1
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
2
|
Mori K, Golding BT, Toraya T. The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde. J Biochem 2024; 176:245-254. [PMID: 38987935 DOI: 10.1093/jb/mvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical centre compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.
Collapse
Affiliation(s)
- Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Bernard T Golding
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Mrnjavac N, Schwander L, Brabender M, Martin WF. Chemical Antiquity in Metabolism. Acc Chem Res 2024; 57:2267-2278. [PMID: 39083571 PMCID: PMC11339923 DOI: 10.1021/acs.accounts.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Life is an exergonic chemical reaction. The same was true when the very first cells emerged at life's origin. In order to live, all cells need a source of carbon, energy, and electrons to drive their overall reaction network (metabolism). In most cells, these are separate pathways. There is only one biochemical pathway that serves all three needs simultaneously: the acetyl-CoA pathway of CO2 fixation. In the acetyl-CoA pathway, electrons from H2 reduce CO2 to pyruvate for carbon supply, while methane or acetate synthesis are coupled to energy conservation as ATP. This simplicity and thermodynamic favorability prompted Georg Fuchs and Erhard Stupperich to propose in 1985 that the acetyl-CoA pathway might mark the origin of metabolism, at the same time that Steve Ragsdale and Harland Wood were uncovering catalytic roles for Fe, Co, and Ni in the enzymes of the pathway. Subsequent work has provided strong support for those proposals.In the presence of Fe, Co, and Ni in their native metallic state as catalysts, aqueous H2 and CO2 react specifically to formate, acetate, methane, and pyruvate overnight at 100 °C. These metals (and their alloys) thus replace the function of over 120 enzymes required for the conversion of H2 and CO2 to pyruvate via the pathway and its cofactors, an unprecedented set of findings in the study of biochemical evolution. The reactions require alkaline conditions, which promote hydrogen oxidation by proton removal and are naturally generated in serpentinizing (H2-producing) hydrothermal vents. Serpentinizing hydrothermal vents furthermore produce natural deposits of native Fe, Co, Ni, and their alloys. These are precisely the metals that reduce CO2 with H2 in the laboratory; they are also the metals found at the active sites of enzymes in the acetyl-CoA pathway. Iron, cobalt and nickel are relicts of the environments in which metabolism arose, environments that still harbor ancient methane- and acetate-producing autotrophs today. This convergence indicates bedrock-level antiquity for the acetyl-CoA pathway. In acetogens and methanogens growing on H2 as reductant, the acetyl-CoA pathway requires flavin-based electron bifurcation as a source of reduced ferredoxin (a 4Fe4S cluster-containing protein) in order to function. Recent findings show that H2 can reduce the 4Fe4S clusters of ferredoxin in the presence of native iron, uncovering an evolutionary precursor of flavin-based electron bifurcation and suggesting an origin of FeS-dependent electron transfer in proteins. Traditionally discussed as catalysts in early evolution, the most common function of FeS clusters in metabolism is one-electron transfer, also in radical SAM enzymes, a large and ancient enzyme family. The cofactors and active sites in enzymes of the acetyl-CoA pathway uncover chemical antiquity in metabolism involving metals, methyl groups, methyl transfer reactions, cobamides, pterins, GTP, S-adenosylmethionine, radical SAM enzymes, and carbon-metal bonds. The reaction sequence from H2 and CO2 to pyruvate on naturally deposited native metals is maximally simple. It requires neither nitrogen, sulfur, phosphorus, RNA, ion gradients, nor light. Solid-state metal catalysts tether the origin of metabolism to a H2-producing, serpentinizing hydrothermal vent.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Loraine Schwander
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Max Brabender
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F. Martin
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Mrnjavac N, Nagies FSP, Wimmer JLE, Kapust N, Knopp MR, Trost K, Modjewski L, Bremer N, Mentel M, Esposti MD, Mizrahi I, Allen JF, Martin WF. The radical impact of oxygen on prokaryotic evolution-enzyme inhibition first, uninhibited essential biosyntheses second, aerobic respiration third. FEBS Lett 2024; 598:1692-1714. [PMID: 38750628 PMCID: PMC7616280 DOI: 10.1002/1873-3468.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 07/15/2024]
Abstract
Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Falk S P Nagies
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nils Kapust
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Michael R Knopp
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Katharina Trost
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Luca Modjewski
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Nico Bremer
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and The National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, UK
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
5
|
Szaleniec M, Oleksy G, Sekuła A, Aleksić I, Pietras R, Sarewicz M, Krämer K, Pierik AJ, Heider J. Modeling the Initiation Phase of the Catalytic Cycle in the Glycyl-Radical Enzyme Benzylsuccinate Synthase. J Phys Chem B 2024; 128:5823-5839. [PMID: 38848492 PMCID: PMC11194802 DOI: 10.1021/acs.jpcb.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
| | - Gabriela Oleksy
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
- Department
of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, Marburg 35043, Germany
| | - Anna Sekuła
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
| | - Ivana Aleksić
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | - Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | - Kai Krämer
- Department
of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, Marburg 35043, Germany
| | - Antonio J. Pierik
- Biochemistry,
Faculty of ChemistryRPTU Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Johann Heider
- Department
of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, Marburg 35043, Germany
- Synmikro-Center
for Synthetic Microbiology, Philipps University
Marburg, Marburg 35043, Germany
| |
Collapse
|
6
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Peltier JL, Serrato MR, Thery V, Pecaut J, Tomás-Mendivil E, Bertrand G, Jazzar R, Martin D. An air-stable radical with a redox-chameleonic amide. Chem Commun (Camb) 2023; 59:595-598. [PMID: 36524847 DOI: 10.1039/d2cc05404c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An air-stable (amino)(amido)radical was synthesized by reacting a cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by one-electron reduction. We show that an adjacent radical center weakens the amide bond. It enables the amino group to act as a strong acceptor under steric contraint, thus enhancing the stabilizing capto-dative effect.
