1
|
Baltz RH, Vandamme EJ, Bennett JW, Agathos SN, Sánchez S, Osada H, Deng Z, Gonzalez R. Introduction and commentaries for the special issue: "Arnold L. Demain-A life lived". J Ind Microbiol Biotechnol 2021; 48:6440160. [PMID: 34850020 DOI: 10.1093/jimb/kuab082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022]
Affiliation(s)
| | | | - Joan W Bennett
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Spiros N Agathos
- Laboratory of Bioengineering, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Vandamme EJ. Professor Arnold L. (Arny) Demain's historical position in the rise of industrial microbiology and biotechnology. J Ind Microbiol Biotechnol 2021; 48:kuab034. [PMID: 34113991 PMCID: PMC8788709 DOI: 10.1093/jimb/kuab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022]
Abstract
This perspective text focuses on the pivotal role and historical position that the late Prof. Arnold L. (Arny) Demain has taken since the 1950s in the rise and impact of the field of industrial microbiology and biotechnology. His drive toward academic research with industrial potential-first at Merck & Co. and later at MIT-, his feeling for establishing cordial personal contacts with his students and postdocs (Arny's Army) and his ability for worldwide networking are outlined here, intertwined with the author's personal experiences and impressions. His scientific output is legendary as to research papers, comprehensive reviews, books, and lectures at conferences worldwide. Some of his research experiences in industry and academia are mentioned in a historical context as well as his relentless efforts to advocate the importance and impact of industrial microbiology and biotechnology as an essential green technology for our planet Earth.
Collapse
Affiliation(s)
- Erick J Vandamme
- Department of Biotechnology, Centre for Industrial Biotechnology and Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Shi T, Han P, You C, Zhang YHPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018; 3:186-195. [PMID: 30345404 PMCID: PMC6190512 DOI: 10.1016/j.synbio.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Although most in vitro (cell-free) synthetic biology projects are usually used for the purposes of fundamental research or the formation of high-value products, in vitro synthetic biology platform, which can implement complicated biochemical reactions by the in vitro assembly of numerous enzymes and coenzymes, has been proposed for low-cost biomanufacturing of bioenergy, food, biochemicals, and nutraceuticals. In addition to the most important advantage-high product yield, in vitro synthetic biology platform features several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this article, we present the basic bottom-up design principles of in vitro synthetic pathway from basic building blocks-BioBricks (thermoenzymes and/or immobilized enzymes) to building modules (e.g., enzyme complexes or multiple enzymes as a module) with specific functions. With development in thermostable building blocks-BioBricks and modules, the in vitro synthetic biology platform would open a new biomanufacturing age for the cost-competitive production of biocommodities.
Collapse
Affiliation(s)
| | | | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
4
|
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017; 2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by the vast majority of oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other depending on their different metabolic roles. This coenzyme preference associated with coenzyme imbalance presents some challenges for the construction of high-efficiency in vivo and in vitro synthetic biology pathways. Changing the coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering, with its application in improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in the switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preferences from natural to biomimetic coenzymes has become an important direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Zhang YHP, Sun J, Ma Y. Biomanufacturing: history and perspective. ACTA ACUST UNITED AC 2017; 44:773-784. [PMID: 27837351 DOI: 10.1007/s10295-016-1863-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Biomanufacturing is a type of manufacturing that utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercially important biomolecules for use in the agricultural, food, material, energy, and pharmaceutical industries. History of biomanufacturing could be classified into the three revolutions in terms of respective product types (mainly), production platforms, and research technologies. Biomanufacturing 1.0 focuses on the production of primary metabolites (e.g., butanol, acetone, ethanol, citric acid) by using mono-culture fermentation; biomanufacturing 2.0 focuses on the production of secondary metabolites (e.g., penicillin, streptomycin) by using a dedicated mutant and aerobic submerged liquid fermentation; and biomanufacturing 3.0 focuses on the production of large-size biomolecules—proteins and enzymes (e.g., erythropoietin, insulin, growth hormone, amylase, DNA polymerase) by using recombinant DNA technology and advanced cell culture. Biomanufacturing 4.0 could focus on new products, for example, human tissues or cells made by regenerative medicine, artificial starch made by in vitro synthetic biosystems, isobutanol fermented by metabolic engineering, and synthetic biology-driven microorganisms, as well as exiting products produced by far better approaches. Biomanufacturing 4.0 would help address some of the most important challenges of humankind, such as food security, energy security and sustainability, water crisis, climate change, health issues, and conflict related to the energy, food, and water nexus.
