1
|
Rahati S, Qorbani M, Naghavi A, Pishva H. The interaction between the Circadian Locomotor Output Cycles Kaput and Melanocortin-4-receptor gene variants on obesity and parameters related to obesity. Clin Nutr 2025; 45:193-201. [PMID: 39827504 DOI: 10.1016/j.clnu.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Obesity is a multifactorial disease caused by an interaction between genetic, environmental and behavioral factors. Polymorphisms of the two genes Circadian Locomotor Output Cycles Kaput (CLOCK) rs1801260 and Melanocortin-4-receptor (MC4R) rs17782313, are associated with obesity. Knowledge is limited on the interaction between CLOCK, MC4R and obesity. The aim was to explore the interactions between the CLOCK and MC4R gene variants on markers related to obesity. METHODS There were 423 subjects with information on two genetic variants of two genes (CLOCK and MC4R). Their interaction was evaluated with: chronotype, sleeping duration, emotional eating, food timing, stress, dietary intake, appetite, physical activity (assessed by questionnaires), anthropometric measures of obesity (assessed by physical measurements), and also hormonal factors (assessed by ELISA). Generalized Linear Models were applied. RESULTS Our results revealed that significant differences were observed between the genotypes of CLOCK rs1801260 for weight, Body Mass Index (BMI), Glucagon-like peptide-1 (GLP-1), cortisol, energy, fat, sleep duration, chronotype, appetite, depression, stress, emotional eating, physical activity, breakfast, lunch, and dinner time (p˂0.05). Also, significant differences were observed between the genotypes of MC4R rs17782313 for weight, BMI, Waist Circumference (WC), Waist to Hip Ratio (WHR), ghrelin, energy, carbohydrate, fat, appetite, depression, stress, breakfast time, and emotional eating (p˂0.05). Our findings also showed significant interactions between the CLOCK (CC)∗MC4R (CT) genotypes for higher appetite, stress and CLOCK (CT)∗ MC4R (CC) genotypes for higher fat and energy intake and CLOCK (CC)∗MC4R (CC) genotypes for higher weight, BMI, energy and fat intake, appetite, emotional eating, stress, ghrelin, cortisol and lower sleep duration and GLP-1 (p˂ 0.05). CONCLUSION Due to the non-significance of the interaction in CLOCK (CT)∗ MC4R (CT) genotypes, it seems that the presence of a healthy arm in the CLOCK and MC4R polymorphism is necessary for the proper function of the genes. Thus, these results highlight that gene variants and their interaction should be considered in obesity assessment.
Collapse
Affiliation(s)
- Sara Rahati
- Department of Cellular - Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Anoosh Naghavi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute and Department of Genetics, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamideh Pishva
- Department of Cellular - Molecular Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Vilela M, Tracey B, Volfson D, Barateau L, Cai A, Buhl DL, Dauvilliers Y. Identifying time-resolved features of nocturnal sleep characteristics of narcolepsy using machine learning. J Sleep Res 2024; 33:e14216. [PMID: 38665127 PMCID: PMC11596988 DOI: 10.1111/jsr.14216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 11/28/2024]
Abstract
The differential diagnosis of narcolepsy type 1, a rare, chronic, central disorder of hypersomnolence, is challenging due to overlapping symptoms with other hypersomnolence disorders. While recent years have seen significant growth in our understanding of nocturnal polysomnography narcolepsy type 1 features, there remains a need for improving methods to differentiate narcolepsy type 1 nighttime sleep features from those of individuals without narcolepsy type 1. We aimed to develop a machine learning framework for identifying sleep features to discriminate narcolepsy type 1 from clinical controls, narcolepsy type 2 and idiopathic hypersomnia. The population included polysomnography data from 350 drug-free individuals (114 narcolepsy type 1, 90 narcolepsy type 2, 105 idiopathic hypersomnia, and 41 clinical controls) collected at the National Reference Centers for Narcolepsy in Montpelier, France. Several sets of nocturnal sleep features were explored, as well as the value of time-resolving sleep architecture by analysing sleep per quarter-night. Several patterns of nighttime sleep evolution emerged that differed between narcolepsy type 1, clinical controls, narcolepsy type 2 and idiopathic hypersomnia, with increased nighttime instability observed in patients with narcolepsy type 1. Using machine learning models, we identified rapid eye movement sleep onset as the best single polysomnography feature to distinguish narcolepsy type 1 from controls, narcolepsy type 2 and idiopathic hypersomnia. By combining multiple feature sets capturing different aspects of sleep across quarter-night periods, we were able to further improve between-group discrimination and could identify the most discriminative sleep features. Our results highlight salient polysomnography features and the relevance of assessing their time-dependent changes during sleep that could aid diagnosis and measure the impact of novel therapeutics in future clinical trials.
Collapse
Affiliation(s)
- Marco Vilela
- Takeda Development Center Americas, Inc.CambridgeMassachusettsUSA
| | - Brian Tracey
- Takeda Development Center Americas, Inc.CambridgeMassachusettsUSA
| | - Dmitri Volfson
- Takeda Development Center Americas, Inc.CambridgeMassachusettsUSA
| | - Lucie Barateau
- Department of Neurology, Sleep‐Wake Disorders Center, Gui‐de‐Chauliac Hospital, CHUMontpellierFrance
- National Reference Network for NarcolepsyMontpellierFrance
- Institute for Neurosciences of Montpellier (INM), INSERMUniversity of MontpellierMontpellierFrance
| | - Alice Cai
- Takeda Development Center Americas, Inc.CambridgeMassachusettsUSA
| | - Derek L. Buhl
- Takeda Development Center Americas, Inc.CambridgeMassachusettsUSA
| | - Yves Dauvilliers
- Department of Neurology, Sleep‐Wake Disorders Center, Gui‐de‐Chauliac Hospital, CHUMontpellierFrance
- National Reference Network for NarcolepsyMontpellierFrance
- Institute for Neurosciences of Montpellier (INM), INSERMUniversity of MontpellierMontpellierFrance
| |
Collapse
|
3
|
Lin J, Luo Z, Fan M, Liu Y, Shi X, Cai Y, Yang Z, Chen L, Pan J. Abnormal hypothalamic functional connectivity and serum arousal-promoting neurotransmitters in insomnia disorder patients: a pilot study. PeerJ 2024; 12:e18540. [PMID: 39583108 PMCID: PMC11586044 DOI: 10.7717/peerj.18540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Objective The present study aimed to investigate the functional connectivity (FC) of the anterior and posterior hypothalamus with the whole brain in insomnia disorder (ID) patients. Additionally, we explored the relationship between FC values and serum levels of arousal-promoting neurotransmitters (orexin-A and histamine) in ID patients. Methods This study enrolled 30 ID patients and 30 age- and gender-matched healthy controls. Resting-state functional magnetic resonance imaging (RS-fMRI) was employed to assess the FC of the anterior and posterior hypothalamus with the whole brain. Serum concentrations of orexin-A and histamine were measured using enzyme-linked immunosorbent assay (ELISA). Moreover, Spearman correlation analysis was conducted to investigate the relationship between FC values and serum levels of arousal-promoting neurotransmitters in ID patients. Results Our findings showed decreased FC between the posterior hypothalamus and several brain regions including the bilateral orbital superior frontal gyrus, the bilateral angular gyrus, the right anterior cingulate cortex, the left precuneus, and the right medial superior frontal gyrus in ID patients. Additionally, decreased FC was observed between the anterior hypothalamus and the right anterior cingulate cortex among ID patients. Compared to the healthy controls, ID patients showed significantly elevated serum concentrations of orexin-A and histamine. Furthermore, we identified a positive correlation between the FC of the right medial superior frontal gyrus with posterior hypothalamus and histamine levels in ID patients. Conclusion ID patients exhibited aberrant FC in brain regions related to sleep-wake regulation, particularly involving the default mode network and anterior cingulate cortex, which may correlate with the peripheral levels of histamine. These findings contribute to our understanding of the potential neuroimaging and neurohumoral mechanism underlying ID patients.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenye Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Mei Fan