Collapse
Affiliation(s)
- Jesse L Peltier
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Valentin Thery
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| | - Jacques Pecaut
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, Grenoble 38000, France
| | | | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - David Martin
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| |
Collapse
|
8
|
Jäger C, Croft AK. If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes. Biochemistry 2022; 62:241-252. [PMID: 36121716 PMCID: PMC9850924 DOI: 10.1021/acs.biochem.2c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.
Collapse
|
9
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. Angew Chem Int Ed Engl 2022; 61:e202208295. [PMID: 35793207 PMCID: PMC9545868 DOI: 10.1002/anie.202208295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/04/2022]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012 -fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
10
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202208295. [PMID: 38505740 PMCID: PMC10947579 DOI: 10.1002/ange.202208295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 03/21/2024]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012-fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
11
|
Hanževački M, Croft AK, Jäger CM. Activation of Glycyl Radical Enzymes─Multiscale Modeling Insights into Catalysis and Radical Control in a Pyruvate Formate-Lyase-Activating Enzyme. J Chem Inf Model 2022; 62:3401-3414. [PMID: 35771966 PMCID: PMC9326890 DOI: 10.1021/acs.jcim.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) playing a pivotal role in the metabolism of strict and facultative anaerobes. Its activation is carried out by a PFL-activating enzyme, a member of the radical S-adenosylmethionine (rSAM) superfamily of metalloenzymes, which introduces a glycyl radical into the Gly radical domain of PFL. The activation mechanism is still not fully understood and is structurally based on a complex with a short model peptide of PFL. Here, we present extensive molecular dynamics simulations in combination with quantum mechanics/molecular mechanics (QM/MM)-based kinetic and thermodynamic reaction evaluations of a more complete activation model comprising the 49 amino acid long C-terminus region of PFL. We reveal the benefits and pitfalls of the current activation model, providing evidence that the bound peptide conformation does not resemble the bound protein-protein complex conformation with PFL, with implications for the activation process. Substitution of the central glycine with (S)- and (R)-alanine showed excellent binding of (R)-alanine over unstable binding of (S)-alanine. Radical stabilization calculations indicate that a higher radical stability of the glycyl radical might not be the sole origin of the evolutionary development of GREs. QM/MM-derived radical formation kinetics further demonstrate feasible activation barriers for both peptide and C-terminus activation, demonstrating why the crystalized model peptide system is an excellent inhibitory system for natural activation. This new evidence supports the theory that GREs converged on glycyl radical formation due to the better conformational accessibility of the glycine radical loop, rather than the highest radical stability of the formed peptide radicals.
Collapse
Affiliation(s)
- Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
12
|
Darbyshire AL, Makins C, Wolthers KR. Steady-state and pre-steady state kinetic analysis of ornithine 4,5-aminomutase. Methods Enzymol 2022; 669:173-195. [PMID: 35644171 DOI: 10.1016/bs.mie.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ornithine 4,5-aminomutase (4,5-OAM) is a pyridoxal 5'-phosphate and adenosylcobalamin-dependent enzyme that catalyzes a 1,2-rearrangement of the terminal amine of d-ornithine to form (2R, 4S)-diaminopentanoate. The gene encoding ornithine 4,5-aminomutase is clustered with other genes that function in the oxidative l-ornithine metabolic pathway present in a number of anaerobic bacteria. This chapter discusses the methodology for measuring 4,5-OAM activity using NAD+-dependent diaminopentanoate dehydrogenase, which functions downstream of 4,5-OAM in the l-ornithine metabolic pathway. The use of ornithine racemace, which functions upstream of 4,5-OAM, for the synthesis of d,l-ornithine-3,3,4,4,5,5-d6 is also presented. Finally, this chapter describes the anaerobic stopped-flow spectrophotometric analysis of 4,5-OAM. Information is provided on the integration of a stopped-flow system in the anaerobically-maintained glove, the preparation of anaerobic solutions, and the experimental approach.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Caitlyn Makins
- Department of Chemistry, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
13
|
Buckel W, Beatrix B, Zelder O. Glutamate mutase and 2-methyleneglutarate mutase. Methods Enzymol 2022; 668:285-307. [PMID: 35589197 DOI: 10.1016/bs.mie.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wolfgang Buckel
- Department of Biology, Philipps University, Marburg, Germany.
