large but the calls still do not overlap. We rule out methodological reasons for the non-concordance. In particular, extensive simulations fail to find scenarios whereby positive selection can only be detected by either MK or PAML, but not both. Since molecular evolution is governed by positive and negative selection concurrently, a fundamental assumption for estimating one of these (say, positive selection) is that the other is constant. However, in a broad survey of primates, birds, Drosophila and Arabidopsis, we found that negative selection rarely stays constant for long in evolution. As a consequence, the variation in negative selection is often misconstrued as a signal of positive selection. In conclusion, MK, PAML and any method that examines genomic sequence evolution has to explicitly address the variation in negative selection before estimating positive selection. In a companion study, we propose a possible path forward in two stages—first, by mapping out the changes in negative selection and then using this map to estimate positive selection. For now, the large literature on positive selection between species has to await reassessment.
Collapse
Affiliation(s)
- Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Ying S. Genome-Wide Identification and Transcriptional Analysis of Arabidopsis DUF506 Gene Family. Int J Mol Sci 2021; 22:11442. [PMID: 34768874 PMCID: PMC8583954 DOI: 10.3390/ijms222111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Domain of unknown function 506 (DUF506) family, which belongs to the PD-(D/E)XK nuclease superfamily, has not been functionally characterized. In this study, 266 DUF506 domain-containing genes were identified from algae, mosses, and land plants showing their wide occurrence in photosynthetic organisms. Bioinformatics analysis identified 211 high-confidence DUF506 genes across 17 representative land plant species. Phylogenetic modeling classified three groups of plant DUF506 genes that suggested functional preservation among the groups based on conserved gene structure and motifs. Gene duplication and Ka/Ks evolutionary rates revealed that DUF506 genes are under purifying positive selection pressure. Subcellular protein localization analysis revealed that DUF506 proteins were present in different organelles. Transcript analyses showed that 13 of the Arabidopsis DUF506 genes are ubiquitously expressed in various tissues and respond to different abiotic stresses and ABA treatment. Protein-protein interaction network analysis using the STRING-DB, AtPIN (Arabidopsis thaliana Protein Interaction Network), and AI-1 (Arabidopsis Interactome-1) tools indicated that AtDUF506s potentially interact with iron-deficiency response proteins, salt-inducible transcription factors, or calcium sensors (calmodulins), implying that DUF506 genes have distinct biological functions including responses to environmental stimuli, nutrient-deficiencies, and participate in Ca(2+) signaling. Current results provide insightful information regarding the molecular features of the DUF506 family in plants, to support further functional characterizations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLC, Ardmore, OK 73401, USA
| |
Collapse
|
44
|
Duan DY, Chen Z, Fu YT, Liu GH, Cheng TY. Characterization of the complete mitochondrial genomes of two Ixodes ticks, I. nipponensis and Ixodes (Pholeoixodes) sp. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:513-522. [PMID: 33931902 DOI: 10.1111/mve.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
In this study, the authors sequenced and characterized the complete mitochondrial (mt) genomes of two hard ticks of the genus Ixodes, I. nipponensis and Ixodes (Pholeoixodes) sp., which were 14 505 and 14 543 bp in length, respectively. Their mt genomes encoded 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes and two ribosomal RNA genes, and have only one non-coding region. The gene order in their mt genomes was the same as that of other Ixodes spp. mt genomes. The average sequence identity, combined nucleotide diversity, non-synonymous/synonymous substitutions ratio analyses consistently demonstrated that cox1, rrnS, cox2, cox3 and cytb were the most conserved and atp8, nad6 and nad2 were the most variable genes across Ixodes mitogenomes. Phylogeny of the present Ixodes spp., and other selected hard tick species, based on concatenated amino acid sequences of PCGs, confirmed their position within the genus Ixodes and sub-family Ixodinae. The novel mt markers described herein will be useful for further studies of the population genetics, molecular epidemiology and systematics of hard ticks.