- Department of Psychiatry, The First Affiliated Hospital of USTC, Hefei, Anhui Province, China
| | - Yaxi Liu
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xian Shi
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yixian Cai
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhiyun Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Liting Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
5
|
Versace S, Pellitteri G, Sperotto R, Tartaglia S, Da Porto A, Catena C, Gigli GL, Cavarape A, Valente M. A State-of-Art Review of the Vicious Circle of Sleep Disorders, Diabetes and Neurodegeneration Involving Metabolism and Microbiota Alterations. Int J Mol Sci 2023; 24:10615. [PMID: 37445790 DOI: 10.3390/ijms241310615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In the context of neurodegenerative disorders, cognitive decline is frequently reported in older population. Recently, numerous metabolic pathways have been implicated in neurodegeneration, including signaling disruption of insulin and other glucose-regulating hormones. In fact, Alzheimer's disease has now been considered as "type-3 diabetes". In this review, we tried to clarify the role of sleep impairment as the third major player in the complex relationship between metabolic and neurodegenerative diseases. Altered sleep may trigger or perpetuate these vicious mechanisms, leading to the development of both dementia and type 2 diabetes mellitus. Finally, we analyzed these reciprocal interactions considering the emerging role of the gut microbiota in modulating the same processes. Conditions of dysbiosis have been linked to circadian rhythm disruption, metabolic alterations, and release of neurotoxic products, all contributing to neurodegeneration. In a future prospective, gut microbiota could provide a major contribution in explaining the tangled relationship between sleep disorders, dementia and diabetes.
Collapse
Affiliation(s)
- Salvatore Versace
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Gaia Pellitteri
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
| | - Roberto Sperotto
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Tartaglia
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Internal Medicine, Udine University Hospital, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Internal Medicine, Udine University Hospital, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Cavarape
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
- Internal Medicine, Udine University Hospital, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology, Udine University Hospital, Piazza Santa Maria della Misericordia, 15, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
6
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
7
|
Matar SG, El-Nahas ZS, Aladwan H, Hasanin M, Elsayed SM, Nourelden AZ, Benmelouka AY, Ragab KM. Restless Leg Syndrome in Hemodialysis Patients: A Narrative Review. Neurologist 2022; 27:194-202. [PMID: 35442939 DOI: 10.1097/nrl.0000000000000436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Restless legs syndrome (RLS) is a clinical entity characterized by sensory-motor manifestations commonly observed in end-stage renal illness. Evidence suggests that RLS is a multifactorial phenomenon that can be influenced by many critical factors, including genetic predisposition, dietary patterns, and deficiency in some vitamins. Iron metabolism disorders and metabolic derangements have been generally accepted as predisposing elements in RLS. Furthermore, both pharmacological and neuroimaging studies demonstrated dopamine deficiency and dopamine receptors decrease in basal ganglia during RLS. REVIEW SUMMARY A literature search was done in three databases (PubMed, Google Scholar, and Cochrane) to identify the pertinent articles discussing the epidemiology, pathogenesis, and management of RLS in hemodialysis patients. RLS can affect the morbidity and mortality of patients treated with dialysis. It also has significant impacts on the quality of life since it can lead to insomnia, increased fatigue, mental health troubles, and other movement problems. Appropriate measures should be considered in this particular population so to prevent and treat RLS. Many drugs and other nonpharmacological methods have been investigated to attenuate the disease's severity. No treatment, however, could offer long-term effects. CONCLUSION Further efforts are still required to improve the understanding of RLS pathogenic trends to find more specific and efficient therapies. A wide range of treatment options is available. However, it can be individualized according to the patients' several factors.
Collapse
Affiliation(s)
- Sajeda G Matar
- Faculty of Pharmacy, University of Jordan, Amman, Jordan
- International Medical Student's Research Association (IMedRA)
| | - Zeinab S El-Nahas
- International Medical Student's Research Association (IMedRA)
- Faculty of Medicine, Menoufia University, Menoufia
| | - Hala Aladwan
- Faculty of Pharmacy, University of Jordan, Amman, Jordan
- International Medical Student's Research Association (IMedRA)
| | - Menna Hasanin
- International Medical Student's Research Association (IMedRA)
- Faculty of Medicine, Al-Azhar University, Cairo
| | - Sarah M Elsayed
- International Medical Student's Research Association (IMedRA)
- Faculty of Medicine, October 6 University, Giza
| | - Anas Z Nourelden
- International Medical Student's Research Association (IMedRA)
- Faculty of Medicine, Al-Azhar University, Cairo
| | - Amira Y Benmelouka
- International Medical Student's Research Association (IMedRA)
- Faculty of Medicine, University of Algiers, Algiers, Algeria
| | - Khaled M Ragab
- International Medical Student's Research Association (IMedRA)
- Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
8
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
9
|
Harris SS, Schwerd-Kleine T, Lee BI, Busche MA. The Reciprocal Interaction Between Sleep and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:169-188. [PMID: 34773232 DOI: 10.1007/978-3-030-81147-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer's disease, the most prevalent neurodegenerative disease in the elderly.
Collapse
Affiliation(s)
| | | | - Byung Il Lee
- UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
10
|
Thieux M, Zhang M, Marcastel A, Herbillon V, Guignard-Perret A, Seugnet L, Lin JS, Guyon A, Plancoulaine S, Franco P. Intellectual Abilities of Children with Narcolepsy. J Clin Med 2020; 9:jcm9124075. [PMID: 33348677 PMCID: PMC7766444 DOI: 10.3390/jcm9124075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
High cognitive functioning could be a protective factor for school difficulties, behavioral and mood impairments in children with narcolepsy. To investigate this factor, we studied the intellectual abilities of 74 children with narcolepsy (43 boys, 11.7 years old at diagnosis, 91% of cataplexies, 64% obese, 100% HLA positive for DR-DQB1*06:02). All children underwent a one-night polysomnography followed by Multiple Sleep Latency Tests, an evaluation of intelligence quotient (IQ), and filled standardized questionnaires. Thirty-eight percent had high potentialities (HP defined by IQ > 130) and 48% had school difficulties. Using non-parametric tests, we found that HP children reported less difficulties at school and tended to have less impulsivity, conduct, and learning disorders than those without HP. They also tended to be less obese and had less desaturation. Using a multivariate regression analysis, we found an association between the REM sleep percentage and the IQ. REM sleep could be involved in the dynamic changes contributing to the equilibrium of intellectual functioning. This study highlights that despite their frequent school difficulties, narcolepsy per se is unlikely to be a cause of intellectual disability in children. Prompt diagnosis and management of comorbidities such as obesity and obstructive sleep apnea (OSA) could improve cognitive and school performances in these children.