| | - Birgitta Beatrix
- Gene Center, Department of Biochemistry, Ludwig Maximilian University, München, Germany
| | - Oskar Zelder
- Department of Biology, Philipps University, Marburg, Germany; Industrial Biotechnology I, BASF SE, Ludwigshafen am Rhein, Germany
| |
Collapse
|
14
|
Shimakoshi H. Application of bioorganometallic B 12 in green organic synthesis. VITAMINS AND HORMONES 2022; 119:23-42. [PMID: 35337621 DOI: 10.1016/bs.vh.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioorganometallic structure found in coenzyme B12 is a key component in B12-dependent enzymatic reactions in natural enzymes. Cleavage of a cobalt-carbon bond in organometallic B12 compound provide reactive intermediate for molecular transformations. Application of the bioorganometallic B12 in organic synthesis have been developed using natural vitamin B12 as well as synthetic vitamin B12 derivatives as a bioinspired catalyst in organic solvent. Vitamin B12 derivatives composed of corrinoid structure should form stable organometallic compound having a cobalt-carbon bond. Using the unique property of the organometallic vitamin B12 derivatives, various catalytic reactions have been developed in synthetic organic chemistry. The dual catalytic system of vitamin B12 derivatives and photocatalyst, such as Ru(II) polypyridyl complex or titanium oxide, could construct light-driven molecular transformations. The B12-dependent enzymes mimic reactions, such as the dechlorination of organic halides and the radical mediated isomerization reactions, catalytically proceed in the dual catalyst system. Electroorganic syntheses mediated by the vitamin B12 derivatives have been developed as green molecular transformations. The redox active vitamin B12 derivatives shows a unique catalysis in the electroorganic synthesis, such as alkene and alkyne reductions.
Collapse
Affiliation(s)
- Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
15
|
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
17
|
Deng WH, Lu Y, Liao RZ. Revealing the Mechanism of Isethionate Sulfite-Lyase by QM/MM Calculations. J Chem Inf Model 2021; 61:5871-5882. [PMID: 34806370 DOI: 10.1021/acs.jcim.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Isethionate sulfite-lyase (IseG) is a recently characterized glycyl radical enzyme (GRE) that catalyzes radical-mediated C-S bond cleavage of isethionate to produce acetaldehyde and sulfite. Herein, we use quantum mechanical/molecular mechanical (QM/MM) calculations to investigate the detailed catalytic reaction mechanism of IseG. Our calculations indicate that a previously proposed direct 1,2-elimination mechanism is disfavored. Instead, we suggest a new 1,2-migration mechanism for this enzymatic reaction: a key stepwise 1,2-SO3- radical migration occurs after the catalytically active cysteinyl radical grabs a hydrogen atom from isethionate, followed by hydrogen atom transfer from cysteine to a 1-hydroxylethane-1-sulfonate radical intermediate. Finally, the elimination of sulfite from 1-hydroxylethane-1-sulfonate to result in the final product is likely to occur outside the enzyme. Glu468 in the active site is found to help orient the substrate rather than grabbing a proton from the hydroxyl group of the substrate. Our findings help reveal the mechanisms of radical-mediated C-S bond cleavage of organosulfonates catalyzed by GREs and expand the understanding of radical-based enzymatic catalysis.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - You Lu
- Scientific Computing Department, UKRI STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
18
|
Chen JR, Ke TX, Frey PA, Ke SC. Electron Spin Echo Envelope Modulation Spectroscopy Reveals How Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase Positions the Radical Pair Intermediates and Modulates Their Stabilities for Efficient Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-Ru Chen
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Xi Ke
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| | - Perry A. Frey
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53726, United States
| | - Shyue-Chu Ke
- Physics Department, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
19
|
Yerien DE, Lantaño B, Barata‐Vallejo S, Postigo A. Catalytic Fluoroalkylation Reactions of Alkoxy‐substituted (Hetero)Arenes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Damian E. Yerien
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
| | - Sebastián Barata‐Vallejo
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
- ISOF Consiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Al Postigo
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
| |
Collapse
|
20
|
Morvan C, Folgosa F, Kint N, Teixeira M, Martin-Verstraete I. Responses of Clostridia to oxygen: from detoxification to adaptive strategies. Environ Microbiol 2021; 23:4112-4125. [PMID: 34245087 DOI: 10.1111/1462-2920.15665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
Clostridia comprise bacteria of environmental, biotechnological and medical interest and many commensals of the gut microbiota. Because of their strictly anaerobic lifestyle, oxygen is a major stress for Clostridia. However, recent data showed that these bacteria can cope with O2 better than expected for obligate anaerobes through their ability to scavenge, detoxify and consume O2 . Upon O2 exposure, Clostridia redirect their central metabolism onto pathways less O2 -sensitive and induce the expression of genes encoding enzymes involved in O2 -reduction and in the repair of oxidized damaged molecules. While Faecalibacterium prausnitzii efficiently consumes O2 through a specific extracellular electron shuttling system requiring riboflavin, enzymes such as rubrerythrins and flavodiiron proteins with NAD(P)H-dependent O2 - and/or H2 O2 -reductase activities are usually encoded in other Clostridia. These two classes of enzymes play indeed a pivotal role in O2 tolerance in Clostridioides difficile and Clostridium acetobutylicum. Two main signalling pathways triggering O2 -induced responses have been described so far in Clostridia. PerR acts as a key regulator of the O2 - and/or reactive oxygen species-defence machinery while in C. difficile, σB , the sigma factor of the general stress response also plays a crucial role in O2 tolerance by controlling the expression of genes involved in O2 scavenging and repair systems.