Collapse
Affiliation(s)
- D-Y Duan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- Hunan Co-Innovation Center of Animal Production Safety, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Z Chen
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Y-T Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - G-H Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- Hunan Co-Innovation Center of Animal Production Safety, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - T-Y Cheng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- Hunan Co-Innovation Center of Animal Production Safety, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| |
Collapse
|
45
|
Irwin DM. Variation in the Evolution and Sequences of Proglucagon and the Receptors for Proglucagon-Derived Peptides in Mammals. Front Endocrinol (Lausanne) 2021; 12:700066. [PMID: 34322093 PMCID: PMC8312260 DOI: 10.3389/fendo.2021.700066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 01/12/2023] Open
Abstract
The mammalian proglucagon gene (Gcg) encodes three glucagon like sequences, glucagon, glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 that are of similar length and share sequence similarity, with these hormones having cell surface receptors, glucagon receptor (Gcgr), GLP-1 receptor (Glp1r), and GLP-2 receptor (Glp2r), respectively. Gcgr, Glp1r, and Glp2r are all class B1 G protein-coupled receptors (GPCRs). Despite their sequence and structural similarity, analyses of sequences from rodents have found differences in patterns of sequence conservation and evolution. To determine whether these were rodent-specific traits or general features of these genes in mammals I analyzed coding and protein sequences for proglucagon and the receptors for proglucagon-derived peptides from the genomes of 168 mammalian species. Single copy genes for each gene were found in almost all genomes. In addition to glucagon sequences within Hystricognath rodents (e.g., guinea pig), glucagon sequences from a few other groups (e.g., pangolins and some bats) as well as changes in the proteolytic processing of GLP-1 in some bats are suggested to have functional effects. GLP-2 sequences display increased variability but accepted few substitutions that are predicted to have functional consequences. In parallel, Glp2r sequences display the most rapid protein sequence evolution, and show greater variability in amino acids at sites involved in ligand interaction, however most were not predicted to have a functional consequence. These observations suggest that a greater diversity in biological functions for proglucagon-derived peptides might exist in mammals.
Collapse
Affiliation(s)
- David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Qian Y, Zhang R, Jiang X, Wu G. The constraints between amino acids influence the unequal distribution of codons and protein sequence evolution. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201852. [PMID: 34109035 PMCID: PMC8170185 DOI: 10.1098/rsos.201852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Four nucleotides (A, U, C and G) constitute 64 codons at free combination but 64 codons are unequally assigned to 21 items (20 amino acids plus one stop). About 500 amino acids are known but only 20 are selected to make up the proteins. However, the relationships between amino acid and codon and between 20 amino acids have been unclear. In this paper, we studied the relationships between 20 amino acids in 33 species and found there were three constraints between 20 amino acids, such as the relatively stable mean carbon and hydrogen (C : H) ratios (0.50), similarity interactions between the constituent ratios of amino acids, and the frequency of amino acids according with Poisson distribution under certain conditions. We demonstrated that the unequal distribution of 64 codons and the choice of amino acids in molecular evolution would be constrained to remain stable C : H ratios. The constituent ratios and frequency of 20 amino acids in a species or a protein are two determinants of protein sequence evolution, so this finding showed the constraints between 20 amino acids played an important role in protein sequence evolution.
Collapse
Affiliation(s)
- Yi Qian
- Department of General Surgery, Zhongda Hospital, Southeast University, 87 Ding Jiaqiao, Nanjing 210009, People's Republic of China
| | - Rui Zhang
- Medical School, Southeast University, 87 Ding Jiaqiao, Nanjing 210009, People's Republic of China
| | - Xinglu Jiang
- Medical School, Southeast University, 87 Ding Jiaqiao, Nanjing 210009, People's Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Southeast University, 87 Ding Jiaqiao, Nanjing 210009, People's Republic of China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, 87 Ding Jiaqiao, Nanjing 210009, People's Republic of China
| |
Collapse
|
47
|
Deng YP, Zhang XL, Li LY, Yang T, Liu GH, Fu YT. Characterization of the complete mitochondrial genome of the swine kidney worm Stephanurus dentatus (Nematoda: Syngamidae) and phylogenetic implications. Vet Parasitol 2021; 295:109475. [PMID: 34062343 DOI: 10.1016/j.vetpar.2021.109475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Swine stephanuriasis caused by kidney worm Stephanurus dentatus is a parasitic disease in tropical and subtropical countries, leading to economic losses. Despite its significance as a pathogen, the phylogenetic position and taxonomic status of this nematode remain poorly understood. Mitochondrial (mt) genome sequences are known to provide useful genetic markers for investigations in these areas, but mt genome sequences are lacking for S. dentatus. In the present study, we determined the complete mt genome sequences of S. dentatus with an Illumina platform and compared it with the mt genomes of other closely related species. The circular mt genome was 13,735 bp in size with 36 genes. All genes are transcribed in the same direction and the mt gene arrangement is identified as a GA3 pattern, that is the most common pattern of gene arrangement observed in nematodes to date. Phylogenetic analysis using concatenated amino acid sequences of 12 protein-coding genes supported the hypothesis that S. dentatus was closely related to the family Chabertiidae. Our results provided insights into the phylogenetic relationship of the family Syngamidae within the superfamily Strongyloidea.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Xue-Ling Zhang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Le-Yan Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Tian Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan Province, 410128, China.
