1
|
Hou M, Li C, Zhang Y, Jia Y, Xu X, Shan S, Jiang W, Bahetibieke G, Ren L, Xiang Y. Phosphorylation-mediated cadmium and manganese selectivity uptake of SaNRAMP5 in nightshade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70058. [PMID: 40038192 DOI: 10.1111/tpj.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Identifying the selectivity of cadmium (Cd) and manganese (Mn) in transporters has long been a challenging scientific issue. Here, we identified the gene SaNRAMP5 from Solanum americanum, an orthologue of OsNRAMP5. SaNRAMP5 is predominantly expressed in root and localizes to the plasma membrane (PM). Knockout of SaNRAMP5 significantly reduced Cd accumulation in nightshade, while its overexpression in Arabidopsis increased Cd uptake in roots. Given the close relationship between nightshade and vegetables like potatoes, tomatoes, eggplants, and peppers, we compared the Cd absorption capabilities of NRAMP5 homologs in these species. Our results indicated that SaNRAMP5 exhibited a greater Cd uptake capacity than its homologs within the Solanaceae family. Interestingly, the Mn uptake capacities of these NRAMP5s varied independently of their Cd uptake capacities. Amino acid sequence analysis revealed that the N-terminal STNP residues, which mediate phosphorylation in SaNRAMP5, are crucial for the selective uptake of Cd and Mn. Mutating these STNP residues to a non-phosphorylatable form, SaNRAMP5(AANP), resulted in reduced Cd uptake without affecting Mn uptake. Conversely, StNRAMP5 and SlNRAMP5, which naturally lack STNP residues, demonstrated enhanced Cd uptake upon the introduction of STNP but not AANP. Notably, neither the introduction of STNP nor AANP affected their Mn uptake capacities. The reduced Cd uptake of SaNRAMP5(AANP) without compromising Mn uptake was attributed to alterations in PM localization due to continuous Cd exposure, rather than Mn exposure. Our findings provide novel insights into phosphorylation-mediated selective uptake of Cd and Mn, paving the way for engineering low-Cd crops without compromising yield.
Collapse
Affiliation(s)
- Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chunli Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Yuanbo Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Yuxin Jia
- Key Laboratory for Potato Biology of Yunnan Province, the CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming, 650500, China
| | - Xinyi Xu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Siyao Shan
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wenhui Jiang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Gulinaer Bahetibieke
- Ili Kazakh Autonomous Prefecture institute of Agricultural Science, Yili, 835000, Xinjiang, China
| | - Lei Ren
- Ili Kazakh Autonomous Prefecture institute of Agricultural Science, Yili, 835000, Xinjiang, China
| | - Yong Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
2
|
Yang C, Cui C, Deng F. The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence. Braz J Microbiol 2024; 55:3769-3780. [PMID: 39230636 PMCID: PMC11711592 DOI: 10.1007/s42770-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Quorum sensing (QS) signals widely exist in bacteria to control biological functions in response to populations of cells. Burkholderia cenocepacia, an important opportunistic pathogen in patients with cystic fibrosis (CF), is commonly found in the environment and mostly utilizes the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) QS systems to control biological functions. Our previous study illuminated the detailed mechanism by which B.cenocepacia integrates BDSF and cyclic diguanosine monophosphate (c-di-GMP) signals to control virulence. Here, we employed Tn5 transposon mutagenesis to identify genes related to the BDSF QS system. One of the most significantly attenuated mutants had an insertion in the mntH gene. Here, we showed that MntH (Bcam0836), a manganese transport protein, controls QS-regulated phenotypes, including motility, biofilm formation and virulence. We also found that. BDSF production was attenuated at both the gene and signaling levels in the Bcam0836 mutant, and that Bcam0836 influenced the expression of some genes regulated by the BDSF receptor RpfR and the downstream regulator GtrR. These results show that the manganese transport protein. MntH modulates a subset of genes and functions regulated by the QS system in B. cenocepacia.
Collapse
Affiliation(s)
- Chunxi Yang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China.
| | - Chaoyu Cui
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Fengyi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
3
|
Nguyen AT, McSorley SJ. Fighting the enemy within: Systemic immune defense against mucosal Salmonella infection. Immunol Lett 2024; 270:106930. [PMID: 39343314 DOI: 10.1016/j.imlet.2024.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Salmonella infection remains a persistent global health threat, as different serovars induce a range of clinical disease, depending upon bacterial virulence and host susceptibility. While some Salmonella serovars induce gastroenteritis in healthy individuals, others can cause more serious systemic enteric fever or invasive nontyphoidal Salmonellosis. The rise of antibiotic resistance, coupled with the absence of effective vaccines for most serovars, perpetuates the spread of Salmonella in endemic regions. A detailed mechanistic understanding of immunity to Salmonella infections has been aided by the availability of mouse models that have served as a valuable tool for understanding host-pathogen interactions under controlled laboratory conditions. These mouse studies have delineated the processes by which early inflammation is triggered after infection, how adaptive immunity is initiated in lymphoid tissues, and the contribution of lymphocyte memory responses to resistance. While recent progress has been made in vaccine development for some causes of enteric fever, deeper understanding of Salmonella-specific immune memory might allow the formation of new vaccines for all serovars. This review will provide a summary of our understanding of vaccination and protective immunity to Salmonella with a focus on recent developments in T cell memory formation.
Collapse
Affiliation(s)
- Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Kong Y, Zhang R, Blain S, Obernosterer I. Seasonal dynamics in microbial trace metals transporters during phytoplankton blooms in the Southern Ocean. Environ Microbiol 2024; 26:e16695. [PMID: 39367538 DOI: 10.1111/1462-2920.16695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/26/2024] [Indexed: 10/06/2024]
Abstract
Trace metals are required as cofactors in metalloproteins that are essential in microbial metabolism and growth. The microbial requirements of diverse metals and the capabilities of prokaryotic taxa to acquire these metals remain poorly understood. We present here results from metagenomic observations over an entire productive season in the region off Kerguelen Island (Indian Sector of the Southern Ocean). We observed seasonal patterns in the abundance of prokaryotic transporters of seven trace elements (zinc [Zn], manganese [Mn], nickel [Ni], molybdenum [Mo], tungsten [W], copper [Cu] and cobalt [Co]) and the consecutive spring and summer phytoplankton blooms were strong drivers of these temporal trends. Taxonomic affiliation of the functional genes revealed that Rhodobacteraceae had a broad repertoire of trace metal transporters (Mn, Zn, Ni, W and Mo) and a more restricted set was observed for other prokaryotic groups, such as Flavobacteriaceae (Zn), Nitrincolaceae (Ni and W) and Thioglobaceae (Mo). The prevalence of trace metal transporters within a prokaryotic group, as determined on the family level, was overall confirmed in representative metagenome-assembled genomes. We discuss the potential involvement of prokaryotic groups in processes related to organic matter utilisation that require these metals and the consequences on carbon and trace metal cycling in surface waters of the Southern Ocean.