Collapse
Affiliation(s)
- Claire Morvan
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, Université de Paris, Paris, F-75015, France
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Nicolas Kint
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, Université de Paris, Paris, F-75015, France
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, Université de Paris, Paris, F-75015, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
21
|
Shimakoshi H, Hisaeda Y. Bioinspired Electrolysis for Green Molecular Transformations of Organic Halides Catalyzed by B 12 Complex. CHEM REC 2021; 21:2080-2094. [PMID: 34075694 DOI: 10.1002/tcr.202100077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Naturally-occurring B12 -dependent enzymes catalyze various molecular transformations that are of particular interest from the viewpoint of biological chemistry as well as synthetic organic chemistry. Inspired by the unique property of the B12 -dependent enzymes, various catalytic reactions have been developed using its model complex. Among the B12 model complexes, heptamethyl cobyrinate, synthesized from natural vitamin B12 , is highly soluble in various organic solvents and a redox active cobalt complex with an excellent catalysis in electroorganic synthesis. The electrochemical dechlorination of pollutant organic chlorides, such as DDT, was effectively catalyzed by the B12 complex. Modification of the electrode surface by the sol-gel method to immobilize the B12 complex was also developed. The B12 modified electrodes were effective for the dehalogenation of organic halides with high turnover numbers based on the immobilized B12 complex. Electrolysis of an organic halide catalyzed by the B12 complex provided dechlorinated products under anaerobic conditions, while the electrolysis under aerobic conditions afforded oxygen incorporated products, such as an ester and amide along with dechlorination. Benzotrichloride was transformed into ethylbenzoate or N,N-diethylbenzamide in the presence of ethanol or diethylamine, respectively. This amide formation was further expanded to a unique paired electrolysis. Electrochemical reductions of an alkene and alkyne were also catalyzed by the B12 complex. A cobalt-hydrogen complex should be formed as a bioinspired intermediate. Using the B12 complex, light-assisted electrosynthesis was also developed to save the applied energy.
Collapse
Affiliation(s)
- Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| |
Collapse
|
22
|
Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ, Konstantinidis KT. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: Nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol 2021; 44:126185. [PMID: 33676264 DOI: 10.1016/j.syapm.2021.126185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
The diverse and ubiquitous members of the SAR11 lineage (Alphaproteobacteria) represent up to 30-40% of the surface and mesopelagic oceanic microbial communities. However, the molecular and ecological mechanisms that differentiate closely related, yet distinct, SAR11 members that often co-occur under similar environmental conditions remain speculative. Recently, two mesopelagic and oxygen minimum zone (OMZ)-associated subclades of SAR11 (Ic and IIa.A) were described using single-cell amplified genomes (SAGs) linked to nitrate reduction in OMZs. In this current study, the collection of genomes belonging to these two subclades was expanded with thirteen new metagenome-assembled genomes (MAGs), thus providing a more detailed phylogenetic and functional characterization of these subclades. Gene content-based predictions of metabolic functions revealed similarities in central carbon metabolism between subclades Ic and IIa.A and surface SAR11 clades, with small variations in central pathways. These variations included more versatile sulfur assimilation pathways, as well as a previously predicted capacity for nitrate reduction that conferred unique versatility on mesopelagic-adapted clades compared to their surface counterparts. Finally, consistent with previously reported abundances of carbon monoxide (CO) in surface and mesopelagic waters, subclades Ia (surface) and Ic (mesopelagic) have the genetic potential to oxidize carbon monoxide (CO), presumably taking advantage of this abundant compound as an electron donor. Based on genomic analyses, environmental distribution and metabolic reconstruction, we propose two new SAR11 genera, Ca. Mesopelagibacter carboxydoxydans (subclade Ic) and Ca. Anoxipelagibacter denitrificans (subclade IIa.A), which represent members of the mesopelagic and OMZ-adapted SAR11 clades.