| | - Yi-Tian Fu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| |
Collapse
|
48
|
Liu D, Wang X, Guo H, Zhang X, Zhang M, Tang W. Chromosome-level genome assembly of the endangered humphead wrasse Cheilinus undulatus: Insight into the expansion of opsin genes in fishes. Mol Ecol Resour 2021; 21:2388-2406. [PMID: 34003602 DOI: 10.1111/1755-0998.13429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Wrasses are dominant components of major coral reef systems. Among wrasses, Cheilinus undulatus is an endangered species with high economic and ecological value that exhibits sex reversal of females to males, while sexual selection occurs in breeding aggregations. However, the molecular-associated mechanism underlying this remains unclear. Opsin gene diversification is regarded as a potent force in sexual selection. Here we present a genome assembly of C. undulatus, using Illumina, Nanopore and Hi-C sequencing. The 1.17 Gb genome was generated from 328 contigs with an N50 length of 16.5 Mb and anchored to 24 chromosomes. In total, 22,218 genes were functionally annotated, and 96.36% of BUSCO genes were fully represented. Transcriptomic analyses showed that 96.79% of the predicted genes were expressed. Transposons were most abundant, accounting for 39.88% of the genome, with low divergence, owing to their evolution with close species ~60.53 million years ago. In total, 567/1,826 gene families were expanded and contracted in the reconstructed phylogeny, respectively. Forty-six genes were under positive selection. Comparative genomic analyses with other fish revealed expansion of opsin SWS2B, LWS1 and Rh2. The elevated duplicates of SWS2B were generated by gene conversions via transposition of transposons followed by nonallelic homologous recombination. Amino acid substitutions of opsin paralogues occurred at key tuning sites, causing a spectral shift in maximal absorbance of visual pigment to capture functional changes. Among these opsin genes, SWS2B-3 and 4 and Rh1 are expressed in the retina. The genome sequence of C. undulatus provides valuable resources for future investigation of the conservation, evolution and behaviour of fishes.
Collapse
Affiliation(s)
- Dong Liu
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinyang Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hongyi Guo
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xuguang Zhang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Wenqiao Tang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
49
|
Li F, Lv Y, Wen Z, Bian C, Zhang X, Guo S, Shi Q, Li D. The complete mitochondrial genome of the intertidal spider (Desis jiaxiangi) provides novel insights into the adaptive evolution of the mitogenome and the evolution of spiders. BMC Ecol Evol 2021; 21:72. [PMID: 33931054 PMCID: PMC8086345 DOI: 10.1186/s12862-021-01803-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although almost all extant spider species live in terrestrial environments, a few species live fully submerged in freshwater or seawater. The intertidal spiders (genus Desis) built silk nests within coral crevices can survive submerged in high tides. The diving bell spider, Argyroneta aquatica, resides in a similar dynamic environment but exclusively in freshwater. Given the pivotal role played by mitochondria in supplying most energy for physiological activity via oxidative phosphorylation and the environment, herein we sequenced the complete mitogenome of Desis jiaxiangi to investigate the adaptive evolution of the aquatic spider mitogenomes and the evolution of spiders. RESULTS We assembled a complete mitogenome of the intertidal spider Desis jiaxiangi and performed comparative mitochondrial analyses of data set comprising of Desis jiaxiangi and other 45 previously published spider mitogenome sequences, including that of Argyroneta aquatica. We found a unique transposition of trnL2 and trnN genes in Desis jiaxiangi. Our robust phylogenetic topology clearly deciphered the evolutionary relationships between Desis jiaxiangi and Argyroneta aquatica as well as other spiders. We dated the divergence of Desis jiaxiangi and Argyroneta aquatica to the late Cretaceous at ~ 98 Ma. Our selection analyses detected a positive selection signal in the nd4 gene of the aquatic branch comprising both Desis jiaxiangi and Argyroneta aquatica. Surprisingly, Pirata subpiraticus, Hypochilus thorelli, and Argyroneta aquatica each had a higher Ka/Ks value in the 13 PCGs dataset among 46 taxa with complete mitogenomes, and these three species also showed positive selection signal in the nd6 gene. CONCLUSIONS Our finding of the unique transposition of trnL2 and trnN genes indicates that these genes may have experienced rearrangements in the history of intertidal spider evolution. The positive selection signals in the nd4 and nd6 genes might enable a better understanding of the spider metabolic adaptations in relation to different environments. Our construction of a novel mitogenome for the intertidal spider thus sheds light on the evolutionary history of spiders and their mitogenomes.