Collapse
Affiliation(s)
- Yanhui Kong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Rui Zhang
- Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Stéphane Blain
- Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| |
Collapse
|
5
|
Kandari D, Joshi H. PerR: A Peroxide Sensor Eliciting Metal Ion-dependent Regulation in Various Bacteria. Mol Biotechnol 2024:10.1007/s12033-024-01266-8. [PMID: 39294512 DOI: 10.1007/s12033-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Bacteria have to thrive in difficult conditions wherein their competitors generate partially reduced forms of oxygen, like hydrogen peroxide and superoxides. These oxidative stress molecules can also arise from within via the autoxidation of redox enzymes. To adapt to such conditions, bacteria express detox enzymes as well as repair proteins. Transcription factors regulate these defenses, and PerR is one of them. PerR is a Fur family transcriptional regulator that senses peroxide stress. Metal-bound PerR (either Mn2+ or Fe2+) can repress transcription of its regulon, but only the Fe2+-bound form of PerR can sense H2O2. This review describes different aspects of PerR and its varied roles, specifically in bacterial pathogens. Despite having roles beyond sensing peroxides, it is an underrated regulator that needs to be explored more deeply in pathogens.
Collapse
Affiliation(s)
- Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Division of Experimental Medicine, University of California, San Francisco, CA, 94107, USA.
| |
Collapse
|
6
|
Ganio K, Nasreen M, Yang Z, Maunders EA, Luo Z, Hossain SI, Ngu DHY, Ellis D, Gu J, Neville SL, Wilksch J, Gunn AP, Whittall JJ, Kobe B, Deplazes E, Kappler U, McDevitt CA. Hfe Permease and Haemophilus influenzae Manganese Homeostasis. ACS Infect Dis 2024; 10:436-452. [PMID: 38240689 PMCID: PMC10863617 DOI: 10.1021/acsinfecdis.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Haemophilus influenzae is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that hfeA, a gene previously linked to iron import, is essential for H. influenzae manganese recruitment via the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein. Disruption of hfeA reduced H. influenzae manganese acquisition and was associated with decreased growth under aerobic conditions, impaired manganese-superoxide dismutase activity, reduced survival in macrophages, and changes in biofilm production in the presence of superoxide. Collectively, this work shows that HfeA contributes to H. influenzae manganese acquisition and virulence attributes. High conservation of the hfeABCD permease in Haemophilus species suggests that it may serve similar roles in other pathogenic Pasteurellaceae.
Collapse
Affiliation(s)
- Katherine Ganio
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Marufa Nasreen
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zihao Yang
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Eve A. Maunders
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Zhenyao Luo
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Sheikh Imamul Hossain
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
| | - Dalton H. Y. Ngu
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Daniel Ellis
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jin Gu
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stephanie L. Neville
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan Wilksch
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Adam P. Gunn
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan J. Whittall
- School of
Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Boštjan Kobe
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Evelyne Deplazes
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
| | - Ulrike Kappler
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Christopher A. McDevitt
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
7
|
Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, Stilp S, Jansen N, Gosz M, Goeden L, Anantharaman V, Aravind L, Waters LS. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. Mol Microbiol 2024; 121:152-166. [PMID: 38104967 PMCID: PMC10842292 DOI: 10.1111/mmi.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Small proteins (<50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance, are poorly understood. Here, we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene neighborhoods support that MntS evolved from the signal peptide of an ancestral SitA protein, acquiring a life of its own with a distinct function in Mn homeostasis.
Collapse
Affiliation(s)
- Zachary Wright
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Mackenzie Seymour
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Kalista Paszczak
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Taylor Truttmann
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Katherine Senn
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Samuel Stilp
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Nickolas Jansen
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Magdalyn Gosz
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Lindsay Goeden
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Lauren S. Waters
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| |
Collapse
|
8
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, Stilp S, Jansen N, Gosz M, Goeden L, Anantharaman V, Aravind L, Waters LS. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543501. [PMID: 37398132 PMCID: PMC10312517 DOI: 10.1101/2023.06.02.543501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small proteins (< 50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance are poorly understood. Here we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments, but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene-neighborhoods support that MntS evolved from an ancestral SitA, acquiring a life of its own with a distinct function in Mn homeostasis. Significance This study demonstrates that the MntS small protein binds and inhibits the MntP Mn exporter, adding another layer to the complex regulation of Mn homeostasis. MntS also interacts with itself in cells with Mn, which could prevent it from regulating MntP. We propose that MntS and other small proteins might sense environmental signals and shut off their own regulation via binding to ligands (e.g., metals) or other proteins. We also provide evidence that MntS evolved from the signal peptide region of the Mn importer, SitA. Homologous SitA signal peptides can recapitulate MntS activities, showing that they have a second function beyond protein secretion. Overall, we establish that small proteins can emerge and develop novel functionalities from gene remnants.
Collapse
|
10
|
Gibbs KD, Wang L, Yang Z, Anderson CE, Bourgeois JS, Cao Y, Gaggioli MR, Biel M, Puertollano R, Chen CC, Ko DC. Human variation impacting MCOLN2 restricts Salmonella Typhi replication by magnesium deprivation. CELL GENOMICS 2023; 3:100290. [PMID: 37228749 PMCID: PMC10203047 DOI: 10.1016/j.xgen.2023.100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Human genetic diversity can reveal critical factors in host-pathogen interactions. This is especially useful for human-restricted pathogens like Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid fever. One key defense during bacterial infection is nutritional immunity: host cells attempt to restrict bacterial replication by denying bacteria access to key nutrients or supplying toxic metabolites. Here, a cellular genome-wide association study of intracellular replication by S. Typhi in nearly a thousand cell lines from around the world-and extensive follow-up using intracellular S. Typhi transcriptomics and manipulation of magnesium availability-demonstrates that the divalent cation channel mucolipin-2 (MCOLN2 or TRPML2) restricts S. Typhi intracellular replication through magnesium deprivation. Mg2+ currents, conducted through MCOLN2 and out of endolysosomes, were measured directly using patch-clamping of the endolysosomal membrane. Our results reveal Mg2+ limitation as a key component of nutritional immunity against S. Typhi and as a source of variable host resistance.
Collapse
Affiliation(s)
- Kyle D. Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Zhuo Yang
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Caroline E. Anderson
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jeffrey S. Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Yanlu Cao
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Margaret R. Gaggioli
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, & Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
11
|
Guo F, Wang M, Huang M, Jiang Y, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Ou X, Mao S, Sun D, Cheng A, Liu M. Manganese Efflux Achieved by MetA and MetB Affects Oxidative Stress Resistance and Iron Homeostasis in Riemerella anatipestifer. Appl Environ Microbiol 2023; 89:e0183522. [PMID: 36815770 PMCID: PMC10057955 DOI: 10.1128/aem.01835-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn2+ than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity.
Collapse
Affiliation(s)
- Fang Guo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mengying Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Yin Jiang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
Ha N, Lee EJ. Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium. J Microbiol 2023; 61:289-296. [PMID: 36862278 DOI: 10.1007/s12275-023-00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+-dependent riboswitch in its 5' UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcriptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.