Collapse
Affiliation(s)
- Yi-Heng Percival Zhang
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
- 0000 0001 0694 4940 grid.438526.e Biological Systems Engineering Department Virginia Tech 304 Seitz Hall 24061 Blacksburg VA USA
| | - Jibin Sun
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| | - Yanhe Ma
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| |
Collapse
|
6
|
Bennett JW. On being an honorary member of Arny's army: some musings about fungal fermentations, secondary metabolism, and scientific communities. J Ind Microbiol Biotechnol 2017; 44:507-516. [PMID: 28451907 DOI: 10.1007/s10295-017-1923-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This essay is an unabashed celebration of applied microbiology and secondary metabolism, and how one scientist-Arnold Demain-has been a spokesman for industrial microbiology and biotechnology. There are many reasons for Arny's professional success. During his long and distinguished career, Arnold Demain has expanded and enriched our understanding of the importance secondary metabolism. He has studied topics that ranged from pickles, to pectinolytic enzymes, to penicillin. His experimental versatility was conducted under the unifying theme of fermentation microbiology. In addition, one of his most positive achievements was his ability to bring scientists from different disciplines and national backgrounds together and thereby nucleate new collaborations. I am one of many people who has benefited from Arny's generous mentoring and speak from the heart when I say that industrial microbiology could not have a better representative. Arny has been the catalyst for much of that has gone right in my professional life and the lives of the many other applied microbiologists who have had the good fortune to know him.
Collapse
|
7
|
|
8
|
Zhang YHP. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnol Adv 2015; 33:1467-83. [DOI: 10.1016/j.biotechadv.2014.10.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 12/20/2022]
|
9
|
Cragg GM, Grothaus PG, Newman DJ. New horizons for old drugs and drug leads. JOURNAL OF NATURAL PRODUCTS 2014; 77:703-23. [PMID: 24499205 DOI: 10.1021/np5000796] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is mounting urgency to find new drugs for the treatment of serious infectious diseases and cancer that are rapidly developing resistance to previously effective drugs. One approach to addressing this need is through drug repurposing, which refers to the discovery of new useful activities for "old" clinically used drugs through screening them against relevant disease targets. A large number of potential drug that, for various reasons, have failed to advance to clinical and commercial use can be added to the candidates available for such purposes. The application of new techniques and methodology developed through the impressive progress made in multidisciplinary, natural product-related research in recent years should aid substantially in expediting the discovery and development process. This review briefly outlines some of these developments as applied to a number of selected natural product examples, which may also include advances in chemical synthesis of derivatives with extended biological activities.
Collapse
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory , P.O. Box B, Frederick, Maryland 21702, United States
| | | | | |
Collapse
|
10
|
You C, Zhang YHP. Cell-free biosystems for biomanufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 131:89-119. [PMID: 23111502 DOI: 10.1007/10_2012_159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although cell-free biosystems have been used as a tool for investigating fundamental aspects of biological systems for more than 100 years, they are becoming an emerging biomanufacturing platform in the production of low-value biocommodities (e.g., H(2), ethanol, and isobutanol), fine chemicals, and high-value protein and carbohydrate drugs and their precursors. Here we would like to define the cell-free biosystems containing more than three catalytic components in a single reaction vessel, which although different from one-, two-, or three-enzyme biocatalysis can be regarded as a straightforward extension of multienzymatic biocatalysis. In this chapter, we compare the advantages and disadvantages of cell-free biosystems versus living organisms, briefly review the history of cell-free biosystems, highlight a few examples, analyze any remaining obstacles to the scale-up of cell-free biosystems, and suggest potential solutions. Cell-free biosystems could become a disruptive technology to microbial fermentation, especially in the production of high-impact low-value biocommodities mainly due to the very high product yields and potentially low production costs.