Collapse
Affiliation(s)
- Fan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
- Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, 641100 China
| | - Zhengyong Wen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
| | - Chao Bian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
| | - Shengtao Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
| | - Qiong Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083 China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore, 117543 Singapore
| |
Collapse
|
50
|
Nekliudova UA, Schwaha TF, Kotenko ON, Gruber D, Cyran N, Ostrovsky AN. Three in one: evolution of viviparity, coenocytic placenta and polyembryony in cyclostome bryozoans. BMC Ecol Evol 2021; 21:54. [PMID: 33845757 PMCID: PMC8042935 DOI: 10.1186/s12862-021-01775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Placentation has evolved multiple times among both chordates and invertebrates. Although they are structurally less complex, invertebrate placentae are much more diverse in their origin, development and position. Aquatic colonial suspension-feeders from the phylum Bryozoa acquired placental analogues multiple times, representing an outstanding example of their structural diversity and evolution. Among them, the clade Cyclostomata is the only one in which placentation is associated with viviparity and polyembryony-a unique combination not present in any other invertebrate group. RESULTS The histological and ultrastructural study of the sexual polymorphic zooids (gonozooids) in two cyclostome species, Crisia eburnea and Crisiella producta, revealed embryos embedded in a placental analogue (nutritive tissue) with a unique structure-comprising coenocytes and solitary cells-previously unknown in animals. Coenocytes originate via nuclear multiplication and cytoplasmic growth among the cells surrounding the early embryo. This process also affects cells of the membranous sac, which initially serves as a hydrostatic system but later becomes main part of the placenta. The nutritive tissue is both highly dynamic, permanently rearranging its structure, and highly integrated with its coenocytic 'elements' being interconnected via cytoplasmic bridges and various cell contacts. This tissue shows evidence of both nutrient synthesis and transport (bidirectional transcytosis), supporting the enclosed multiple progeny. Growing primary embryo produces secondary embryos (via fission) that develop into larvae; both the secondary embyos and larvae show signs of endocytosis. Interzooidal communication pores are occupied by 1‒2 specialized pore-cells probably involved in the transport of nutrients between zooids. CONCLUSIONS Cyclostome nutritive tissue is currently the only known example of a coenocytic placental analogue, although syncytial 'elements' could potentially be formed in them too. Structurally and functionally (but not developmentally) the nutritive tissue can be compared with the syncytial placental analogues of certain invertebrates and chordates. Evolution of the cyclostome placenta, involving transformation of the hydrostatic apparatus (membranous sac) and change of its function to embryonic nourishment, is an example of exaptation that is rather widespread among matrotrophic bryozoans. We speculate that the acquisition of a highly advanced placenta providing massive nourishment might support the evolution of polyembryony in cyclostomes. In turn, massive and continuous embryonic production led to the evolution of enlarged incubating polymorphic gonozooids hosting multiple progeny.
Collapse
Affiliation(s)
- U A Nekliudova
- Department of Evolutionary Biology, Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia
| | - T F Schwaha
- Department of Evolutionary Biology, Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - O N Kotenko
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia
| | - D Gruber
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - N Cyran
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - A N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia.
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|