Collapse
Affiliation(s)
- Marine Thieux
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Lyon, France; (M.T.); (A.M.); (V.H.); (A.G.-P.); (A.G.)
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, 69500 Lyon, France; (M.Z.); (L.S.); (J.-S.L.)
| | - Min Zhang
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, 69500 Lyon, France; (M.Z.); (L.S.); (J.-S.L.)
| | - Agathe Marcastel
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Lyon, France; (M.T.); (A.M.); (V.H.); (A.G.-P.); (A.G.)
| | - Vania Herbillon
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Lyon, France; (M.T.); (A.M.); (V.H.); (A.G.-P.); (A.G.)
| | - Anne Guignard-Perret
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Lyon, France; (M.T.); (A.M.); (V.H.); (A.G.-P.); (A.G.)
| | - Laurent Seugnet
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, 69500 Lyon, France; (M.Z.); (L.S.); (J.-S.L.)
| | - Jian-Sheng Lin
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, 69500 Lyon, France; (M.Z.); (L.S.); (J.-S.L.)
| | - Aurore Guyon
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Lyon, France; (M.T.); (A.M.); (V.H.); (A.G.-P.); (A.G.)
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, 69500 Lyon, France; (M.Z.); (L.S.); (J.-S.L.)
| | | | - Patricia Franco
- Pediatric Sleep Unit, Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69500 Lyon, France; (M.T.); (A.M.); (V.H.); (A.G.-P.); (A.G.)
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, 69500 Lyon, France; (M.Z.); (L.S.); (J.-S.L.)
- Correspondence: ; Tel./Fax: +33-4-27-85-60-52
| |
Collapse
|
11
|
Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020; 44:354-367. [PMID: 31840823 PMCID: PMC7018591 DOI: 10.1111/acer.14264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder that is characterized by the compulsive use of alcohol despite numerous health, social, and economic consequences. Initially, the use of alcohol is driven by positive reinforcement. Over time, however, alcohol use can take on a compulsive quality that is driven by the desire to avoid the negative consequences of abstinence, including negative affect and heightened stress/anxiety. This transition from positive reinforcement- to negative reinforcement-driven consumption involves the corticotropin-releasing factor (CRF) system, although mounting evidence now suggests that the CRF system interacts with other neural systems to ultimately produce behaviors that are symptomatic of compulsive alcohol use, such as the hypocretin (Hcrt) system. Hypocretins are produced exclusively in the hypothalamus, but Hcrt neurons project widely throughout the brain and reach regions that perform regulatory functions for numerous behavioral and physiological responses-including the infralimbic cortex (IL) of the medial prefrontal cortex (mPFC). Although the entire mPFC undergoes neuroadaptive changes following prolonged alcohol exposure, the IL appears to undergo more robust changes compared with other mPFC substructures. Evidence to date suggests that the IL is likely involved in EtOH-seeking behavior, but ambiguities with respect to the specific role of the IL in this regard make it difficult to draw definitive conclusions. Furthermore, the manner in which CRF interacts with Hcrt in this region as it pertains to alcohol-seeking behavior is largely unknown, although immunohistochemical and electrophysiological experiments have shown that CRF and Hcrt directly interact in the mPFC, suggesting that the interaction between CRF and Hcrt in the IL may be critically important for the development and subsequent maintenance of compulsive alcohol seeking. This review aims to consolidate recent literature regarding the role of the IL in alcohol-seeking behavior and to discuss evidence that supports a functional interaction between Hcrt and CRF in the IL.
Collapse
Affiliation(s)
- Jung S. Kim
- Department of Molecular Medicine, Scripps Research, La Jolla, USA
| | | |
Collapse
|
12
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
13
|
Guo ZN, Sun X, Zhao Y, Yan X, Zhang R, Wang Z, Yang Y. Temporal Course of Cerebral Autoregulation in Patients With Narcolepsy Type 1: Two Case Reports. Front Neurol 2019; 9:1155. [PMID: 30687216 PMCID: PMC6337715 DOI: 10.3389/fneur.2018.01155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/13/2018] [Indexed: 12/04/2022] Open
Abstract
Cerebral autoregulation is the mechanism by which constant cerebral blood flow is maintained despite changes in arterial blood pressure. In the two presented cases, cerebral autoregulation was impaired in patients with narcolepsy type 1, and both venlafaxine and fluoxetine may have the potential to improve the impaired cerebral autoregulation. A relationship may exist between impaired cerebral autoregulation and neurological symptoms in patients with narcolepsy type 1.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingkai Zhao
- Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Xiuli Yan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ran Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Fulong X, Chao L, Dianjiang Z, Qihong Z, Wei Z, Jun Z, Fang H. Recursive Partitioning Analysis of Fractional Low-Frequency Fluctuations in Narcolepsy With Cataplexy. Front Neurol 2018; 9:936. [PMID: 30450078 PMCID: PMC6225790 DOI: 10.3389/fneur.2018.00936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Objective: To identify narcolepsy related regional brain activity alterations compared with matched healthy controls. To determine whether these changes can be used to distinguish narcolepsy from healthy controls by recursive partitioning analysis (RPA) and receiver operating characteristic (ROC) curve analysis. Method: Fifty-one narcolepsy with cataplexy patients (26 adults and 25 juveniles) and sixty matched heathy controls (30 adults and 30 juveniles) were recruited. All subjects underwent a resting-state functional magnetic resonance imaging scan. Fractional low-frequency fluctuations (fALFF) was used to investigate narcolepsy induced regional brain activity alterations among adult and juveniles, respectively. Recursive partitioning analysis and Receiver operating curve analysis was used to seek the ability of fALFF values within brain regions in distinguishing narcolepsy from healthy controls. Results: Compared with healthy controls, both adult and juvenile narcolepsy had lower fALFF values in bilateral medial superior frontal gyrus, bilateral inferior parietal lobule and supra-marginal gyrus. Compared with healthy controls, both adult and juvenile narcolepsy had higher fALFF values in bilateral sensorimotor cortex and middle temporal gyrus. Also juvenile narcolepsy had higher fALFF in right putamen and right thalamus compared with healthy controls. Based on RPA and ROC curve analysis, in adult participants, fALFF differences in right medial superior frontal gyrus can discriminate narcolepsy from healthy controls with high degree of sensitivity (100%) and specificity (88.9%). In juvenile participants, fALFF differences in left superior frontal gyrus can discriminate narcolepsy from healthy controls with moderate degree of sensitivity (57.1%) and specificity (88.9%). Conclusion: Compared with healthy controls, both the adult and juvenile narcolepsy showed overlap brain regions in fALFF differences after case-control comparison. Furthermore, we propose that fALFF value can be a helpful imaging biomarker in distinguishing narcolepsy from healthy controls among both adults and juveniles.
Collapse
Affiliation(s)
- Xiao Fulong
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Peking University People's Hospital, Beijing, China
| | - Lu Chao
- Department of Radiology, Peking University International Hospital, Beijing, China
| | - Zhao Dianjiang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zou Qihong
- PKU-Upenn Sleep Center, Peking University International Hospital, Beijing, China
| | - Zhang Wei
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Zhang Jun
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Han Fang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2018; 1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.