Collapse
Affiliation(s)
- Carlos A Ruiz-Perez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony D Bertagnolli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, One Cyclotron Road, Mail Stop 91R0183, Berkeley, CA 94720, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
23
|
Bogart JW, Cabezas MD, Vögeli B, Wong DA, Karim AS, Jewett MC. Cell-Free Exploration of the Natural Product Chemical Space. Chembiochem 2021; 22:84-91. [PMID: 32783358 PMCID: PMC8215586 DOI: 10.1002/cbic.202000452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Indexed: 01/24/2023]
Abstract
Natural products and secondary metabolites comprise an indispensable resource from living organisms that have transformed areas of medicine, agriculture, and biotechnology. Recent advances in high-throughput DNA sequencing and computational analysis suggest that the vast majority of natural products remain undiscovered. To accelerate the natural product discovery pipeline, cell-free metabolic engineering approaches used to develop robust catalytic networks are being repurposed to access new chemical scaffolds, and new enzymes capable of performing diverse chemistries. Such enzymes could serve as flexible biocatalytic tools to further expand the unique chemical space of natural products and secondary metabolites, and provide a more sustainable route to manufacture these molecules. Herein, we highlight select examples of natural product biosynthesis using cell-free systems and propose how cell-free technologies could facilitate our ability to access and modify these structures to transform synthetic and chemical biology.
Collapse
Affiliation(s)
- Jonathan W. Bogart
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Maria D. Cabezas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Derek A. Wong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Kieninger C, Wurst K, Podewitz M, Stanley M, Deery E, Lawrence AD, Liedl KR, Warren MJ, Kräutler B. Replacement of the Cobalt Center of Vitamin B
12
by Nickel: Nibalamin and Nibyric Acid Prepared from Metal‐Free B
12
Ligands Hydrogenobalamin and Hydrogenobyric Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry University of Innsbruck 6020 Innsbruck Austria
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| | - Klaus Wurst
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Maren Podewitz
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Maria Stanley
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
| | - Evelyne Deery
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
| | | | - Klaus R. Liedl
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Martin J. Warren
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
- Quadram Institute Bioscience Norwich Science Park Norwich NR4 7UQ UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry University of Innsbruck 6020 Innsbruck Austria
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| |
Collapse
|
25
|
Kieninger C, Wurst K, Podewitz M, Stanley M, Deery E, Lawrence AD, Liedl KR, Warren MJ, Kräutler B. Replacement of the Cobalt Center of Vitamin B 12 by Nickel: Nibalamin and Nibyric Acid Prepared from Metal-Free B 12 Ligands Hydrogenobalamin and Hydrogenobyric Acid. Angew Chem Int Ed Engl 2020; 59:20129-20136. [PMID: 32686888 PMCID: PMC7693184 DOI: 10.1002/anie.202008407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/18/2022]
Abstract
The (formal) replacement of Co in cobalamin (Cbl) by NiII generates nibalamin (Nibl), a new transition-metal analogue of vitamin B12 . Described here is Nibl, synthesized by incorporation of a NiII ion into the metal-free B12 ligand hydrogenobalamin (Hbl), itself prepared from hydrogenobyric acid (Hby). The related NiII corrin nibyric acid (Niby) was similarly synthesized from Hby, the metal-free cobyric acid ligand. The solution structures of Hbl, and Niby and Nibl, were characterized by spectroscopic studies. Hbl features two inner protons bound at N2 and N4 of the corrin ligand, as discovered in Hby. X-ray analysis of Niby shows the structural adaptation of the corrin ligand to NiII ions and the coordination behavior of NiII . The diamagnetic Niby and Nibl, and corresponding isoelectronic CoI corrins, were deduced to be isostructural. Nibl is a structural mimic of four-coordinate base-off Cbls, as verified by its ability to act as a strong inhibitor of bacterial adenosyltransferase.
Collapse
Affiliation(s)
- Christoph Kieninger
- Institute of Organic ChemistryUniversity of Innsbruck6020InnsbruckAustria
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | - Klaus Wurst
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Maren Podewitz
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Maria Stanley
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | - Evelyne Deery
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | | | - Klaus R. Liedl
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Martin J. Warren
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
- Quadram Institute BioscienceNorwich Science ParkNorwichNR4 7UQUK
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of Innsbruck6020InnsbruckAustria
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
26
|
Seyed Hameed AS, Rawat PS, Meng X, Liu W. Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol Adv 2020; 43:107576. [PMID: 32531317 DOI: 10.1016/j.biotechadv.2020.107576] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Phytoestrogens are a class of plant produced polyphenolic compounds with diphenolic structure, which is similar to 17β-estradiol. These phytoestrogens preferentially bind to estrogen receptors, however, with weak affinity. Recently, many studies have found that these phytoestrogens can be transformed by gut microbiota through novel enzymatic reactions into metabolites with altered bioactivity. Recent studies have also implied that these metabolites could possibly modulate the host gut ecosystem, gene expression, metabolism and the immune system. Thus, isolating gut microbes capable of biotransforming phytoestrogens and characterizing the novel enzymatic reactions involved are principal to understand the mechanisms of beneficial effects brought by gut microbiota and their metabolism on phytoestrogens, and to provide the theoretical knowledge for the development of functional probiotics. In the present review, we summarized works on gut microbial biotransformation of phytoestrogens, including daidzin (isoflavone), phenylnaringenin (prenylflavonoid), lignans, resveratrol (stilbene) and ellagitannins. We mainly focus on gut bacterial isolation, metabolic pathway characterization, and the bidirectional interaction of phytoestrogens with gut microbes to illustrate the novel metabolic capability of gut microbiota and the methods used in these studies.