Collapse
Affiliation(s)
- Chun You
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA, 24061, USA
| | | |
Collapse
|
11
|
Hii KL, Yeap SP, Mashitah MD. Cellulase production from palm oil mill effluent in Malaysia: Economical and technical perspectives. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
12
|
Sánchez S. Arnold Lester Demain: a good friend, an outstanding scientist and a valuable professor. J Antibiot (Tokyo) 2010; 63:412-4. [DOI: 10.1038/ja.2010.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Biosynthesis of rapamycin and its regulation: past achievements and recent progress. J Antibiot (Tokyo) 2010; 63:434-41. [PMID: 20588302 DOI: 10.1038/ja.2010.71] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rapamycin and its analogs are clinically important macrolide compounds produced by Streptomyces hygroscopicus. They exhibit antifungal, immunosuppressive, antitumor, neuroprotective and antiaging activities. The core macrolactone ring of rapamycin is biosynthesized by hybrid type I modular polyketide synthase (PKS)/nonribosomal peptide synthetase systems primed with 4,5-dihydrocyclohex-1-ene-carboxylic acid. The linear polyketide chain is condensed with pipecolate by peptide synthetase, followed by cyclization to form the macrolide ring and modified by a series of post-PKS tailoring steps. The aim of this review was to outline past and recent advances in the biosynthesis and regulation of rapamycin, with an emphasis on the distinguished contributions of Professor Demain to the study of rapamycin. In addition, this article describes the biological activities as well as mechanism of action of rapamycin and its derivatives. Recent attempts to improve the productivity of rapamycin and generate diverse rapamycin analogs through mutasynthesis and mutagenesis are also introduced, along with some future perspectives.
Collapse
|
14
|
Zhang YHP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 2010; 105:663-77. [PMID: 19998281 DOI: 10.1002/bit.22630] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) is the assembly of a number of purified enzymes (usually more than 10) and coenzymes for the production of desired products through complicated biochemical reaction networks that a single enzyme cannot do. Cell-free SyPaB, as compared to microbial fermentation, has several distinctive advantages, such as high product yield, great engineering flexibility, high product titer, and fast reaction rate. Biocommodities (e.g., ethanol, hydrogen, and butanol) are low-value products where costs of feedstock carbohydrates often account for approximately 30-70% of the prices of the products. Therefore, yield of biocommodities is the most important cost factor, and the lowest yields of profitable biofuels are estimated to be ca. 70% of the theoretical yields of sugar-to-biofuels based on sugar prices of ca. US$ 0.18 per kg. The opinion that SyPaB is too costly for producing low-value biocommodities are mainly attributed to the lack of stable standardized building blocks (e.g., enzymes or their complexes), costly labile coenzymes, and replenishment of enzymes and coenzymes. In this perspective, I propose design principles for SyPaB, present several SyPaB examples for generating hydrogen, alcohols, and electricity, and analyze the advantages and limitations of SyPaB. The economical analyses clearly suggest that developments in stable enzymes or their complexes as standardized parts, efficient coenzyme recycling, and use of low-cost and more stable biomimetic coenzyme analogs, would result in much lower production costs than do microbial fermentations because the stabilized enzymes have more than 3 orders of magnitude higher weight-based total turn-over numbers than microbial biocatalysts, although extra costs for enzyme purification and stabilization are spent.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061, USA. USA.
| |
Collapse
|
15
|
Bentley R. Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence β-lactams). J Ind Microbiol Biotechnol 2009; 36:775-86. [DOI: 10.1007/s10295-009-0553-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/19/2009] [Indexed: 11/28/2022]
|
16
|
Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006; 24:452-81. [PMID: 16690241 DOI: 10.1016/j.biotechadv.2006.03.003] [Citation(s) in RCA: 674] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/06/2006] [Accepted: 03/11/2006] [Indexed: 10/24/2022]
Abstract
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|