Collapse
Affiliation(s)
- Aline R Abreu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018; 9:720. [PMID: 30210441 PMCID: PMC6121102 DOI: 10.3389/fneur.2018.00720] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023] Open
Abstract
The long-lasting vulnerability to relapse remains the main challenge for the successful treatment of drug addiction. Neural systems that are involved in processing natural rewards and drugs of abuse overlap. However, neuroplasticity that is caused by drug exposure may be responsible for maladaptive, compulsive, and addictive behavior. The orexin (Orx) system participates in regulating numerous physiological processes, including energy metabolism, arousal, and feeding, and is recruited by drugs of abuse. The Orx system is differentially recruited by drugs and natural rewards. Specifically, we found that the Orx system is more engaged by drugs than by non-drugs, such as sweetened condensed milk (SCM) or a glucose saccharin solution (GSS), in an operant model of reward seeking. Although stimuli (S+) that are conditioned to cocaine (COC), ethanol, and SCM/GSS equally elicited reinstatement, Orx receptor blockade reversed conditioned reinstatement for drugs vs. non-drugs. Moreover, the hypothalamic recruitment of Orx cells was greater in rats that were tested with the COC S+ vs. SCM S+, indicating of a preferential role for the Orx system in perseverative, compulsive-like COC seeking and not behavior that is motivated by palatable food. Accumulating evidence indicates that the paraventricular nucleus of the thalamus (PVT), which receives major Orx projections, mediates drug-seeking behavior. All Orx neurons contain dynorphin (Dyn), and Orx and Dyn are co-released. In the VTA, they play opposing roles in reward and motivation. To fully understand the physiological and behavioral roles of Orx transmission in the PVT, one important consideration is that Orx neurons that project to the PVT may co-release Orx with another peptide, such as Dyn. The PVT expresses both Orx receptors and κ opioid receptors, suggesting that Orx and Dyn act in tandem when released in the PVT, in addition to the VTA. The present review discusses recent findings that suggest the maladaptive recruitment of Orx/Dyn-PVT neurotransmission by drugs of abuse vs. a highly palatable food reward.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
17
|
Zaghloul H, Pallayova M, Al-Nuaimi O, Hovis KR, Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabet Med 2018; 35:41-52. [PMID: 29108100 DOI: 10.1111/dme.13542] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
Abstract
The increasing global prevalence of diabetes mellitus presents a significant challenge to healthcare systems today. Although diabetic retinopathy, nephropathy and neuropathy are well-established complications of diabetes, there is a paucity of research examining the impact of dysglycaemia on the olfactory system. Olfaction is an important sense, playing a role in the safety, nutrition and quality of life of an individual, but its importance is often overlooked when compared with the other senses. As a result, olfactory dysfunction is often underdiagnosed. The present review article aims to present and discuss the available evidence on the relationship between diabetes and olfaction. It also explores the associations between olfactory dysfunction and diabetes complications that could explain the underlying pathogenesis. Finally, it summarizes the putative pathological mechanisms underlying olfactory dysfunction in diabetes that require further investigation.
Collapse
Affiliation(s)
- H Zaghloul
- Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
| | - M Pallayova
- Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
| | - O Al-Nuaimi
- Carnegie Mellon University, Doha, Qatar
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - K R Hovis
- Carnegie Mellon University, Doha, Qatar
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - S Taheri
- Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Lai JB, Han MM, Xu Y, Hu SH. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation: A case report. Medicine (Baltimore) 2017; 96:e8645. [PMID: 29145290 PMCID: PMC5704835 DOI: 10.1097/md.0000000000008645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RATIONALE Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. PATIENT CONCERNS In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. DIAGNOSES After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. INTERVENTIONS The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). OUTCOMES The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. LESSONS This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic.
Collapse
Affiliation(s)
- Jian-bo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
| | - Mao-mao Han
- Department of VIP, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
| | - Shao-hua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province
| |
Collapse
|
19
|
|
20
|
|
21
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1166] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Tang S, Huang W, Lu S, Lu L, Li G, Chen X, Liu X, Lv X, Zhao Z, Duan R, Du Y, Tang J. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides 2017; 88:55-61. [PMID: 27988352 DOI: 10.1016/j.peptides.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022]
Abstract
Orexins, also known as hypocretins, play a regulatory role in the sleep-wake cycle by activating orexin receptors. Previous animal studies have shown that sleep deprivation can elevate orexinergic peptide levels. However, the relationship between insomnia disorder and orexin-A levels in humans has not been explored. In the current study, we examined plasma orexin-A levels in patients with insomnia disorder and in normal sleepers. We also studied the possible mechanisms underlying changes in orexin-A levels between the study groups; this included investigations of prepro-orexin and orexin receptor gene polymorphisms as well as exploration of other variables. We measured plasma orexin-A levels in 228 patients with insomnia disorder and 282 normal sleepers. The results indicated that the patients with insomnia disorder had significantly higher orexin-A levels than normal sleepers (63.42±37.56 vs. 54.84±23.95pg/ml). A positive relationship was detected between orexin-A level and age in patients with insomnia disorder. Orexin-A levels were elevated in relation to course of insomnia, as well as in relation to increased Insomnia Severity Index score. None of the evaluated prepro-orexin gene single nucleotide polymorphisms were informative between the two study populations. After sequencing all orexin receptor exons, one variation (rs2271933) in the OX1R gene and one variation (rs2653349) in the OX2R gene were found. However, no significant differences were found in either genotypic or allelic frequency distributions between the two study groups. It is suggested that the increased plasma orexin-A levels in patients with insomnia disorder are associated with the course and severity of insomnia, but not with prepro-orexin and orexin receptor gene polymorphisms.
Collapse
Affiliation(s)
- Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Wei Qi Road, Jinan, Shandong 250021, PR China
| | - Weiwei Huang
- Sleep Medicine Center, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Shanshan Lu
- Sleep Medicine Center, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Lili Lu
- Sleep Medicine Center, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Guohua Li
- Third People's Hospital of Jinan, 1 Wangsheren Northern Street, Jinan, Shandong 250100, PR China
| | - Xu Chen
- Shandong Mental Health Center, Shandong University, 49 Wenhua East Road, Jinan, Shandong 250014, PR China
| | - Xiaomin Liu
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Xin Lv
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Zhangning Zhao
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Ruisheng Duan
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing Wu Wei Qi Road, Jinan, Shandong 250021, PR China
| | - Jiyou Tang
- Sleep Medicine Center, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China; Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014, PR China.
| |
Collapse
|
23
|
Kalmbach DA, Schneider LD, Cheung J, Bertrand SJ, Kariharan T, Pack AI, Gehrman PR. Genetic Basis of Chronotype in Humans: Insights From Three Landmark GWAS. Sleep 2017; 40:2662182. [PMID: 28364486 PMCID: PMC6084759 DOI: 10.1093/sleep/zsw048] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 01/22/2023] Open
Abstract
Study Objectives Chronotype, or diurnal preference, refers to behavioral manifestations of the endogenous circadian system that governs preferred timing of sleep and wake. As variations in circadian timing and system perturbations are linked to disease development, the fundamental biology of chronotype has received attention for its role in the regulation and dysregulation of sleep and related illnesses. Family studies indicate that chronotype is a heritable trait, thus directing attention toward its genetic basis. Although discoveries from molecular studies of candidate genes have shed light onto its genetic architecture, the contribution of genetic variation to chronotype has remained unclear with few related variants identified. In the advent of large-scale genome-wide association studies (GWAS), scientists now have the ability to discover novel common genetic variants associated with complex phenotypes. Three recent large-scale GWASs of chronotype were conducted on subjects of European ancestry from the 23andMe cohort and the UK Biobank. This review discusses the findings of these landmark GWASs in the context of prior research. Methods We systematically reviewed and compared methodological and analytical approaches and results across the three GWASs of chronotype. Results A good deal of consistency was observed across studies with 9 genes identified in 2 of the 3 GWASs. Several genes previously unknown to influence chronotype were identified. Conclusions GWAS is an important tool in identifying common variants associated with the complex chronotype phenotype, the findings of which can supplement and guide molecular science. Future directions in model systems and discovery of rare variants are discussed.