Collapse
Affiliation(s)
- Ahkam Saddam Seyed Hameed
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Parkash Singh Rawat
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| |
Collapse
|
27
|
Khademian M, Imlay JA. Do reactive oxygen species or does oxygen itself confer obligate anaerobiosis? The case of Bacteroides thetaiotaomicron. Mol Microbiol 2020; 114:333-347. [PMID: 32301184 DOI: 10.1111/mmi.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Bacteroides thetaiotaomicron was examined to determine whether its obligate anaerobiosis is imposed by endogenous reactive oxygen species or by molecular oxygen itself. Previous analyses established that aerated B. thetaiotaomicron loses some enzyme activities due to a high rate of endogenous superoxide formation. However, the present study establishes that another key step in central metabolism is poisoned by molecular oxygen itself. Pyruvate dissimilation was shown to depend upon two enzymes, pyruvate:formate lyase (PFL) and pyruvate:ferredoxin oxidoreductase (PFOR), that lose activity upon aeration. PFL is a glycyl-radical enzyme whose vulnerability to oxygen is already understood. The rate of PFOR damage was unaffected by the level of superoxide or peroxide, showing that molecular oxygen itself is the culprit. The cell cannot repair PFOR, which amplifies the impact of damage. The rates of PFOR and fumarase inactivation are similar, suggesting that superoxide dismutase is calibrated so the oxygen- and superoxide-sensitive enzymes are equally sensitive to aeration. The physiological purpose of PFL and PFOR is to degrade pyruvate without disrupting the redox balance, and they do so using catalytic mechanisms that are intrinsically vulnerable to oxygen. In this way, the anaerobic excellence and oxygen sensitivity of B. thetaiotaomicron are two sides of the same coin.
Collapse
Affiliation(s)
- Maryam Khademian
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| |
Collapse
|
28
|
Salerno EV, Miller NA, Konar A, Salchner R, Kieninger C, Wurst K, Spears KG, Kräutler B, Sension RJ. Exceptional Photochemical Stability of the Co-C Bond of Alkynyl Cobalamins, Potential Antivitamins B 12 and Core Elements of B 12-Based Biological Vectors. Inorg Chem 2020; 59:6422-6431. [PMID: 32311266 PMCID: PMC7201400 DOI: 10.1021/acs.inorgchem.0c00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Alkynylcorrinoids
are a class of organometallic B12 derivatives,
recently rediscovered for use as antivitamins B12 and as
core components of B12-based biological vectors. They feature
exceptional photochemical and thermal stability of their characteristic
extra-short Co–C bond. We describe here the synthesis and structure
of 3-hydroxypropynylcobalamin (HOPryCbl) and photochemical experiments
with HOPryCbl, as well as of the related alkynylcobalamins: phenylethynylcobalamin
and difluoro-phenylethynylcobalamin. Ultrafast spectroscopic studies
of the excited state dynamics and mechanism for ground state recovery
demonstrate that the Co–C bond of alkynylcobalamins is stable,
with the Co–N bond and ring deformations mediating internal
conversion and ground state recovery within 100 ps. These studies
provide insights required for the rational design of photostable or
photolabile B12-based cellular vectors. Most alkylcobalamins are photolabile; in contrast, alkynylcobalamins
are photostable. Through time-resolved measurements, we demonstrate
for three alkynylcobalamins that the Co−C bond is stable (i.e.
“locked”), while expansion of the Co−N axial
bond (which is “unlocked”) and ring deformations mediate
internal conversion and ground state recovery within 100 ps. The barrier
for ground state recovery is independent of the R group on the alkynyl
ligand.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Robert Salchner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
29
|
Fu B, Balskus EP. Discovery of CC bond-forming and bond-breaking radical enzymes: enabling transformations for metabolic engineering. Curr Opin Biotechnol 2020; 65:94-101. [PMID: 32171888 PMCID: PMC7670169 DOI: 10.1016/j.copbio.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/23/2022]
Abstract
Radical enzymes catalyze difficult C—C bond-forming and bond-breaking transformations. Radical enzymes catalyzing unprecedented reactions continue to be discovered. The products of radical enzymes are often of high value. Understanding mechanisms of radical enzymes will aid metabolic engineering efforts.
Radical enzymes catalyze some of the most chemically challenging C—C bond-forming and bond-breaking reactions. Advances in DNA sequencing have accelerated the discovery of radical enzymes from microbes, including radical S-adenosylmethionine (rSAM) enzymes, glycyl radical enzymes (GREs), and diiron enzymes. These enzymes catalyze various reactions that yield products of industrial relevance (e.g. aromatics, hydrocarbons, and natural product derivatives), making their incorporation into engineered metabolic pathways enticing. Elucidating the mechanisms of radical enzymes that cleave and construct C—C bonds will enable further enzyme discovery and engineering efforts.
