1
|
Lin L, Ding L, Fu Z, Zhang L. Machine learning-based models for prediction of the risk of stroke in coronary artery disease patients receiving coronary revascularization. PLoS One 2024; 19:e0296402. [PMID: 38330052 PMCID: PMC10852291 DOI: 10.1371/journal.pone.0296402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND To construct several prediction models for the risk of stroke in coronary artery disease (CAD) patients receiving coronary revascularization based on machine learning methods. METHODS In total, 5757 CAD patients receiving coronary revascularization admitted to ICU in Medical Information Mart for Intensive Care IV (MIMIC-IV) were included in this cohort study. All the data were randomly split into the training set (n = 4029) and testing set (n = 1728) at 7:3. Pearson correlation analysis and least absolute shrinkage and selection operator (LASSO) regression model were applied for feature screening. Variables with Pearson correlation coefficient<9 were included, and the regression coefficients were set to 0. Features more closely related to the outcome were selected from the 10-fold cross-validation, and features with non-0 Coefficent were retained and included in the final model. The predictive values of the models were evaluated by sensitivity, specificity, area under the curve (AUC), accuracy, and 95% confidence interval (CI). RESULTS The Catboost model presented the best predictive performance with the AUC of 0.831 (95%CI: 0.811-0.851) in the training set, and 0.760 (95%CI: 0.722-0.798) in the testing set. The AUC of the logistic regression model was 0.789 (95%CI: 0.764-0.814) in the training set and 0.731 (95%CI: 0.686-0.776) in the testing set. The results of Delong test revealed that the predictive value of the Catboost model was significantly higher than the logistic regression model (P<0.05). Charlson Comorbidity Index (CCI) was the most important variable associated with the risk of stroke in CAD patients receiving coronary revascularization. CONCLUSION The Catboost model was the optimal model for predicting the risk of stroke in CAD patients receiving coronary revascularization, which might provide a tool to quickly identify CAD patients who were at high risk of postoperative stroke.
Collapse
Affiliation(s)
- Lulu Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Li Ding
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhongguo Fu
- Department of Neurology, Shenyang First People’s Hospital, Shenyang, Liaoning, China
| | - Lijiao Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Krishnan A, Wang H, MacArthur JW. Applications of Tissue Decellularization Techniques in Ventricular Myocardial Biofabrication. Front Bioeng Biotechnol 2022; 10:802283. [PMID: 35265593 PMCID: PMC8899393 DOI: 10.3389/fbioe.2022.802283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic heart disease is the leading cause of death around the world, and though the advent of coronary revascularization has revolutionized its treatment, many patients who sustain ischemic injury to the heart will go on to develop heart failure. Biofabrication of ventricular myocardium for replacement of irreversibly damaged ischemic myocardium is sought after as a potential therapy for ischemic heart failure, though challenges in reliably producing this biomaterial have limited its clinical application. One method that shows promise for generation of functional myocardium is the use of tissue decellularization to serve as a scaffold for biofabrication. This review outlines the methods, materials, challenges, and prospects of tissue decellularization techniques for ventricular myocardium biofabrication. Decellularization aims to preserve the architecture and composition of the extracellular matrix of the tissue it is applied to, allowing for the subsequent implantation of stem cells of the desired cell type. Decellularization can be achieved with multiple reagents, most of which have detergent properties. A variety of cell types can be implanted in the resulting scaffold, including cardiac progenitor cells, and embryonic or induced pluripotent stem cells to generate a range of tissue, from patches to beating myocardium. The future of this biofabrication method will likely emphasize patient specific tissue engineering to generate complex 3-dimensional constructs that can replace dysfunctional cardiac structures.