Collapse
Affiliation(s)
- David A Kalmbach
- Departments of Psychiatry and Neurology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Logan D Schneider
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94063
| | - Joseph Cheung
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94063
| | - Sarah J Bertrand
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital School of Medicine, Baltimore, MD 21205
| | - Thiruchelvam Kariharan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Allan I Pack
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104
| | - Philip R Gehrman
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
24
|
Wang H, Li S, Kirouac GJ. Role of the orexin (hypocretin) system in contextual fear conditioning in rats. Behav Brain Res 2017; 316:47-53. [DOI: 10.1016/j.bbr.2016.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
|
25
|
Messina G, Di Bernardo G, Viggiano A, De Luca V, Monda V, Messina A, Chieffi S, Galderisi U, Monda M. Exercise increases the level of plasma orexin A in humans. J Basic Clin Physiol Pharmacol 2016; 27:611-616. [PMID: 27665420 DOI: 10.1515/jbcpp-2015-0133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/18/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The purpose of this research was to study the effects of exercise on the concentration of plasma orexin A, a peptide regulating several physiological functions. METHODS Blood samples were collected from participants (men, n=10; age: 24.4±2.93 years) 15, 0 min before the start of exercise, and 30, 45, 60 min after a cycle ergometer exercise at 75 W for 15 min. Also heart rate (HR), galvanic skin response (GSR), and rectal temperature were monitored. RESULTS The exercise induced a significant increase (p<0.01) in plasmatic orexin A with a peak at 30 min after the exercise bout, in association with an increase of the other three monitored variables: HR (p<0.01), GSR (p<0.05), and rectal temperature (p<0.01). CONCLUSIONS Our findings indicate that plasmatic orexin A is involved in the reaction to physical activity.
Collapse
|
26
|
Hirtz C, Vialaret J, Gabelle A, Nowak N, Dauvilliers Y, Lehmann S. From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid. Sci Rep 2016; 6:25162. [PMID: 27165941 PMCID: PMC4863245 DOI: 10.1038/srep25162] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
I125 radioimmunoassay (RIA) is currently the standard technique for quantifying cerebrospinal fluid (CSF) orexin-A/hypocretin-1, a biomarker used to diagnose narcolepsy type 1. However, orexin-A RIA is liable to undergo cross-reactions with matrix constituents generating interference, high variability between batches, low precision and accuracy, and requires special radioactivity precautions. Here we developed the first quantitative mass spectrometry assay of orexin-A based on a multiple reaction monitoring (MRM) approach. This method was tested in keeping with the Clinical and Laboratory Standards Institute (CLSI) guidelines and its clinical relevance was confirmed by comparing patients with narcolepsy type 1 versus patients with other neurological conditions. The results obtained using MRM and RIA methods were highly correlated, and Bland–Altman analysis established their interchangeability. However, the MRM values had a wider distribution and were 2.5 time lower than the RIA findings. In conclusion, this method of assay provides a useful alternative to RIA to quantify orexin-A, and may well replace it not only in narcolepsy type 1, but also in the increasing number of pathologies in which the quantification of this analyte is relevant.
Collapse
Affiliation(s)
- Christophe Hirtz
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| | - Jérôme Vialaret
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| | - Audrey Gabelle
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France.,Memory Research Resources center, Department of Neurology, Gui-de-Chauliac Hospital, Montpellier University Hospital, F-34000 France
| | - Nora Nowak
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome, France.,Sleep Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Inserm U1061, Montpellier, France
| | - Sylvain Lehmann
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| |
Collapse
|
27
|
Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2016; 2:71-84. [PMID: 31236496 PMCID: PMC6575582 DOI: 10.1016/j.nbscr.2016.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022] Open
Abstract
Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI), with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH), hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6-10/group) were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6-8/group) were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases NREM sleep during the dark period, effects that may be mediated by hypocretin-producing neurons and/or downstream cholinergic effectors in the basal forebrain.
Collapse
Affiliation(s)
- Hannah E Thomasy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Heidi Y Febinger
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Kristyn M Ringgold
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Carmelina Gemma
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Mark R Opp
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
28
|
Abstract
Sleep disturbances are prevalent in patients with schizophrenia and play a critical role in the morbidity and mortality associated with the illness. Subjective and objective assessments of sleep in patients with schizophrenia have identified certain consistent findings. Findings related to the sleep structure abnormalities have shown correlations with important clinical aspects of the illness. Disruption of specific neurotransmitter systems and dysregulation of clock genes may play a role in the pathophysiology of schizophrenia-related sleep disturbances. Antipsychotic medications play an important role in the treatment of sleep disturbances in these patients and have an impact on their sleep structure.
Collapse
Affiliation(s)
- Jayesh Kamath
- Department of Psychiatry, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6415, USA.
| | - Sundeep Virdi
- Department of Psychiatry, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6415, USA
| | - Andrew Winokur
- Department of Psychiatry, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6415, USA
| |
Collapse
|
29
|
Abstract
Primary sleep disorders include those not attributable to another medical or psychiatric condition: insomnia disorder, hypersomnolence disorder, narcolepsy, obstructive sleep apnea hypopnea syndrome, central sleep apnea syndrome, and the parasomnias. They are commonly encountered and are comorbid with many psychiatric disorders. It is important to recognize these disorders and be comfortable treating them or to know when to refer to a sleep disorders center and sleep specialist. Treatment of a comorbid sleep disorder can improve the overall quality of life, symptoms in mood disorders, and symptoms of excessive daytime sleepiness, and decrease cardiovascular morbidity and mortality.
Collapse
|
30
|
Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y. Control of REM sleep by ventral medulla GABAergic neurons. Nature 2015; 526:435-8. [PMID: 26444238 PMCID: PMC4852286 DOI: 10.1038/nature14979] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram (EEG) and complete skeletal muscle paralysis, and it is associated with vivid dreams1-3. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation2, and the neural circuits in the pons have since been studied extensively4-8. The medulla also contains neurons that are active during REM sleep9-13, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic pathway originating from the ventral medulla (vM) powerfully promotes REM sleep. Optogenetic activation of vM GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin 2 (ChR2)-tagged vM GABAergic neurons showed that they were most active during REM sleep (REM-max), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate vM neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are likely mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal gray (vlPAG). These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions.