Collapse
Affiliation(s)
- Nakyeong Ha
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Párraga Solórzano PK, Bastille TS, Radin JN, Kehl-Fie TE. A Manganese-independent Aldolase Enables Staphylococcus aureus To Resist Host-imposed Metal Starvation. mBio 2023; 14:e0322322. [PMID: 36598285 PMCID: PMC9973326 DOI: 10.1128/mbio.03223-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
The preferred carbon source of Staphylococcus aureus and many other pathogens is glucose, and its consumption is critical during infection. However, glucose utilization increases the cellular demand for manganese, a nutrient sequestered by the host as a defense against invading pathogens. Therefore, bacteria must balance glucose metabolism with the increasing demand that metal-dependent processes, such as glycolysis, impose upon the cell. A critical regulator that enables S. aureus to resist nutritional immunity is the ArlRS two-component system. This work revealed that ArlRS regulates the expression of FdaB, a metal-independent fructose 1,6-bisphosphate aldolase. Further investigation revealed that when S. aureus is metal-starved by the host, FdaB functionally replaces the metal-dependent isozyme FbaA, thereby allowing S. aureus to resist host-imposed metal starvation in culture. Although metal-dependent aldolases are canonically zinc-dependent, this work uncovered that FbaA requires manganese for activity and that FdaB protects S. aureus from manganese starvation. Both FbaA and FdaB contribute to the ability of S. aureus to cause invasive disease in wild-type mice. However, the virulence defect of a strain lacking FdaB was reversed in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of this pathogen to overcome manganese limitation during infection. Cumulatively, these observations suggest that the expression of the metal-independent aldolase FdaB allows S. aureus to alleviate the increased demand for manganese that glucose consumption imposes, and highlights the cofactor flexibility of even established metalloenzyme families. IMPORTANCE Staphylococcus aureus and other pathogens consume glucose during infection. Glucose utilization increases the demand for transition metals, such as manganese, a nutrient that the host limits as a defense mechanism against invading pathogens. Therefore, pathogenic bacteria must balance glucose and manganese requirements during infection. The two-component system ArlRS is an important regulator that allows S. aureus to adapt to both glucose and manganese starvation. Among the genes regulated by ArlRS is the metal-independent fructose 1,6-bisphosphate aldolase fdaB, which functionally substitutes for the metal-dependent isoenzyme FbaA and enables S. aureus to survive host-imposed manganese starvation. Unexpectedly, and differing from most characterized metal-dependent aldolases, FbaA requires manganese for activity. Cumulatively, these findings reveal a new mechanism for overcoming nutritional immunity as well as the cofactor plasticity of even well-characterized metalloenzyme families.
Collapse
Affiliation(s)
| | - Talina S. Bastille
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N. Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Mutations in troABCD against Copper Overload in a copA Mutant of Streptococcus suis. Appl Environ Microbiol 2023; 89:e0184122. [PMID: 36475883 PMCID: PMC9888204 DOI: 10.1128/aem.01841-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis is a major swine pathogen that is increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role during the process of bacterial infection. In this study, RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular copper homeostasis. CopA was identified as the primary copper exporter in S. suis. The copA deletion mutant strain was found to be more sensitive to copper and accumulated more intracellular copper than the wild-type (WT) parent strain. In addition, adding manganese increased the ability of S. suis to resist copper, and the manganese transporter, TroABCD, was involved in tolerance to copper. The copA deletion mutant strain accumulated less copper when supplemented with manganese. Furthermore, when cultured with copper, the double deletion mutant (ΔcopAΔtroA) exhibited improved growth compared to the copA deletion mutant strain. In addition, the double deletion mutant (ΔcopAΔtroA) accumulated less copper than the copA deletion mutant strain. These data were consistent with a model wherein defective TroABCD resulted in decreased cellular copper accumulation and protected the strain against copper poisoning. IMPORTANCE Metal homeostasis plays a critical role during the process of bacterial infection. We identified three important potential candidate genes involved in maintenance of intracellular copper homeostasis. CopA was demonstrated to be the main copper exporter in Streptococcus suis, and manganese increased the tolerance of S. suis to copper. The double deletion mutant (ΔcopAΔtroA) improved growth ability over the copA deletion mutant strain in the presence of high concentrations of copper and accumulated less copper. These findings are consistent with a model wherein defective TroABCD resulted in decreased cellular accumulation of copper and protected the strain against copper poisoning.
Collapse
|
15
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
16
|
Kalita A, Mishra RK, Kumar V, Arora A, Dutta D. An Intrinsic Alkalization Circuit Turns on mntP Riboswitch under Manganese Stress in Escherichia coli. Microbiol Spectr 2022; 10:e0336822. [PMID: 36190429 PMCID: PMC9603457 DOI: 10.1128/spectrum.03368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of mntP and alx in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the alx riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the mntP riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the mntP riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. IMPORTANCE Riboswitch RNAs are cis-acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal mntP riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the yybP-ykoY family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
Collapse
Affiliation(s)
- Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | | | - Vineet Kumar
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Amit Arora
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
17
|
Zhao G, Wang W, Zheng L, Chen L, Duan G, Chang R, Chen Z, Zhang S, Dai M, Yang G. Catalase-peroxidase StKatG is a bacterial manganese oxidase from endophytic Salinicola tamaricis. Int J Biol Macromol 2022; 224:281-291. [DOI: 10.1016/j.ijbiomac.2022.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
18
|
Ali IAA, Cheung GS, Neelakantan P. Transition Metals and
Enterococcus faecalis
: Homeostasis, Virulence and Perspectives. Mol Oral Microbiol 2022; 37:276-291. [DOI: 10.1111/omi.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Islam A. A. Ali
- Department of Endodontics Faculty of Dentistry Mansoura University Mansoura Egypt
| | - Gary S.P. Cheung
- Discipline of Endodontology Division of Restorative Dental Sciences Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| | - Prasanna Neelakantan
- Discipline of Endodontology Division of Restorative Dental Sciences Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| |
Collapse
|
19
|
Peng W, Yang X, Wang Y, Wang N, Li X, Chen H, Yuan F, Bei W. Mn uptake system affects the virulence of Streptococcus suis by mediating oxidative stress. Vet Microbiol 2022; 272:109518. [PMID: 35926476 DOI: 10.1016/j.vetmic.2022.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Manganese (Mn) is an important micronutrient that is not readily available to pathogens during infection. Hosts resist the invasion of pathogens through nutritional immunity and oxidative stress. To overcome this nutrient restriction, bacteria utilize high affinity transporters to compete with nutrient-binding proteins (e.g., calprotectin). Little is known about the role of Mn in the pathophysiology of Streptococcus suis. Here, we revealed that the tolerance of S. suis to calprotectin and oxidative stress was associated with Mn. Inactivation of Mn uptake system, TroABCD, in S. suis decreased the tolerance to calprotectin and oxidative stress. Furthermore, Mn uptake system mutant strains reduced capacity for bacterial cellular survival, and attenuated virulence in a mouse model. To explore the regulatory mechanism, we determined the transcriptional start site of troABCD using capping rapid amplification of cDNA ends. Furthermore, we revealed that TroR was a transcriptional regulatory repressor of troABCD. In the absence of troR, transcription levels of troA, troB, troC, and troD were not inhibited by low or high Mn levels, and intracellular Mn contents of mutant strains were higher than that of the wild-type strain. Finally, we used electrophoretic mobility shift assay to demonstrate that TroR bound the promoter region of troABCD. Collectively, this study revealed that Mn acquisition was essential for pathogenesis of S. suis and Mn uptake systems should be targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yanna Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ningning Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China; Guangxi Yangxiang Co., Ltd, China.
| |
Collapse
|
20
|
Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog 2022; 171:105734. [PMID: 36007845 DOI: 10.1016/j.micpath.2022.105734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is found in all domains of life, facilitating critical biological processes through the translocation of a wide variety of substrates from, ions to proteins, across cellular membranes in an ATP-coupled process. The role of ABC transporters in eukaryotes has been well established: the facilitation of genetic diseases and multi-drug resistance (MDR) in cancer patients. In contrast, the role of ABC transporters in prokaryotes has been ambiguous due to their diverse functions and the sheer number of organisms in which they reside. This review examines the role of bacterial ABC transporters in pathogenesis and virulence, and their potential for therapeutic and vaccine application. We demonstrate how ABC transporters play a vital role in the virulence and pathogenesis of several pathogenic bacteria through the import of essential molecules, such as metal ions, amino acids, peptides, vitamins and osmoprotectants, as well as, the export of virulent determinants involved in glycoconjugate biosynthesis and Type I secretion. Furthermore, ABC exporters facilitate the persistence of pathogenic bacteria through the export of toxic xenobiotic substances, thus, contributing to the development of antimicrobial resistance. We also show that ABC transporters display considerable potential for therapeutic application through immunisation and resistance reversal. In conclusion, bacterial ABC transporters play an immense role in virulence and pathogenesis and display desirable traits for clinical use, therefore, potentially aiding in the battle against MDR.