Collapse
Affiliation(s)
- Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - John Ward MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Kang X, Deng Y, Cao Y, Huo Y, Luo J. Zyxin Mediates Vascular Repair via Endothelial Migration Promoted by Forskolin in Mice. Front Physiol 2021; 12:741699. [PMID: 34690814 PMCID: PMC8531502 DOI: 10.3389/fphys.2021.741699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Endothelial repair upon vascular injury is critical for the protection of vessel integrity and prevention of the development of vascular disorders, but the underlying mechanisms remain poorly understood. In this study, we investigated the role of zyxin and its associated cyclic adenosine monophosphate (cAMP) signaling in the regulation of re-endothelialization after vascular injury. Experimental Approach: In zyxin-/- and wild-type mice, wire injury of the carotid artery was carried out, followed by Evans blue staining, to evaluate the re-endothelialization. Mice with endothelium-specific zyxin knockout were used to further determine its role. An in vitro wound-healing assay was performed in primary human endothelial cells (ECs) expressing zyxin-specific short-hairpin RNAs (shRNAs) or scrambled controls by measuring cell migration and proliferation. The effects of the cAMP signaling agonist forskolin were assessed. Key Results: The re-endothelialization of the injured carotid artery was impaired in zyxin-deficient mice, whereas the rate of cell proliferation was comparable with that in wild-type controls. Furthermore, endothelium-specific deletion of zyxin led to similar phenotypes. Knockdown of zyxin by shRNAs in primary human ECs significantly reduced cell migration in the wound-healing assay. Notably, forskolin enhanced endothelial migration in a dose-dependent manner, and this was dependent on zyxin through its interaction with vasodilator-stimulated phosphoprotein. In addition, forskolin promoted the re-endothelialization of the injured carotid artery, and this was compromised by zyxin deficiency. Conclusion and Implications: This study reveals zyxin as a new player in endothelial repair, which is promoted by forskolin, after vascular injury. Thus, zyxin-mediated signaling might be a potential treatment target for diseases involving vascular injury.
Collapse
Affiliation(s)
- Xuya Kang
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yanan Deng
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yang Cao
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yingqing Huo
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jincai Luo
- Laboratory of Vascular Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, School of Future Technology, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
4
|
Park JH, Dehaini D, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. NANOSCALE HORIZONS 2020; 5:25-42. [PMID: 32133150 PMCID: PMC7055493 DOI: 10.1039/c9nh00291j] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease (CVD), which encompasses a number of conditions that can affect the heart and blood vessels, presents a major challenge for modern-day healthcare. Nearly one in three people has some form of CVD, with many suffering from multiple or intertwined conditions that can ultimately lead to traumatic events such as a heart attack or stroke. While the knowledge obtained in the past century regarding the cardiovascular system has paved the way for the development of life-prolonging drugs and treatment modalities, CVD remains one of the leading causes of death in developed countries. More recently, researchers have explored the application of nanotechnology to improve upon current clinical paradigms for the management of CVD. Nanoscale delivery systems have many advantages, including the ability to target diseased sites, improve drug bioavailability, and carry various functional payloads. In this review, we cover the different ways in which nanoparticle technology can be applied towards CVD diagnostics and treatments. The development of novel biomimetic platforms with enhanced functionalities is discussed in detail.
Collapse
Affiliation(s)
| | | | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Noh YK, Park JY, Choi BG, Kim KE, Rha SW. A Machine Learning-Based Approach for the Prediction of Acute Coronary Syndrome Requiring Revascularization. J Med Syst 2019; 43:253. [PMID: 31254109 DOI: 10.1007/s10916-019-1359-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
Abstract
The aim of this study is to predict acute coronary syndrome (ACS) requiring revascularization in those patients presenting early-stage angina-like symptom using machine learning algorithms. We obtained data from 2344 ACS patients, who required revascularization and from 3538 non-ACS patients. We analyzed 20 features that are relevant to ACS using standard algorithms, support vector machines and linear discriminant analysis. Based on feature pattern and filter characteristics, we analyzed and extracted a strong prediction function out of the 20 selected features. The obtained prediction functions are relevant showing the area under curve of 0.860 for the prediction of ACS that requiring revascularization. Some features are missing in many data though they are considered to be very informative; it turned out that omitting those features from the input and using more data without those features for training improves the prediction accuracy. Additionally, from the investigation using the receiver operating characteristic curves, a reliable prediction of 2.60% of non-ACS patients could be made with a specificity of 1.0. For those 2.60% non-ACS patients, we can consider the recommendation of medical treatment without risking misdiagnosis of the patients requiring revascularization. We investigated prediction algorithm to select ACS patients requiring revascularization and non-ACS patients presenting angina-like symptoms at an early stage. In the future, a large cohort study is necessary to increase the prediction accuracy and confirm the possibility of safely discriminating the non-ACS patients from the ACS patients with confidence.