Collapse
Affiliation(s)
- Franz Weber
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Shinjae Chung
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Kevin T Beier
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Min Xu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Skrapits K, Kanti V, Savanyú Z, Maurnyi C, Szenci O, Horváth A, Borsay BÁ, Herczeg L, Liposits Z, Hrabovszky E. Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human. Front Cell Neurosci 2015; 9:348. [PMID: 26388735 PMCID: PMC4559643 DOI: 10.3389/fncel.2015.00348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/20/2015] [Indexed: 12/03/2022] Open
Abstract
Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections.
Collapse
Affiliation(s)
- Katalin Skrapits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Vivien Kanti
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Zsófia Savanyú
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Csilla Maurnyi
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Ottó Szenci
- Department and Clinic for Production Animals, Faculty of Veterinary Science, Szent István University Üllő, Hungary ; MTA-SZIE Large Animal Clinical Research Group, Dóra major Üllő, Hungary
| | - András Horváth
- Department and Clinic for Production Animals, Faculty of Veterinary Science, Szent István University Üllő, Hungary
| | - Beáta Á Borsay
- Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen Debrecen, Hungary
| | - László Herczeg
- Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen Debrecen, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
32
|
Translational approach to studying panic disorder in rats: hits and misses. Neurosci Biobehav Rev 2015; 46 Pt 3:472-96. [PMID: 25316571 DOI: 10.1016/j.neubiorev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
Panic disorder (PD) patients are specifically sensitive to 5–7% carbon dioxide. Another startling feature of clinical panic is the counterintuitive lack of increments in ‘stress hormones’. PD is also more frequent in women and highly comorbid with childhood separation anxiety (CSA). On the other hand, increasing evidence suggests that panic is mediated at dorsal periaqueductal grey matter (DPAG). In line with prior studies showing that DPAG-evoked panic-like behaviours are attenuated by clinically-effective treatments with panicolytics, we show here that (i) the DPAG harbors a hypoxia-sensitive alarm system, which is activated by hypoxia and potentiated by hypercapnia, (ii) the DPAG suffocation alarm system is inhibited by clinically-effective treatments with panicolytics, (iii) DPAG stimulations do not increase stress hormones in the absence of physical exertion, (iv) DPAG-evoked panic-like behaviours are facilitated in neonatally-isolated adult rats, a model of CSA, and (v) DPAG-evoked responses are enhanced in the late diestrus of female rats. Data are consistent with the DPAG mediation of both respiratory and non-respiratory types of panic attacks.
Collapse
|
33
|
Abstract
Restless legs syndrome is a common sensorimotor disorder characterized by an urge to move, and associated with uncomfortable sensations in the legs (limbs). Restless legs syndrome can lead to sleep-onset or sleep-maintenance insomnia, and occasionally excessive daytime sleepiness, all leading to significant morbidity. Brain iron deficiency and dopaminergic neurotransmission abnormalities play a central role in the pathogenesis of this disorder, along with other nondopaminergic systems, although the exact mechanisms are still. Intensive care unit patients are especially vulnerable to have unmasking or exacerbation of restless legs syndrome because of sleep deprivation, circadian rhythm disturbance, immobilization, iron deficiency, and use of multiple medications that can antagonize dopamine.
Collapse
Affiliation(s)
- Saiprakash B Venkateshiah
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Octavian C Ioachimescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
35
|
Hutson PH, Tarazi FI, Madhoo M, Slawecki C, Patkar AA. Preclinical pharmacology of amphetamine: Implications for the treatment of neuropsychiatric disorders. Pharmacol Ther 2014; 143:253-64. [DOI: 10.1016/j.pharmthera.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
|
36
|
Abstract
Humans prone to cataplexy experience sudden losses of postural muscle tone without a corresponding loss of conscious awareness. The brain mechanisms underlying this debilitating decoupling are now better understood, thanks to a new study using cataplectic mice.
Collapse
Affiliation(s)
- Mark S Blumberg
- Departments of Psychology and Biology, The University of Iowa, E11 Seashore Hall, Iowa City, IA 52242, USA.
| |
Collapse
|
37
|
Blumberg MS, Gall AJ, Todd WD. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain. Behav Neurosci 2014; 128:250-63. [PMID: 24708298 DOI: 10.1037/a0035891] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.
Collapse
Affiliation(s)
| | | | - William D Todd
- Department of Neurology, Beth Israel Deaconess Medical Center
| |
Collapse
|
38
|
Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci 2014; 34:1420-31. [PMID: 24453331 DOI: 10.1523/jneurosci.4488-13.2014] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent advances have substantially increased the number of genes that are statistically associated with complex genetic disorders of the CNS such as autism and schizophrenia. It is now clear that there will likely be hundreds of distinct loci contributing to these disorders, underscoring a remarkable genetic heterogeneity. It is unclear whether this genetic heterogeneity indicates an equal heterogeneity of cellular mechanisms for these diseases. The commonality of symptoms across patients suggests there could be a functional convergence downstream of these loci upon a limited number of cell types or circuits that mediate the affected behaviors. One possible mechanism for this convergence would be the selective expression of at least a subset of these genes in the cell types that comprise these circuits. Using profiling data from mice and humans, we have developed and validated an approach, cell type-specific expression analysis, for identifying candidate cell populations likely to be disrupted across sets of patients with distinct genetic lesions. Using human genetics data and postmortem gene expression data, our approach can correctly identify the cell types for disorders of known cellular etiology, including narcolepsy and retinopathies. Applying this approach to autism, a disease where the cellular mechanism is unclear, indicates there may be multiple cellular routes to this disorder. Our approach may be useful for identifying common cellular mechanisms arising from distinct genetic lesions.
Collapse
|
39
|
Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014; 8:36. [PMID: 24616658 PMCID: PMC3934415 DOI: 10.3389/fnins.2014.00036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/10/2014] [Indexed: 11/20/2022] Open
Abstract
The tight regulation of sleep/wake states is critical for mental and physiological wellbeing. For example, dysregulation of sleep/wake systems predisposes individuals to metabolic disorders such as obesity and psychiatric problems, including depression. Contributing to this understanding, the last decade has seen significant advances in our appreciation of the complex interactions between brain systems that control the transition between sleep and wake states. Pivotal to our increased understanding of this pathway was the description of a group of neurons in the lateral hypothalamus (LH) that express the neuropeptides orexin A and B (hypocretin, Hcrt-1 and Hcrt-2). Orexin neurons were quickly placed at center stage with the demonstration that loss of normal orexin function is associated with the development of narcolepsy—a condition in which sufferers fail to maintain normal levels of daytime wakefulness. Since these initial seminal findings, much progress has been made in our understanding of the physiology and function of the orexin system. For example, the orexin system has been identified as a key modulator of autonomic and neuroendocrine function, arousal, reward and attention. Notably, studies in animals suggest that dysregulation of orexin function is associated with neuropsychiatric states such as addiction and mood disorders including depression and anxiety. This review discusses the progress associated with therapeutic attempts to restore orexin system function and treat neuropsychiatric conditions such as addiction, depression and anxiety. We also highlight potential pitfalls and challenges associated with targeting this system to treat these neuropsychiatric states.