Collapse
Affiliation(s)
- Armaan A Akhtar
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - David Pj Turner
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
21
|
Uppalapati SR, Vazquez-Torres A. Manganese Utilization in Salmonella Pathogenesis: Beyond the Canonical Antioxidant Response. Front Cell Dev Biol 2022; 10:924925. [PMID: 35903545 PMCID: PMC9315381 DOI: 10.3389/fcell.2022.924925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The metal ion manganese (Mn2+) is equally coveted by hosts and bacterial pathogens. The host restricts Mn2+ in the gastrointestinal tract and Salmonella-containing vacuoles, as part of a process generally known as nutritional immunity. Salmonella enterica serovar Typhimurium counteract Mn2+ limitation using a plethora of metal importers, whose expression is under elaborate transcriptional and posttranscriptional control. Mn2+ serves as cofactor for a variety of enzymes involved in antioxidant defense or central metabolism. Because of its thermodynamic stability and low reactivity, bacterial pathogens may favor Mn2+-cofactored metalloenzymes during periods of oxidative stress. This divalent metal catalyzes metabolic flow through lower glycolysis, reductive tricarboxylic acid and the pentose phosphate pathway, thereby providing energetic, redox and biosynthetic outputs associated with the resistance of Salmonella to reactive oxygen species generated in the respiratory burst of professional phagocytic cells. Combined, the oxyradical-detoxifying properties of Mn2+ together with the ability of this divalent metal cation to support central metabolism help Salmonella colonize the mammalian gut and establish systemic infections.
Collapse
Affiliation(s)
- Siva R. Uppalapati
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| | - Andres Vazquez-Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States,*Correspondence: Siva R. Uppalapati, ; Andres Vazquez-Torres,
| |
Collapse
|
22
|
Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0098522. [PMID: 35658538 PMCID: PMC9239048 DOI: 10.1128/mbio.00985-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT.
Collapse
|
23
|
Liu Y, Yoo BB, Hwang CA, Martinez MR, Datta AR, Fratamico PM. Involvement of a putative ATP-Binding Cassette (ABC) Involved in manganese transport in virulence of Listeria monocytogenes. PLoS One 2022; 17:e0268924. [PMID: 35617277 PMCID: PMC9135185 DOI: 10.1371/journal.pone.0268924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis, a disease associated with high fatality (20–30%) and hospitalization rates (>95%). ATP-Binding Cassette (ABC) transporters have been demonstrated to be involved in the general stress response. In previous studies, in-frame deletion mutants of the ABC transporter genes, LMOf2365_1875 and LMOf2365_1877, were constructed and analyzed; however, additional work is needed to investigate the virulence potential of these deletion mutants. In this study, two in vitro methods and one in vivo model were used to investigate the virulence potential of in-frame deletion mutants of ABC transporter genes. First, the invasion efficiency in host cells was measured using the HT-29 human cell line. Second, cell-to-cell spread activity was measured using a plaque forming assay. Lastly, virulence potential of the mutants was tested in the Galleria mellonella wax moth model. Our results demonstrated that the deletion mutant, ⊿LMOf2365_1875, displayed decreased invasion and cell-to-cell spread efficiency in comparison to the wild-type, LMOf2365, indicating that LMOf2365_1875 may be required for virulence. Furthermore, the reduced virulence of these mutants was confirmed using the Galleria mellonella wax moth model. In addition, the expression levels of 15 virulence and stress-related genes were analyzed by RT-PCR assays using stationary phase cells. Our results showed that virulence-related gene expression levels from the deletion mutants were elevated (15/15 genes from ⊿LMOf2365_1877 and 7/15 genes from ⊿LMOf2365_1875) compared to the wild type LMOf2365, suggesting that ABC transporters may negatively regulate virulence gene expression under specific conditions. The expression level of the stress-related gene, clpE, also was increased in both deletion mutants, indicating the involvement of ABC transporters in the stress response. Taken together, our findings suggest that ABC transporters may be used as potential targets to develop new therapeutic strategies to control L. monocytogenes.
Collapse
Affiliation(s)
- Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
- * E-mail:
| | - Brian ByongKwon Yoo
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Cheng-An Hwang
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| | - Mira Rakic Martinez
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| |
Collapse
|
24
|
PerR-Regulated Manganese Import Contributes to Oxidative Stress Defense in Streptococcus suis. Appl Environ Microbiol 2022; 88:e0008622. [PMID: 35465691 DOI: 10.1128/aem.00086-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptococcus suis has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role in the antioxidative capability of bacteria, thus facilitating the escape of pathogenic species from the innate immunity systems of hosts. Here, we revealed that manganese increased the ability of S. suis to resist oxidative stress. RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular manganese homeostasis. Four genes, termed troABCD, were identified by NCBI BLASTp analysis. The troA, troB, troC, and troD deletion mutant strains exhibited decreased intracellular manganese content and tolerance to H2O2 compared to the wild-type strain. Thus, troABCD were determined to be involved in manganese uptake and played an important role in H2O2 tolerance in S. suis. Furthermore, the inactivation of perR increased the survival of H2O2-pulsed S. suis 2.18-fold and elevated the intracellular manganese content. H2O2-pulsed S. suis and perR deletion mutants upregulated troABCD. This finding suggested that H2O2 released the suppression of troABCD by perR. In addition, an electrophoretic mobility shift assay (EMSA) showed that PerR at 500 ng binds to the troABCD promoter, indicating that troABCD were directly regulated by PerR. In conclusion, this study revealed that manganese increases tolerance to H2O2 by upregulating the expression of troABCD. Moreover, PerR-regulated Mn import in S. suis and increased the tolerance of S. suis to oxidative stress by regulating troABCD. IMPORTANCE During infection, it is extremely important for bacteria to defend against oxidative stress. While manganese plays an important role in this process, its role is unclear in S. suis. Here, we demonstrated that manganese increased S. suis tolerance to oxidative stress. Four manganese ABC transporter genes, troABCD, were identified. Oxidative stress increased the content of manganese in the cell. Furthermore, PerR increased the tolerance to oxidative stress of S. suis by regulating troABCD. Manganese played an important role in bacterial defense against oxidative stress. These findings provide novel insight into the mechanism by which S. suis resists oxidative stress and approaches to inhibit bacterial infection by limiting manganese intake.
Collapse
|
25
|
The stress sigma factor σS/RpoS counteracts Fur repression of genes involved in iron and manganese metabolism and modulates the ionome of Salmonella enterica serovar Typhimurium. PLoS One 2022; 17:e0265511. [PMID: 35358211 PMCID: PMC8970401 DOI: 10.1371/journal.pone.0265511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σS in Salmonella, including the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target genes. Moreover, σS induces transcription of the manganese transporter genes mntH and sitABCD and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σS. This study suggests that σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σS and magnesium in the regrowth potential of quiescent cells.