Collapse
Affiliation(s)
- Yung-Kyun Noh
- Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Ji Young Park
- Division of Cardiology, Nowon Eulji Hospital, Eulji University, 68 Hangeulbiseok-ro, Nowon-gu, Seoul, 01830, South Korea
| | - Byoung Geol Choi
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Kee-Eung Kim
- School of Computing, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung-Woon Rha
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| |
Collapse
|
6
|
Gupta P, Garcia E, Sarkar A, Kapoor S, Rafiq K, Chand HS, Jayant RD. Nanoparticle Based Treatment for Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:33-44. [PMID: 29737265 DOI: 10.2174/1871529x18666180508113253] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained increased attention for delivering therapeutic agents effectively to the cardiovascular system. Heart targeted nanocarrier based drug delivery is a new, effective and efficacious approach for treating various cardiac related disorders such as atherosclerosis, hypertension, and myocardial infarction. Nanocarrier based drug delivery system circumvents the problems associated with conventional drug delivery systems, including their nonspecificity, severe side effects and damage to the normal cells. Modification of physicochemical properties of nanocarriers such as size, shape and surface modifications can immensely alter its invivo pharmacokinetic and pharmacodynamic data and will provide better treatment strategy. Several nanocarriers such as lipid, phospholipid nanoparticles have been developed for delivering drugs to the target sites within the heart. This review summarizes and increases the understanding of the advanced nanosized drug delivery systems for treating cardiovascular disorders with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Purnima Gupta
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Evelyn Garcia
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Amrita Sarkar
- Department of Medicine, Center of Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sumit Kapoor
- Beckman Coulter, Inc., 11800 SW 147th Ave, Miami, FL-33196, United States
| | - Khadija Rafiq
- Department of Medicine, Center of Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hitendra S Chand
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Rahul Dev Jayant
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| |
Collapse
|
7
|
Affiliation(s)
- Alejandro C Bribriesco
- Department of Thoracic and Cardiovascular surgery, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Usman Ahmad
- Department of Thoracic and Cardiovascular surgery, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Siva Raja
- Department of Thoracic and Cardiovascular surgery, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
8
|
Jansen F, Li Q, Pfeifer A, Werner N. Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation of Cardiovascular Health and Disease. JACC Basic Transl Sci 2017; 2:790-807. [PMID: 30062186 PMCID: PMC6059011 DOI: 10.1016/j.jacbts.2017.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 02/08/2023]
Abstract
Intercellular signaling by extracellular vesicles (EVs) is a route of cell-cell crosstalk that allows cells to deliver biological messages to specific recipient cells. EVs convey these messages through their distinct cargoes consisting of cytokines, proteins, nucleic acids, and lipids, which they transport from the donor cell to the recipient cell. In cardiovascular disease (CVD), endothelial- and immune cell-derived EVs are emerging as key players in different stages of disease development. EVs can contribute to atherosclerosis development and progression by promoting endothelial dysfunction, intravascular calcification, unstable plaque progression, and thrombus formation after rupture. In contrast, an increasing body of evidence highlights the beneficial effects of certain EVs on vascular function and endothelial regeneration. However, the effects of EVs in CVD are extremely complex and depend on the cellular origin, the functional state of the releasing cells, the biological content, and the diverse recipient cells. This paper summarizes recent progress in our understanding of EV signaling in cardiovascular health and disease and its emerging potential as a therapeutic agent.
Collapse
Key Words
- CVD, cardiovascular disease
- EC, endothelial cell
- EMV, endothelial cell-derived microvesicles
- ESCRT, endosomal sorting complex required for transport
- IL, interleukin
- MV, microvesicles
- NO, nitric oxide
- PEG, polyethylene glycol
- TGF, transforming growth factor
- cardiovascular disease
- extracellular vesicles
- miRNA, microRNA
- microvesicles
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Qian Li
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany.,Department of Cardiology, Second Hospital of Jilin University, Nanguan District, Changchun, China
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
9
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
10
|
Abstract
The need for the preoperative continuation of chronic antiplatelet therapy with coronary artery stents can be challenging and remains controversial.