Collapse
Affiliation(s)
- Jiann Wei Yeoh
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Erin J Campbell
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Morgan H James
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Brett A Graham
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| |
Collapse
|
40
|
Lind A, Ramelius A, Olsson T, Arnheim-Dahlström L, Lamb F, Khademi M, Ambati A, Maeurer M, Nilsson AL, Bomfim IL, Fink K, Lernmark Å. A/H1N1 antibodies and TRIB2 autoantibodies in narcolepsy patients diagnosed in conjunction with the Pandemrix vaccination campaign in Sweden 2009-2010. J Autoimmun 2014; 50:99-106. [PMID: 24485154 DOI: 10.1016/j.jaut.2014.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 12/19/2022]
Abstract
Narcolepsy is a lifelong sleep disorder related to hypocretin deficiency resulting from a specific loss of hypocretin-producing neurons in the lateral hypothalamic area. The disease is thought to be autoimmune due to a strong association with HLA-DQB1*06:02. In 2009 the World Health Organization (WHO) declared the H1N1 2009 flu pandemic (A/H1N1PDM09). In response to this, the Swedish vaccination campaign began in October of the same year, using the influenza vaccine Pandemrix(®). A few months later an excess of narcolepsy cases was observed. It is still unclear to what extent the vaccination campaign affected humoral autoimmunity associated with narcolepsy. We studied 47 patients with narcolepsy (6-69 years of age) and 80 healthy controls (3-61 years of age) selected after the Pandemrix vaccination campaign. The first aim was to determine antibodies against A/H1N1 and autoantibodies to Tribbles homolog 2 (TRIB2), a narcolepsy autoantigen candidate as well as to GAD65 and IA-2 as disease specificity controls. The second aim was to test if levels and frequencies of these antibodies and autoantibodies were associated with HLA-DQB1*06:02. In vitro transcribed and translated [(35)S]-methionine and -cysteine-labeled influenza A virus (A/California/04/2009/(H1N1)) segment 4 hemagglutinin was used to detect antibodies in a radiobinding assay. Autoantibodies to TRIB2, GAD65 and IA-2 were similarly detected in standard radiobinding assays. The narcolepsy patients had higher median levels of A/H1N1 antibodies than the controls (p = 0.006). A/H1N1 antibody levels were higher among the <13 years old (n = 12) compared to patients who were older than 30 years (n = 12, p = 0.014). Being HLA-DQB1*06:02 positive was associated with higher A/H1N1 antibody levels in both patients and controls (p = 0.026). Serum autoantibody levels to TRIB2 were low overall and high binders did not differ between patients and controls. We observed an association between levels of A/H1N1 antibodies and TRIB2 autoantibody levels particularly among the youngest narcolepsy patients (r = 0.819, p < 0.001). In conclusion, following the 2009 influenza pandemic vaccination, A/H1N1 antibody levels were associated with young age-at-onset narcolepsy patients positive for HLA-DQB1*06:02. The possibility that TRIB2 is an autoantigen in narcolepsy remains to be clarified. We could verify autoantibody responses against TRIB2 which needs to be determined in larger patient cohorts and control populations.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden.
| | - Anita Ramelius
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden.
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Lisen Arnheim-Dahlström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Favelle Lamb
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Aditya Ambati
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Markus Maeurer
- TIM, LabMed, Karolinska Institutet and CAST, Karolinska Hospital, Stockholm, Sweden.
| | | | - Izaura Lima Bomfim
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Katharina Fink
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden.
| |
Collapse
|
41
|
|
42
|
Qi K, Wei C, Li Y, Sui N. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference. Front Behav Neurosci 2013; 7:144. [PMID: 24133421 PMCID: PMC3794194 DOI: 10.3389/fnbeh.2013.00144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 01/17/2023] Open
Abstract
Orexins are found to participate in mediating stress-induced drug relapse. However, the neuroanatomical basis that orexin transmission modulates stress-induced drug seeking remains unknown. The nucleus accumbens shell (NAcSh), best known for its role in appetitive and negative motivation via dopamine receptors, is likely to be the potential important brain area where the orexin system mediates stress-induced drug relapse since the function of dopamine system in the NAcSh can be regulated by orexin transmission. In the present study, a morphine conditioned place preference (CPP) model was used to determine whether the two types of orexin receptors would be involved into footshock-induced and/or drug priming-induced CPP reinstatement differentially. The results showed that blockade of orexin-1 or orexin-2 receptor in the NAcSh significantly attenuated stress-induced morphine CPP reinstatement, but neither of the orexin antagonists had any effect on morphine priming-induced reinstatement. These findings indicate that the NAcSh is a brain area through which orexins participate in stress but not drug priming-induced relapse of opioid seeking.
Collapse
Affiliation(s)
- Keke Qi
- 1Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China ; 2Institute of Psychology, University of Chinese Academy of Sciences Beijing, China
| | | | | | | |
Collapse
|
43
|
Álvarez-Crespo M, Martínez-Sánchez N, Ruíz-Pino F, Garcia-Lavandeira M, Alvarez CV, Tena-Sempere M, Nogueiras R, Diéguez C, López M. The orexigenic effect of orexin-A revisited: dependence of an intact growth hormone axis. Endocrinology 2013; 154:3589-98. [PMID: 23861376 DOI: 10.1210/en.2013-1251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fifteen years ago orexins were identified as central regulators of energy homeostasis. Since then, that concept has evolved considerably and orexins are currently considered, besides orexigenic neuropeptides, key modulators of sleep-wake cycle and neuroendocrine function. Little is known, however, about the effect of the neuroendocrine milieu on orexins' effects on energy balance. We therefore investigated whether hypothalamic-pituitary axes have a role in the central orexigenic action of orexin A (OX-A) by centrally injecting hypophysectomized, adrenalectomized, gonadectomized (male and female), hypothyroid, and GH-deficient dwarf rats with OX-A. Our data showed that the orexigenic effect of OX-A is fully maintained in adrenalectomized and gonadectomized (females and males) rats, slightly reduced in hypothyroid rats, and totally abolished in hypophysectomized and dwarf rats when compared with their respective vehicle-treated controls. Of note, loss of the OX-A effect on feeding was associated with a blunted OX-A-induced increase in the expression of either neuropeptide Y or its putative regulator, the transcription factor cAMP response-element binding protein, as well as its phosphorylated form, in the arcuate nucleus of the hypothalamus of hypophysectomized and dwarf rats. Overall, this evidence suggests that the orexigenic action of OX-A depends on an intact GH axis and that this neuroendocrine feedback loop may be of interest in the understanding of orexins action on energy balance and GH deficiency.