Collapse
|
26
|
Martínez DP, Oliver C, Santibañez N, Coronado JL, Oyarzún-Salazar R, Enriquez R, Vargas-Chacoff L, Romero A. PAMPs of Piscirickettsia salmonis Trigger the Transcription of Genes Involved in Nutritional Immunity in a Salmon Macrophage-Like Cell Line. Front Immunol 2022; 13:849752. [PMID: 35493529 PMCID: PMC9046600 DOI: 10.3389/fimmu.2022.849752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis "OMVs", protein extract of P. salmonis "TP" and lipopolysaccharides of P. salmonis "LPS") isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1μg of outer membrane vesicles), TP (SHK-1 stimulated with 1μg of total protein extract) and LPS (SHK-1 stimulated with 1μg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.
Collapse
Affiliation(s)
- Danixa Pamela Martínez
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Fisiología de peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - José Leonardo Coronado
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Oyarzún-Salazar
- Laboratorio de Fisiología de peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Enriquez
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile
| | - Alex Romero
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
27
|
Sampaio ICF, Jorge Louro Crugeira P, de Azevedo Santos Ferreira J, Nunes Dos Santos J, Borges Torres Lima Matos J, Luiz Barbosa Pinheiro A, Chinalia FA, Fernando de Almeida P. Up-recycling oil produced water as the media-base for the production of xanthan gum. Biopolymers 2022; 113:e23488. [PMID: 35338709 DOI: 10.1002/bip.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Produced water (PW) and crude glycerin (CG) are compounds overproduced by the oil and biodiesel industry and significant scientific efforts are being applied for properly recycling them. The aim of this research is to combine such industrial byproducts for sustaining the production of xanthan by Xanthomonas campestris. Xanthan yields and viscosity on distinct PW ratios (0, 10, 15, 25, 50, 100) and on 100% dialyzed PW (DPW) in shaker batch testing identified DPW treatment as the best approach for further bioreactor experiments. Such experiments showed a xanthan yield of 17.3 g/L within 54 h and a viscosity of 512 mPa s. Physical-chemical characterization (energy dispersive X-ray spectroscopy, scanning electron microscopy and Raman spectroscopy) showed similarities between the produced gum and the experimental control. This research shows a clear alternative for upcycling high salinity PW and CG for the generation of a valued bioproduct for the oil industry.
Collapse
Affiliation(s)
- Igor Carvalho Fontes Sampaio
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | | | - Jacson Nunes Dos Santos
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Josilene Borges Torres Lima Matos
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Fabio Alexandre Chinalia
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Paulo Fernando de Almeida
- Laboratory of Biotechnology and Ecology of Micro-organisms, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
28
|
Rosen T, Hadley RC, Bozzi AT, Ocampo D, Shearer J, Nolan EM. Zinc sequestration by human calprotectin facilitates manganese binding to the bacterial solute-binding proteins PsaA and MntC. Metallomics 2022; 14:6516941. [PMID: 35090019 PMCID: PMC8908208 DOI: 10.1093/mtomcs/mfac001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/25/2022] [Indexed: 01/30/2023]
Abstract
Zinc is an essential transition metal nutrient for bacterial survival and growth but may become toxic when present at elevated levels. The Gram-positive bacterial pathogen Streptococcus pneumoniae is sensitive to zinc poisoning, which results in growth inhibition and lower resistance to oxidative stress. Streptococcus pneumoniae has a relatively high manganese requirement, and zinc toxicity in this pathogen has been attributed to the coordination of Zn(II) at the Mn(II) site of the solute-binding protein (SBP) PsaA, which prevents Mn(II) uptake by the PsaABC transport system. In this work, we investigate the Zn(II)-binding properties of pneumococcal PsaA and staphylococcal MntC, a related SBP expressed by another Gram-positive bacterial pathogen, Staphylococcus aureus, which contributes to Mn(II) uptake. X-ray absorption spectroscopic studies demonstrate that both SBPs harbor Zn(II) sites best described as five-coordinate, and metal-binding studies in solution show that both SBPs bind Zn(II) reversibly with sub-nanomolar affinities. Moreover, both SBPs exhibit a strong thermodynamic preference for Zn(II) ions, which readily displace bound Mn(II) ions from these proteins. We also evaluate the Zn(II) competition between these SBPs and the human S100 protein calprotectin (CP, S100A8/S100A9 oligomer), an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP can sequester Zn(II) from PsaA and MntC, which facilitates Mn(II) binding to the SBPs. These results demonstrate that CP can inhibit Zn(II) poisoning of the SBPs and provide molecular insight into how S100 proteins may inadvertently benefit bacterial pathogens rather than the host.
Collapse
Affiliation(s)
- Tomer Rosen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Rose C Hadley
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Aaron T Bozzi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, TX 78212, USA
| | - Elizabeth M Nolan
- Correspondence: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue 16-573, Cambridge, MA 02139, USA. Tel: +1-617-452-2495; E-mail:
| |
Collapse
|
29
|
Shi C, Maktabdar M. Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products - A Review. Front Microbiol 2022; 12:819684. [PMID: 35154045 PMCID: PMC8826399 DOI: 10.3389/fmicb.2021.819684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Mold spoilage of dairy products such as yogurt is a concern in dairy industry. Not only does it lead to substantial food waste, economic losses, and even brand image damage, but it may also cause public health concern due to the potential production of mycotoxin. Good hygiene practices are necessary to prevent contamination, but contamination may nevertheless occur at the production site and, not least, at the site of the consumer. In recent years, there has been a growing interest from consumers for "clean label" food products, which are natural, less-processed, and free of added, chemical preservatives, and a wish for shelf lives of considerable length in order to minimize food waste. This has sparked an interest in using lactic acid bacteria (LAB) or their metabolites as biopreservatives as a way to limit the growth of spoilage organisms in dairy products. A range of compounds produced by LAB with potential antifungal activity have been described as contributing factors to the inhibitory effect of LAB. More recently, growth inhibition effects caused by specific competitive exclusion have been elucidated. It has also become clear that the sensitivity toward both individual antifungal compounds and competition mechanisms differ among molds. In this review, the main spoilage molds encountered in dairy products are introduced, and an overview of the antifungal activity of LAB against different spoilage molds is presented including the main antifungal compounds derived from LAB cultures and the sensitivity of the spoilage molds observed toward these compounds. The recent findings of the role of competitive exclusion with emphasis on manganese depletion and the possible implications of this for biopreservation are described. Finally, some of the knowledge gaps, future challenges, and trends in the application of LAB biopreservation in dairy products are discussed.