Collapse
Affiliation(s)
- Beverly Fu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States.
| |
Collapse
|
30
|
Mathew LG, Beattie NR, Pritchett C, Lanzilotta WN. New Insight into the Mechanism of Anaerobic Heme Degradation. Biochemistry 2019; 58:4641-4654. [PMID: 31652058 DOI: 10.1021/acs.biochem.9b00841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ChuW, ChuX, and ChuY are contiguous genes downstream from a single promoter that are expressed in the enteric pathogen Escherichia coli O157:H7 when iron is limiting. These genes, and the corresponding proteins, are part of a larger heme uptake and utilization operon that is common to several other enteric pathogens, such as Vibrio cholerae. The aerobic degradation of heme has been well characterized in humans and several pathogenic bacteria, including E. coli O157:H7, but only recently was it shown that ChuW catalyzes the anaerobic degradation of heme to release iron and produce a reactive tetrapyrrole termed "anaerobilin". ChuY has been shown to function as an anaerobilin reductase, in a role that parallels biliverdin reductase. In this work we have employed biochemical and biophysical approaches to further interrogate the mechanism of the anaerobic degradation of heme. We demonstrate that the iron atom of the heme does not participate in the catalytic mechanism of ChuW and that S-adenosyl-l-methionine binding induces conformational changes that favor catalysis. In addition, we show that ChuX and ChuY have synergistic and additive effects on the turnover rate of ChuW. Finally, we have found that ChuS is an effective source of heme or protoporphyrin IX for ChuW under anaerobic conditions. These data indicate that ChuS may have dual functionality in vivo. Specifically, ChuS serves as a heme oxygenase during aerobic metabolism of heme but functions as a cytoplasmic heme storage protein under anaerobic conditions, akin to what has been shown for PhuS (45% sequence identity) from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Liju G Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - Nathaniel R Beattie
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - Clayton Pritchett
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
31
|
Kieninger C, Deery E, Lawrence AD, Podewitz M, Wurst K, Nemoto-Smith E, Widner FJ, Baker JA, Jockusch S, Kreutz CR, Liedl KR, Gruber K, Warren MJ, Kräutler B. The Hydrogenobyric Acid Structure Reveals the Corrin Ligand as an Entatic State Module Empowering B 12 Cofactors for Catalysis. Angew Chem Int Ed Engl 2019; 58:10756-10760. [PMID: 31115943 PMCID: PMC6771967 DOI: 10.1002/anie.201904713] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 11/09/2022]
Abstract
The B12 cofactors instill a natural curiosity regarding the primordial selection and evolution of their corrin ligand. Surprisingly, this important natural macrocycle has evaded molecular scrutiny, and its specific role in predisposing the incarcerated cobalt ion for organometallic catalysis has remained obscure. Herein, we report the biosynthesis of the cobalt-free B12 corrin moiety, hydrogenobyric acid (Hby), a compound crafted through pathway redesign. Detailed insights from single-crystal X-ray and solution structures of Hby have revealed a distorted helical cavity, redefining the pattern for binding cobalt ions. Consequently, the corrin ligand coordinates cobalt ions in desymmetrized "entatic" states, thereby promoting the activation of B12 -cofactors for their challenging chemical transitions. The availability of Hby also provides a route to the synthesis of transition metal analogues of B12 .
Collapse
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Emi Nemoto-Smith
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Florian J Widner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Joseph A Baker
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Christoph R Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Karl Gruber
- Institute for Molecular Biosciences, University of Graz, Austria
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
32
|
Kieninger C, Deery E, Lawrence AD, Podewitz M, Wurst K, Nemoto‐Smith E, Widner FJ, Baker JA, Jockusch S, Kreutz CR, Liedl KR, Gruber K, Warren MJ, Kräutler B. Die Hydrogenobyrsäure‐Struktur enthüllt den Corrin‐Liganden als entatisches Zustandsmodul zur Steigerung der Katalyseaktivität von B
12
‐Cofaktoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| | - Evelyne Deery
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Andrew D. Lawrence
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck 6020 Innsbruck Österreich
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck 6020 Innsbruck Österreich
| | - Emi Nemoto‐Smith
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Florian J. Widner
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| | - Joseph A. Baker
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | | | - Christoph R. Kreutz
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck 6020 Innsbruck Österreich
| | - Karl Gruber
- Institute for Molecular BiosciencesUniversity of Graz Österreich
| | - Martin J. Warren
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| |
Collapse
|
33
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
34
|
Toda MJ, Lodowski P, Mamun AA, Jaworska M, Kozlowski PM. Photolytic properties of the biologically active forms of vitamin B12. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Discovering radical-dependent enzymes in the human gut microbiota. Curr Opin Chem Biol 2018; 47:86-93. [DOI: 10.1016/j.cbpa.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
|
36
|
Asatryan R, Pal Y, Hachmann J, Ruckenstein E. Roaming-like Mechanism for Dehydration of Diol Radicals. J Phys Chem A 2018; 122:9738-9754. [DOI: 10.1021/acs.jpca.8b08690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yudhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Computational and Data-Enabled Science and Engineering Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Johannes Hachmann
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- New York State Center of Excellence in Materials Informatics, Buffalo, New York 14203, United States
- Computational and Data-Enabled Science and Engineering Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
37
|