Collapse
|
11
|
Vetter TR, Hunter JM, Boudreaux AM. Preoperative management of antiplatelet drugs for a coronary artery stent: how can we hit a moving target? BMC Anesthesiol 2014; 14:73. [PMID: 25183953 PMCID: PMC4151077 DOI: 10.1186/1471-2253-14-73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023] Open
Abstract
Background With the advent of percutaneous coronary intervention, specifically the bare metal stent and subsequently, the drug-eluting stent, the scope of interventional cardiology has greatly increased. Aspirin, in combination with a thienopyridine is the present-day cornerstone of oral antiplatelet therapy after coronary artery stent placement. Continuing this chronic antiplatelet therapy, to mitigate a perioperative major adverse cardiac event, can be challenging and remains controversial in patients with a coronary artery stent undergoing non-cardiac surgery. We describe here the rationale for and successful use of an alternate approach to formulating local institutional management protocols for patients with a coronary artery stent, undergoing an elective surgical procedure. Discussion A recent systematic review identified 11 clinical practice guidelines for the perioperative management of antiplatelet therapy in patients with a coronary stent who need non-cardiac surgery. However, there is significant variance and inadequacy with these current applicable professional society guidelines. Moreover, persistently variable success has been experienced in translating even well-grounded national clinical guidelines into local practice, including in the perioperative setting. Under the auspices of a broadly multidisciplinary institutional task force and applying the Consensus-Oriented Decision-Making model, we created two evidence-informed and local expert opinion-supported standardized clinical assessment and management plans for the preoperative management of antiplatelet therapy in patients with a coronary artery stent. Summary Patient care can be optimized via evidence-based, yet locally developed and reiterative standardized clinical assessment and management plans for patients with coronary artery stents undergoing surgical procedures. Such standardized clinical assessment and management plans can result in greater consistency in care, providing a positive feedback loop in which the care plan itself can be continuously reevaluated, improved, and brought up to date with the most recent available data and knowledge.
Collapse
Affiliation(s)
- Thomas R Vetter
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, 619 19th Street South, JT804, Birmingham, AL 35249-6810, USA
| | - James M Hunter
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, 619 19th Street South, JT804, Birmingham, AL 35249-6810, USA
| | - Arthur M Boudreaux
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, 619 19th Street South, JT804, Birmingham, AL 35249-6810, USA
| |
Collapse
|
12
|
Rahman A, Islam AKMM. Unprotected left main percutaneous coronary intervention in a 108-year-old patient. Korean Circ J 2014; 44:113-117. [PMID: 24653741 PMCID: PMC3958605 DOI: 10.4070/kcj.2014.44.2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 02/05/2023] Open
Abstract
With the increase in life expectancy, the proportion of very elderly people is increasing. Coronary artery disease (CAD) is an important cause of mortality and morbidity in this age group, for which myocardial revascularization is often indicated. Percutaneous coronary intervention (PCI) in the very elderly bears the inherent risks of complications and mortality, but the potential benefits may outweigh these risks. A number of observational studies, registries, and few randomized controlled trials have shown the safety and feasibility of PCI in octogenarians and nonagenarians. However, PCI is only rarely done in centenarians; so, the outcome of percutaneous coronary revascularization in this age group is largely unknown. PCI in a centenarian with complex CAD is described here; the patient presented with unstable angina despite optimum medical therapy, and surgery was declined. Good angiographic success was followed by non-cardiac complications, which were managed with a multidisciplinary approach.