Collapse
Affiliation(s)
- Ce Shi
- Section of Food Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
30
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
32
|
Identification and characterization of Nramp transporter AoNramp1 in Aspergillus oryzae. 3 Biotech 2021; 11:452. [PMID: 34631353 DOI: 10.1007/s13205-021-02998-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/17/2021] [Indexed: 01/27/2023] Open
Abstract
The Nramp (natural resistance-associated macrophage protein) family of genes has been identified and characterized widely in many species. However, the Nramp genes and their characterizations have not been reported for Aspergillus oryzae. Here, only one Nramp gene AoNramp1 in A. oryzae genome was identified. Phylogenetic analysis revealed that AoNramp1 is not clustered with Nramps from yeast genus. Expression analysis showed that the transcript level of AoNramp1 was strongly induced under both Zn/Mn-replete and -deplete conditions. The GUS-staining assay indicated that the expression of AoNramp1 was strongly induced by Zn/Mn. Moreover, the AoNramp1 deletion and overexpression strains were constructed by the CRISPR/Cas9 system and A. oryzae amyB promoter, respectively. Phenotypic analysis showed that overexpression and deletion of AoNramp1 caused growth defects under Zn/Mn-deplete and -replete conditions, including mycelium growth and conidia formation. Together, these findings provide valuable information for further study on the biological roles of AoNramp1 in A. oryzae. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02998-z.
Collapse
|
33
|
Szeinbaum N, Toporek Y, Reinhard CT, Glass JB. Microbial helpers allow cyanobacteria to thrive in ferruginous waters. GEOBIOLOGY 2021; 19:510-520. [PMID: 33871172 PMCID: PMC8349797 DOI: 10.1111/gbi.12443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The Great Oxidation Event (GOE) was a rapid accumulation of oxygen in the atmosphere as a result of the photosynthetic activity of cyanobacteria. This accumulation reflected the pervasiveness of O2 on the planet's surface, indicating that cyanobacteria had become ecologically successful in Archean oceans. Micromolar concentrations of Fe2+ in Archean oceans would have reacted with hydrogen peroxide, a byproduct of oxygenic photosynthesis, to produce hydroxyl radicals, which cause cellular damage. Yet, cyanobacteria colonized Archean oceans extensively enough to oxygenate the atmosphere, which likely required protection mechanisms against the negative impacts of hydroxyl radical production in Fe2+ -rich seas. We identify several factors that could have acted to protect early cyanobacteria from the impacts of hydroxyl radical production and hypothesize that microbial cooperation may have played an important role in protecting cyanobacteria from Fe2+ toxicity before the GOE. We found that several strains of facultative anaerobic heterotrophic bacteria (Shewanella) with ROS defence mechanisms increase the fitness of cyanobacteria (Synechococcus) in ferruginous waters. Shewanella species with manganese transporters provided the most protection. Our results suggest that a tightly regulated response to prevent Fe2+ toxicity could have been important for the colonization of ancient ferruginous oceans, particularly in the presence of high manganese concentrations and may expand the upper bound for tolerable Fe2+ concentrations for cyanobacteria.
Collapse
Affiliation(s)
- Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Yael Toporek
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
34
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
35
|
Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. J Bacteriol 2021; 203:e0027421. [PMID: 34370555 DOI: 10.1128/jb.00274-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding studies showed that MntR interacts with the promoter regions for several genes identified in the expression study, and a 17-bp consensus MntR DNA binding site was identified. We found that an mntR mutant displayed increased sensitivity to Mn and cadmium that could be alleviated by the additional deletion of the mntABCD transport locus, providing evidence that the MntABCD transporter functions as a Mn uptake system in C. diphtheriae. The findings in this study further our understanding of metal uptake systems and global metal regulatory networks in this important human pathogen. Importance Mechanisms for metal scavenging are critical to the survival and success of bacterial pathogens, including Corynebacterium diphtheriae. Metal import systems in pathogenic bacteria have been studied as possible vaccine components due to high conservation, critical functionality, and surface localization. In this study, we expand our understanding of the genes controlled by the global manganese regulator, MntR. We determined a role for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.
Collapse
|
36
|
Neville SL, Sjöhamn J, Watts JA, MacDermott-Opeskin H, Fairweather SJ, Ganio K, Carey Hulyer A, McGrath AP, Hayes AJ, Malcolm TR, Davies MR, Nomura N, Iwata S, O'Mara ML, Maher MJ, McDevitt CA. The structural basis of bacterial manganese import. SCIENCE ADVANCES 2021; 7:eabg3980. [PMID: 34362732 PMCID: PMC8346216 DOI: 10.1126/sciadv.abg3980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 05/23/2023]
Abstract
Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.
Collapse
Affiliation(s)
- Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennie Sjöhamn
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jacinta A Watts
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Stephen J Fairweather
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Carey Hulyer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron P McGrath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tess R Malcolm
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Kyoto, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
Castaings L, Alcon C, Kosuth T, Correia D, Curie C. Manganese triggers phosphorylation-mediated endocytosis of the Arabidopsis metal transporter NRAMP1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1328-1337. [PMID: 33735495 DOI: 10.1111/tpj.15239] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1) transporter guarantees plant survival of manganese (Mn) deficiency by mediating Mn entry into root cells. Unlike other high-affinity metal transporters, NRAMP1 is only slightly regulated at the transcriptional level. We show here that adequate Mn content in tissues is safeguarded through a tight control of the quantity of NRAMP1 present at the surface of root cells. Depending on Mn availability, an NRAMP1-GFP fusion protein cycles dynamically between the plasma membrane (PM) and endosomal compartments. This involves a clathrin-mediated endocytosis pathway, as disrupting this pathway in auxilin-overexpressor lines prevents NRAMP1 internalization. Mutation of the phosphorylated serine residues 20, 22 and 24 in the cytosol-exposed N terminus of NRAMP1 alters its membrane distribution. Indeed, a phospho-dead mutation stabilizes NRAMP1 at the PM, regardless of the Mn regime, and dramatically reduces plant tolerance to Mn toxicity. Conversely a phosphomimetic mutant is constitutively internalized into endosomes. Together, these data establish that phosphorylation of NRAMP1 is the trigger for its Mn-induced endocytosis and represents the main level of regulation of this transporter. Furthermore, the extent of Mn toxicity observed when interrupting NRAMP1 membrane cycling undermines the dogma that Mn is only marginally toxic to plants.
Collapse
Affiliation(s)
- Loren Castaings
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Thibault Kosuth
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - David Correia
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
38
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
39
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
40
|
Manganese homeostasis at the host-pathogen interface and in the host immune system. Semin Cell Dev Biol 2021; 115:45-53. [PMID: 33419608 DOI: 10.1016/j.semcdb.2020.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Manganese serves as an indispensable catalytic center and the structural core of various enzymes that participate in a plethora of biological processes, including oxidative phosphorylation, glycosylation, and signal transduction. In pathogenic microorganisms, manganese is required for survival by maintaining basic biochemical activity and virulence; in contrast, the host utilizes a process known as nutritional immunity to sequester manganese from invading pathogens. Recent epidemiological and animal studies have shown that manganese increases the immune response in a wide range of vertebrates, including humans, rodents, birds, and fish. On the other hand, excess manganese can cause neurotoxicity and other detrimental effects. Here, we review recent data illustrating the essential role of manganese homeostasis at the host-pathogen interface and in the host immune system. We also discuss the accumulating body of evidence that manganese modulates various signaling pathways in immune processes. Finally, we discuss the key molecular players involved in manganese's immune regulatory function, as well as the clinical implications with respect to cancer immunotherapy.