Kim Y, Lee E. Stable Organic Radicals Derived from N‐Heterocyclic Carbenes. Chemistry 2018; 24:19110-19121. [PMID: 30058298 DOI: 10.1002/chem.201801560] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Youngsuk Kim
- Center for Self-assembly and ComplexityInstitute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Eunsung Lee
- Center for Self-assembly and ComplexityInstitute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology Pohang 37673 Republic of Korea
- Division of Advanced Materials SciencePohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
38
|
Shimakoshi H, Hisaeda Y. Bioinspired Molecular Transformations by Biorelated Metal Complexes Combined with Electrolysis and Photoredox Systems. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Kyushu University
| |
Collapse
|
39
|
Affiliation(s)
- Christof M. Jäger
- University of Nottingham; Department of Chemical and Environmental Engineering; NG7 2RD Nottingham United Kingdom
| | - Anna K. Croft
- University of Nottingham; Department of Chemical and Environmental Engineering; NG7 2RD Nottingham United Kingdom
| |
Collapse
|
40
|
Levin BJ, Balskus EP. Characterization of 1,2-Propanediol Dehydratases Reveals Distinct Mechanisms for B 12-Dependent and Glycyl Radical Enzymes. Biochemistry 2018. [PMID: 29526088 DOI: 10.1021/acs.biochem.8b00164] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Propanediol dehydratase (PD), a recently characterized member of the glycyl radical enzyme (GRE) family, uses protein-based radicals to catalyze the chemically challenging dehydration of ( S)-1,2-propanediol. This transformation is also performed by the well-studied enzyme B12-dependent propanediol dehydratase (B12-PD) using an adenosylcobalamin cofactor. Despite the prominence of PD in anaerobic microorganisms, it remains unclear if the mechanism of this enzyme is similar to that of B12-PD. Here we report 18O labeling experiments that suggest PD and B12-PD employ distinct mechanisms. Unlike B12-PD, PD appears to catalyze the direct elimination of a hydroxyl group from an initially formed substrate-based radical, avoiding the generation of a 1,1- gem diol intermediate. Our studies provide further insights into how GREs perform elimination chemistry and highlight how nature has evolved diverse strategies for catalyzing challenging reactions.
Collapse
Affiliation(s)
- Benjamin J Levin
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
41
|
Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42:205-231. [PMID: 29177446 PMCID: PMC5972617 DOI: 10.1093/femsre/fux056] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy-the cyanobacterial lineage.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
42
|
Abstract
The human gut microbiota makes key contributions to the metabolism of ingested compounds (xenobiotics), transforming hundreds of dietary components, industrial chemicals, and pharmaceuticals into metabolites with altered activities, toxicities, and lifetimes within the body. The chemistry of gut microbial xenobiotic metabolism is often distinct from that of host enzymes. Despite their important consequences for human biology, the gut microbes, genes, and enzymes involved in xenobiotic metabolism are poorly understood. Linking these microbial transformations to enzymes and elucidating their biological effects is undoubtedly challenging. However, recent studies demonstrate that integrating traditional and emerging technologies can enable progress toward this goal. Ultimately, a molecular understanding of gut microbial xenobiotic metabolism will guide personalized medicine and nutrition, inform toxicology risk assessment, and improve drug discovery and development.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Vayu Maini Rekdal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. .,Broad Institute, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Hammer SC, Kubik G, Watkins E, Huang S, Minges H, Arnold FH. Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis. Science 2017; 358:215-218. [DOI: 10.1126/science.aao1482] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/05/2017] [Indexed: 12/23/2022]
|
44
|
Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017; 52:674-695. [PMID: 28901199 DOI: 10.1080/10409238.2017.1373741] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.
Collapse
Affiliation(s)
- Lindsey R F Backman
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Michael A Funk
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christopher D Dawson
- c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Catherine L Drennan
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
45
|
Cathodic reductive couplings and hydrogenations of alkenes and alkynes catalyzed by the B12 model complex. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
|
47
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Hossain MJ, Ono T, Wakiya K, Hisaeda Y. A vitamin B12 derivative catalyzed electrochemical trifluoromethylation and perfluoroalkylation of arenes and heteroarenes in organic media. Chem Commun (Camb) 2017; 53:10878-10881. [DOI: 10.1039/c7cc06221d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The electrochemical trifluoromethylation and perfluoroalkylation of aromatic compounds mediated by a vitamin B12 derivative as a cobalt-based catalyst has been developed.
Collapse
Affiliation(s)
- Md. Jakir Hossain
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kosuke Wakiya
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
49
|
Activation and selective oxy-functionalization of alkanes with metal complexes: Shilov reaction and some new aspects. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molcata.2016.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Miller NA, Wiley TE, Spears KG, Ruetz M, Kieninger C, Kräutler B, Sension RJ. Toward the Design of Photoresponsive Conditional Antivitamins B12: A Transient Absorption Study of an Arylcobalamin and an Alkynylcobalamin. J Am Chem Soc 2016; 138:14250-14256. [DOI: 10.1021/jacs.6b05299] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicholas A. Miller
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Theodore E. Wiley
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kenneth G. Spears
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Markus Ruetz
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J. Sension
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|