Collapse
Affiliation(s)
- Afzalur Rahman
- Department of Cardiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh
| | - AKM Monwarul Islam
- Department of Cardiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh
| |
Collapse
|
13
|
Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D, Vosen S, Franklin BS, Fleischmann BK, Nickenig G, Werner N. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128:2026-38. [PMID: 24014835 DOI: 10.1161/circulationaha.113.001720] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. METHODS AND RESULTS Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. CONCLUSIONS Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany (F.J., M.H., A.C., T.S., S.P., G.N., N.W.); Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL (X.Y.); Institute of Physiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany (D.W., S.V., B.K.F.); and Institute of Innate Immunity, Rheinische Friedrich-Wilhelms University, Bonn, Germany (B.S.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Carbone F, Nencioni A, Mach F, Vuilleumier N, Montecucco F. Pathophysiological role of neutrophils in acute myocardial infarction. Thromb Haemost 2013; 110:501-514. [PMID: 23740239 DOI: 10.1160/th13-03-0211] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/04/2013] [Indexed: 12/13/2022]
Abstract
The pathogenesis of acute myocardial infarction is known to be mediated by systemic, intraplaque and myocardial inflammatory processes. Among different immune cell subsets, compelling evidence now indicates a pivotal role for neutrophils in acute coronary syndromes. Neutrophils infiltrate coronary plaques and the infarcted myocardium and mediate tissue damage by releasing matrix-degrading enzymes and reactive oxygen species. In addition, neutrophils are also involved in post-infarction adverse cardiac remodelling and neointima formation after angioplasty. The promising results obtained in preclinical modelswith pharmacological approaches interfering with neutrophil recruitment or function have confirmed the pathophysiological relevance of these immune cells in acute coronary syndromes and prompted further studies of these therapeutic interventions. This narrative review will provide an update on the role of neutrophils in acute myocardial infarction and on the pharmacological means that were devised to prevent neutrophil-mediated tissue damage and to reduce post-ischaemic outcomes.
Collapse
Affiliation(s)
- F Carbone
- Fabrizio Montecucco, Cardiology Division, Department of Medicine, Geneva University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland, Tel.: +41 223827238, Fax: +41 223827245, E-mail:
| | | | | | | | | |
Collapse
|
15
|
Movahed MR, Ramaraj R, Khoynezhad A, Hashemzadeh M, Hashemzadeh M. Declining in-hospital mortality in patients undergoing coronary bypass surgery in the United States irrespective of presence of type 2 diabetes or congestive heart failure. Clin Cardiol 2012; 35:297-300. [PMID: 22362298 DOI: 10.1002/clc.21970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Significant advances in surgical techniques and postsurgical care have been made in the last 10 years. The goal of this study was to evaluate any decline in the age-adjusted in-hospital mortality rate of patients undergoing coronary artery bypass grafting (CABG) using a national database from 1989 to 2004 in the United States. HYPOTHESIS Reduction in CABG related mortality in recent years. METHODS Using the Nationwide Inpatient Sample (NIS) database, we obtained specific ICD-9-CM codes forCABG to compile the data. To exclude nonatherosclerotic cause of coronary disease, we studied only patients older than 40 years. We calculated total and age-adjusted mortality rate per 100,000 for this period. RESULTS The NIS database contained 1 145 285 patients who had CABG performed from 1988 to 2004. The mean age for these patients was 71.05 ± 9.20 years. From 1989, the age-adjusted rate for all CABG-related mortality has been decreasing steadily and reached the lowest level in 2004: 300.3 per 100 000 in 1989, (95%confidence interval [CI], 20.4-575.9) and 104.69 per 100 000 (95% CI, 22.6-186.7) in 2004. Total death also declined from 5.5% to 3.06%. This decline occurred irrespective of comorbidities such as congestive heart failure, diabetes, or acute myocardial infarction, albeit increasing the number of CABG procedures performed in high-risk patients. CONCLUSIONS The age-adjusted in-hospital mortality rate from CABG has been declining steadily and reached its lowest level in 2004, irrespective of comorbidities. This decline most likely reflects advances in surgical techniques and the use of evidence-based medicine in patients undergoing CABG.