Collapse
|
41
|
Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front Microbiol 2020; 11:592615. [PMID: 33250881 PMCID: PMC7674665 DOI: 10.3389/fmicb.2020.592615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is typically considered beneficial due to its antagonistic relationship with the cariogenic pathogen Streptococcus mutans. However, S. sanguinis can also act as an opportunistic pathogen should it enter the bloodstream and colonize a damaged heart valve, leading to infective endocarditis. Studies have implicated manganese acquisition as an important virulence determinant in streptococcal endocarditis. A knockout mutant lacking the primary manganese import system in S. sanguinis, SsaACB, is severely attenuated for virulence in an in vivo rabbit model. Manganese is a known cofactor for several important enzymes in S. sanguinis, including superoxide dismutase, SodA, and the aerobic ribonucleotide reductase, NrdEF. To determine the effect of manganese depletion on S. sanguinis, we performed transcriptomic analysis on a ΔssaACB mutant grown in aerobic fermentor conditions after the addition of the metal chelator EDTA. Despite the broad specificity of EDTA, analysis of cellular metal content revealed a decrease in manganese, but not in other metals, that coincided with a drop in growth rate. Subsequent supplementation with manganese, but not iron, zinc, or magnesium, restored growth in the fermentor post-EDTA. Reduced activity of Mn-dependent SodA and NrdEF likely contributed to the decreased growth rate post-EDTA, but did not appear entirely responsible. With the exception of the Dps-like peroxide resistance gene, dpr, manganese depletion did not induce stress response systems. By comparing the transcriptome of ΔssaACB cells pre- and post-EDTA, we determined that manganese deprivation led to altered expression of diverse systems. Manganese depletion also led to an apparent induction of carbon catabolite repression in a glucose-independent manner. The combined results suggest that manganese limitation produces effects in S. sanguinis that are diverse and complex, with no single protein or system appearing entirely responsible for the observed growth rate decrease. This study provides further evidence for the importance of this trace element in streptococcal biology. Future studies will focus on determining mechanisms for regulation, as the multitude of changes observed in this study indicate that multiple regulators may respond to manganese levels.
Collapse
Affiliation(s)
| | | | | | | | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
42
|
Al-Tameemi H, Beavers WN, Norambuena J, Skaar EP, Boyd JM. Staphylococcus aureus lacking a functional MntABC manganese import system has increased resistance to copper. Mol Microbiol 2020; 115:554-573. [PMID: 33034093 DOI: 10.1111/mmi.14623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.
Collapse
Affiliation(s)
- Hassan Al-Tameemi
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
43
|
Electrophysiology Measurements of Metal Transport by MntH2 from Enterococcus faecalis. MEMBRANES 2020; 10:membranes10100255. [PMID: 32987882 PMCID: PMC7599946 DOI: 10.3390/membranes10100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Transition metals are essential trace elements and their high-affinity uptake is required for many organisms. Metal transporters are often characterised using metal-sensitive fluorescent dyes, limiting the metals and experimental conditions that can be studied. Here, we have tested whether metal transport by Enterococcus faecalis MntH2 can be measured with an electrophysiology method that is based on the solid-supported membrane technology. E. faecalis MntH2 belongs to the Natural Resistance-Associated Macrophage Protein (Nramp) family of proton-coupled transporters, which transport divalent transition metals and do not transport the earth metals. Electrophysiology confirms transport of Mn(II), Co(II), Zn(II) and Cd(II) by MntH2. However, no uptake responses for Cu(II), Fe(II) and Ni(II) were observed, while the presence of these metals abolishes the uptake signals for Mn(II). Fluorescence assays confirm that Ni(II) is transported. The data are discussed with respect to properties and structures of Nramp-type family members and the ability of electrophysiology to measure charge transport and not directly substrate transport.
Collapse
|
44
|
Genome-Wide Assessment of Streptococcus agalactiae Genes Required for Survival in Human Whole Blood and Plasma. Infect Immun 2020; 88:IAI.00357-20. [PMID: 32747604 DOI: 10.1128/iai.00357-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.
Collapse
|
45
|
Rosen T, Nolan EM. Metal Sequestration and Antimicrobial Activity of Human Calprotectin Are pH-Dependent. Biochemistry 2020; 59:2468-2478. [PMID: 32491853 DOI: 10.1021/acs.biochem.0c00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer) is an abundant innate immune protein that sequesters transition metal ions in the extracellular space to limit nutrient availability and the growth of invading microbial pathogens. Our current understanding of the metal-sequestering ability of CP is based on biochemical and functional studies performed at neutral or near-neutral pH. Nevertheless, CP can be present throughout the human body and is expressed at infection and inflammation sites that tend to be acidic. Here, we evaluate the metal binding and antimicrobial properties of CP in the pH range of 5.0-7.0. We show that Ca(II)-induced tetramerization, an important process for the extracellular functions of CP, is perturbed by acidic conditions. Moreover, a low pH impairs the antimicrobial activity of CP against some bacterial pathogens, including Staphylococcus aureus and Salmonella enterica serovar Typhimurium. At a mildly acidic pH, CP loses the ability to deplete Mn from microbial growth medium, indicating that Mn(II) sequestration is attenuated under acidic conditions. Evaluation of the Mn(II) binding properties of CP at pH 5.0-7.0 indicates that mildly acidic conditions decrease the Mn(II) binding affinity of the His6 site. Lastly, CP is less effective at preventing capture of Mn(II) by the bacterial solute-binding proteins MntC and PsaA at low pH. These results indicate that acidic conditions compromise the ability of CP to sequester Mn(II) and starve microbial pathogens of this nutrient. This work highlights the importance of considering the local pH of biological sites when describing the interplay between CP and microbes in host-pathogen interactions.
Collapse
Affiliation(s)
- Tomer Rosen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Costa OYA, Oguejiofor C, Zühlke D, Barreto CC, Wünsche C, Riedel K, Kuramae EE. Impact of Different Trace Elements on the Growth and Proteome of Two Strains of Granulicella, Class "Acidobacteriia". Front Microbiol 2020; 11:1227. [PMID: 32625179 PMCID: PMC7315648 DOI: 10.3389/fmicb.2020.01227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Acidobacteria represents one of the most dominant bacterial groups across diverse ecosystems. However, insight into their ecology and physiology has been hampered by difficulties in cultivating members of this phylum. Previous cultivation efforts have suggested an important role of trace elements for the proliferation of Acidobacteria, however, the impact of these metals on their growth and metabolism is not known. In order to gain insight into this relationship, we evaluated the effect of trace element solution SL10 on the growth of two strains (5B5 and WH15) of Acidobacteria belonging to the genus Granulicella and studied the proteomic responses to manganese (Mn). Granulicella species had highest growth with the addition of Mn, as well as higher tolerance to this metal compared to seven other metal salts. Variations in tolerance to metal salt concentrations suggests that Granulicella sp. strains possess different mechanisms to deal with metal ion homeostasis and stress. Furthermore, Granulicella sp. 5B5 might be more adapted to survive in an environment with higher concentration of several metal ions when compared to Granulicella sp. WH15. The proteomic profiles of both strains indicated that Mn was more important in enhancing enzymatic activity than to protein expression regulation. In the genomic analyses, we did not find the most common transcriptional regulation of Mn homeostasis, but we found candidate transporters that could be potentially involved in Mn homeostasis for Granulicella species. The presence of such transporters might be involved in tolerance to higher Mn concentrations, improving the adaptability of bacteria to metal enriched environments, such as the decaying wood-rich Mn environment from which these two Granulicella strains were isolated.
Collapse
Affiliation(s)
- Ohana Y A Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Chidinma Oguejiofor
- Department of Soil Science and Meteorology, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Cristine C Barreto
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Distrito Federal, Brazil
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
47
|
Thines L, Stribny J, Morsomme P. From the Uncharacterized Protein Family 0016 to the GDT1 family: Molecular insights into a newly-characterized family of cation secondary transporters. MICROBIAL CELL 2020; 7:202-214. [PMID: 32743000 PMCID: PMC7380456 DOI: 10.15698/mic2020.08.725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Uncharacterized Protein Family 0016 (UPF0016) gathers poorly studied membrane proteins well conserved through evolution that possess one or two copies of the consensus motif Glu-x-Gly-Asp-(Arg/Lys)-(Ser/Thr). Members are found in many eukaryotes, bacteria and archaea. The interest for this protein family arose in 2012 when its human member TMEM165 was linked to the occurrence of Congenital Disorders of Glycosylation (CDGs) when harbouring specific mutations. Study of the UPF0016 family is undergone through the characterization of the bacterium Vibrio cholerae (MneA), cyanobacterium Synechocystis (SynPAM71), yeast Saccharomyces cerevisiae (Gdt1p), plant Arabidopsis thaliana (PAM71 and CMT1), and human (TMEM165) members. These proteins have all been identified as transporters of cations, more precisely of Mn2+, with an extra reported function in Ca2+ and/or H+ transport for some of them. Apart from glycosylation in humans, the UPF0016 members are required for lactation in humans, photosynthesis in plants and cyanobacteria, Ca2+ signaling in yeast, and Mn2+ homeostasis in the five aforementioned species. The requirement of the UPF0016 members for key physiological processes most likely derives from their transport activity at the Golgi membrane in human and yeast, the chloroplasts membranes in plants, the thylakoid and plasma membranes in cyanobacteria, and the cell membrane in bacteria. In the light of these studies on various UPF0016 members, this family is not considered as uncharacterized anymore and has been renamed the Gdt1 family according to the name of its S. cerevisiae member. This review aims at assembling and confronting the current knowledge in order to identify shared and distinct features in terms of transported molecules, mode of action, structure, etc., as well as to better understand their corresponding physiological roles.
Collapse
Affiliation(s)
- Louise Thines
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
48
|
Enterococcus faecalis Manganese Exporter MntE Alleviates Manganese Toxicity and Is Required for Mouse Gastrointestinal Colonization. Infect Immun 2020; 88:IAI.00058-20. [PMID: 32229614 DOI: 10.1128/iai.00058-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/21/2020] [Indexed: 01/13/2023] Open
Abstract
Bacterial pathogens encounter a variety of nutritional environments in the human host, including nutrient metal restriction and overload. Uptake of manganese (Mn) is essential for Enterococcus faecalis growth and virulence; however, it is not known how this organism prevents Mn toxicity. In this study, we examine the role of the highly conserved MntE transporter in E. faecalis Mn homeostasis and virulence. We show that inactivation of mntE results in growth restriction in the presence of excess Mn, but not other metals, demonstrating its specific role in Mn detoxification. Upon growth in the presence of excess Mn, an mntE mutant accumulates intracellular Mn, iron (Fe), and magnesium (Mg), supporting a role for MntE in Mn and Fe export and a role for Mg in offsetting Mn toxicity. Growth of the mntE mutant in excess Fe also results in increased levels of intracellular Fe, but not Mn or Mg, providing further support for MntE in Fe efflux. Inactivation of mntE in the presence of excess iron also results in the upregulation of glycerol catabolic genes and enhanced biofilm growth, and addition of glycerol is sufficient to augment biofilm growth for both the mntE mutant and its wild-type parental strain, demonstrating that glycerol availability significantly enhances biofilm formation. Finally, we show that mntE contributes to colonization of the antibiotic-treated mouse gastrointestinal (GI) tract, suggesting that E. faecalis encounters excess Mn in this niche. Collectively, these findings demonstrate that the manganese exporter MntE plays a crucial role in E. faecalis metal homeostasis and virulence.
Collapse
|
49
|
García López E, Martín-Galiano AJ. The Versatility of Opportunistic Infections Caused by Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Front Microbiol 2020; 11:524. [PMID: 32296407 PMCID: PMC7136413 DOI: 10.3389/fmicb.2020.00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The molecular basis of the pathogenesis of the opportunistic invasive infections caused by isolates of the Gemella genus remains largely unknown. Moreover, inconsistencies in the current species assignation were detected after genome-level comparison of 16 public Gemella isolates. A literature search detected that, between the two most pathogenic species, Gemella morbillorum causes about twice the number of cases compared to Gemella haemolysans. These two species shared their mean diseases - sepsis and endocarditis - but differed in causing other syndromes. A number of well-known virulence factors were harbored by all species, such as a manganese transport/adhesin sharing 83% identity from oral endocarditis-causing streptococci. Likewise, all Gemellae carried the genes required for incorporating phosphorylcholine into their cell walls and encoded some choline-binding proteins. In contrast, other proteins were species-specific, which may justify the known epidemiological differences. G. haemolysans, but not G. morbillorum, harbor a gene cluster potentially encoding a polysaccharidic capsule. Species-specific surface determinants also included Rib and MucBP repeats, hemoglobin-binding NEAT domains, peptidases of C5a complement factor and domains that recognize extracellular matrix molecules exposed in damaged heart valves, such as collagen and fibronectin. Surface virulence determinants were associated with several taxonomically dispersed opportunistic genera of the oral microbiota, such as Granulicatella, Parvimonas, and Streptococcus, suggesting the existence of a horizontally transferrable gene reservoir in the oral environment, likely facilitated by close proximity in biofilms and ultimately linked to endocarditis. The identification of the Gemella virulence pool should be implemented in whole genome-based protocols to rationally predict the pathogenic potential in ongoing clinical infections caused by these poorly known bacterial pathogens.
Collapse
Affiliation(s)
- Ernesto García López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
50
|
Naghdi MR, Boutet E, Mucha C, Ouellet J, Perreault J. Single Mutation in Hammerhead Ribozyme Favors Cleavage Activity with Manganese over Magnesium. Noncoding RNA 2020; 6:E14. [PMID: 32245091 PMCID: PMC7151607 DOI: 10.3390/ncrna6010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hammerhead ribozymes are one of the most studied classes of ribozymes so far, from both the structural and biochemical point of views. The activity of most hammerhead ribozymes is cation-dependent. Mg2+ is one of the most abundant divalent cations in the cell and therefore plays a major role in cleavage activity for most hammerhead ribozymes. Besides Mg2+, cleavage can also occur in the presence of other cations such as Mn2+. The catalytic core of hammerhead ribozymes is highly conserved, which could contribute to a preference of hammerhead ribozymes toward certain cations. Here, we show a naturally occurring variation in the catalytic core of hammerhead ribozymes, A6C, that can favor one metallic ion, Mn2+, over several other cations.
Collapse
Affiliation(s)
- Mohammad Reza Naghdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QB H7V 1B7, Canada; (M.R.N.); (E.B.); (C.M.)
| | - Emilie Boutet
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QB H7V 1B7, Canada; (M.R.N.); (E.B.); (C.M.)
| | - Clarisse Mucha
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QB H7V 1B7, Canada; (M.R.N.); (E.B.); (C.M.)
| | - Jonathan Ouellet
- Department of Chemistry and Physics, Monmouth University, 400 Cedar Avenue, West Long Branch, NJ 07764, USA;
| | - Jonathan Perreault
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QB H7V 1B7, Canada; (M.R.N.); (E.B.); (C.M.)
| |
Collapse
|