Collapse
Affiliation(s)
- Mohammad Reza Movahed
- Department of Medicine, Division of Cardiology, The Southern Arizona VA Health Care System, University of Arizona College of Medicine, 3601 South Sixth Avenue, Tucson, AZ 85723, USA.
| | | | | | | | | |
Collapse
|
16
|
Soehnlein O, Wantha S, Simsekyilmaz S, Döring Y, Megens RTA, Mause SF, Drechsler M, Smeets R, Weinandy S, Schreiber F, Gries T, Jockenhoevel S, Möller M, Vijayan S, van Zandvoort MAMJ, Agerberth B, Pham CT, Gallo RL, Hackeng TM, Liehn EA, Zernecke A, Klee D, Weber C. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med 2012; 3:103ra98. [PMID: 21974936 DOI: 10.1126/scitranslmed.3002531] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Percutaneous transluminal angioplasty with stent implantation is used to dilate arteries narrowed by atherosclerotic plaques and to revascularize coronary arteries occluded by atherothrombosis in myocardial infarction. Commonly applied drug-eluting stents release antiproliferative or anti-inflammatory agents to reduce the incidence of in-stent stenosis. However, these stents may still lead to in-stent stenosis; they also show increased rates of late stent thrombosis, an obstacle to optimal revascularization possibly related to endothelial recovery. Here, we examined the contribution of neutrophils and neutrophilic granule proteins to arterial healing after injury. We found that neutrophil-borne cathelicidin (mouse CRAMP, human LL-37) promoted reendothelization and thereby limited neointima formation after stent implantation. We then translated these findings to an animal model using a neutrophil-instructing, biofunctionalized, miniaturized Nitinol stent coated with LL-37. This stent reduced in-stent stenosis in a mouse model of atherosclerosis, suggesting that LL-37 may promote vascular healing after interventional therapy.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University München, Munich 80336, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kar S, Coats W, Aggarwal K. Percutaneous coronary intervention versus coronary artery bypass graft in chronic kidney disease: Optimal treatment options. Hemodial Int 2011; 15 Suppl 1:S30-6. [DOI: 10.1111/j.1542-4758.2011.00599.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kones R. Recent advances in the management of chronic stable angina II. Anti-ischemic therapy, options for refractory angina, risk factor reduction, and revascularization. Vasc Health Risk Manag 2010; 6:749-74. [PMID: 20859545 PMCID: PMC2941787 DOI: 10.2147/vhrm.s11100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Indexed: 12/19/2022] Open
Abstract
The objectives in treating angina are relief of pain and prevention of disease progression through risk reduction. Mechanisms, indications, clinical forms, doses, and side effects of the traditional antianginal agents - nitrates, β-blockers, and calcium channel blockers - are reviewed. A number of patients have contraindications or remain unrelieved from anginal discomfort with these drugs. Among newer alternatives, ranolazine, recently approved in the United States, indirectly prevents the intracellular calcium overload involved in cardiac ischemia and is a welcome addition to available treatments. None, however, are disease-modifying agents. Two options for refractory angina, enhanced external counterpulsation and spinal cord stimulation (SCS), are presented in detail. They are both well-studied and are effective means of treating at least some patients with this perplexing form of angina. Traditional modifiable risk factors for coronary artery disease (CAD) - smoking, hypertension, dyslipidemia, diabetes, and obesity - account for most of the population-attributable risk. Individual therapy of high-risk patients differs from population-wide efforts to prevent risk factors from appearing or reducing their severity, in order to lower the national burden of disease. Current American College of Cardiology/American Heart Association guidelines to lower risk in patients with chronic angina are reviewed. The Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial showed that in patients with stable angina, optimal medical therapy alone and percutaneous coronary intervention (PCI) with medical therapy were equal in preventing myocardial infarction and death. The integration of COURAGE results into current practice is discussed. For patients who are unstable, with very high risk, with left main coronary artery lesions, in whom medical therapy fails, and in those with acute coronary syndromes, PCI is indicated. Asymptomatic patients with CAD and those with stable angina may defer intervention without additional risk to see if they will improve on optimum medical therapy. For many patients, coronary artery bypass surgery offers the best opportunity for relieving angina, reducing the need for additional revascularization procedures and improving survival. Optimal medical therapy, percutaneous coronary intervention, and surgery are not competing therapies, but are complementary and form a continuum, each filling an important evidence-based need in modern comprehensive management.
Collapse
Affiliation(s)
- Richard Kones
- Cardiometabolic Research Institute, Houston, Texas 77055, USA.
| |
Collapse
|