Collapse
Affiliation(s)
- Mayte Álvarez-Crespo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen YH, Huang YS, Chien WH, Chen CH. Association analysis of the major histocompatibility complex, class II, DQ β1 gene, HLA-DQB1, with narcolepsy in Han Chinese patients from Taiwan. Sleep Med 2013; 14:1393-7. [PMID: 24157097 DOI: 10.1016/j.sleep.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Narcolepsy is a rare, chronic, disabling neuropsychiatric disorder characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, sleep paralysis, and abnormal rapid eye movement sleep. It is strongly associated with the HLA-DQB1(∗)06:02 allele in various ethnic groups. Our study aimed to investigate the allelic spectrum of HLA-DQB1 in a sample of Han Chinese patients with narcolepsy and control subjects from Taiwan. METHODS We determined the genotype of the major histocompatibility complex, class II, DQ β1 gene, HLA-DQB1, in 72 narcolepsy subjects (44 men, 28 women), including 52 narcolepsy subjects with cataplexy (narcolepsy+cataplexy), 20 narcolepsy subjects without cataplexy (narcolepsy-cataplexy), and 194 control subjects (94 men, 100 women) using a sequence-specific oligonucleotide-probe hybridization technique. RESULTS We found a strong HLA-DQB1(∗)06:02 association in narcolepsy+cataplexy subjects (odds ratio [OR], 321.4 [95% confidence interval {CI}, 70.7-1461.4]). The association was less prominent in narcolepsy-cataplexy subjects (OR, 6.9 [95% CI, 2.4-20.1]). In addition to the DQB1(∗)06:02, we found that (∗)03:01 also was a predisposing allele (OR, 2.0 [95% CI, 1.1-3.7]) in narcolepsy+cataplexy subjects, though the (∗)06:01 was a predisposing allele (OR, 2.8 [95% CI, 1.2-6.7]) in narcolepsy-cataplexy subjects. Furthermore, we found a significant overrepresentation of DQB1(∗)06:02 homozygotes in narcolepsy+cataplexy subjects. CONCLUSIONS Our data add further support to the strong association of the HLA-DQB1(∗)06:02 allele with narcolepsy, especially in narcolepsy+cataplexy patients. Our study also indicates additional HLA-DQB1 alleles may modify the presentation of narcolepsy+cataplexy patients, such as DQB1(∗)03:01 and DQB1(∗)06:01 in our study. Our results are limited by the small sample size and can only be considered as preliminary findings.
Collapse
Affiliation(s)
- Yun-Hsiang Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | |
Collapse
|
45
|
Different levels in orexin concentrations and risk factors associated with higher orexin levels: comparison between detoxified opiate and methamphetamine addicts in 5 Chinese cities. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282641. [PMID: 24102051 PMCID: PMC3786501 DOI: 10.1155/2013/282641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022]
Abstract
This study sought to explore the degree of orexin levels in Chinese opiate and methamphetamine addicts and the differences between them. The cross-sectional study was conducted among detoxified drug addicts from Mandatory Detoxification Center (MDC) in five Chinese cities. Orexin levels were assayed with radioimmunoassay (RIA). Mann-Whitney U test and Kruskal-Wallis test were used to detect differences across groups, and logistic regression was used to explore the association between orexin levels and characteristics of demographic and drug abuse. Between November 2009 and January 2011, 285 opiates addicts, 112 methamphetamine addicts, and 79 healthy controls were enrolled. At drug withdrawal period, both opiate and methamphetamine addicts had lower median orexin levels than controls, and median orexin levels in opiate addicts were higher than those in methamphetamine addicts (all above P < 0.05). Adjusted odds of the above median concentration of orexin were higher for injection than "chasing the dragon" (AOR = 3.1, 95% CI = 1.2-7.9). No significant factors associated with orexin levels of methamphetamine addicts were found. Development of intervention method on orexin system by different administration routes especially for injected opiate addicts at detoxification phase may be significant and was welcome.
Collapse
|
46
|
Orexins (hypocretins) contribute to fear and avoidance in rats exposed to a single episode of footshocks. Brain Struct Funct 2013; 219:2103-18. [PMID: 23955372 DOI: 10.1007/s00429-013-0626-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Orexins (hypocretins) are peptides that have been shown to regulate behavioral arousal and wakefulness. Recent evidence indicates that orexin neurons are activated by stress and that orexins play a role in anxiety. The present paper describes a series of experiments that examined whether orexins are involved in the anxiety that resulted from exposing rats to an acute episode of footshocks (5 × 2 s of 1.5 mA shocks). We found that prepro-orexin (ppOX) mRNA was elevated in rats at 6 and 14 days after exposure to footshock and that ppOX mRNA levels were correlated with fear at 14 days post-shock. Systemic injections of the non-selective dual orexin receptor antagonist TCS-1102 (10 and 20 mg/kg, i.p.) were found to decrease fear and anxiety in rats 14 days after exposure to footshock. We also found that rats that exhibited a high level of immobility to a novel tone the day after the footshock episode (high responders, HR) showed significantly elevated levels of ppOX mRNA at 14 days post-shock compared to control rats. Furthermore, TCS-1102 (10 mg/kg, i.p.) was found to have anxiolytic effects that were specific for HR when tested in the elevated T-maze. This study provides evidence linking the orexin system to the anxiety produced by exposure of rats to a single episode of footshocks. It also provides preclinical evidence in support of the use of orexin antagonists for the treatment of anxiety in response to an acute episode of stress.
Collapse
|
47
|
Hormonal changes in menopause and orexin-a action. Obstet Gynecol Int 2013; 2013:209812. [PMID: 23840215 PMCID: PMC3693173 DOI: 10.1155/2013/209812] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/26/2013] [Indexed: 11/18/2022] Open
Abstract
Menopause is a period of significant physiological changes that may be associated with increased body weight and obesity-related diseases. Many researches were conducted to assess the contribution of factors such as estrogen depletion, REE decline, and aging to weight gain. An increase in orexin-A plasma levels, paralleling lower estrogen levels, was found during menopause. Orexins are hypothalamic neuropeptides recently discovered, involved in the regulation of feeding behaviour, sleep-wakefulness rhythm, and neuroendocrine homeostasis. Orexins might offer the missing link between postmenopausal hypoestrogenism and other manifestations of the menopausal syndrome, including appetite and weight changes and increase in cardiovascular risk.
Collapse
|
48
|
Cohen A, George O. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatry 2013; 4:41. [PMID: 23761766 PMCID: PMC3671664 DOI: 10.3389/fpsyt.2013.00041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022] Open
Abstract
Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
49
|
Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, Brown GM. Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:209-16. [PMID: 23318689 DOI: 10.1016/j.pnpbp.2012.12.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 12/18/2022]
Abstract
Sleep-onset and maintenance insomnia is a common symptom in schizophrenic patients regardless of either their medication status (drug-naive or previously treated) or the phase of the clinical course (acute or chronic). Regarding sleep architecture, the majority of studies indicate that non-rapid eye movement (NREM), N3 sleep and REM sleep onset latency are reduced in schizophrenia, whereas REM sleep duration tends to remain unchanged. Many of these sleep disturbances in schizophrenia appear to be caused by abnormalities of the circadian system as indicated by misalignments of the endogenous circadian cycle and the sleep-wake cycle. Circadian disruption, sleep onset insomnia and difficulties in maintaining sleep in schizophrenic patients could be partly related to a presumed hyperactivity of the dopaminergic system and dysfunction of the GABAergic system, both associated with core features of schizophrenia and with signaling in sleep and wake promoting brain regions. Since multiple neurotransmitter systems within the CNS can be implicated in sleep disturbances in schizophrenia, the characterization of the neurotransmitter systems involved remains a challenging dilemma.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, Montevideo, 11600, Uruguay
| | | | | | | | | | | | | |
Collapse
|
50
|
Bayard S, Dauvilliers YA. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy. Front Behav Neurosci 2013; 7:50. [PMID: 23734110 PMCID: PMC3661950 DOI: 10.3389/fnbeh.2013.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Major advances in the past decade have led a better understanding of the pathophysiology of narcolepsy with cataplexy (NC) caused by the early loss of hypothalamic hypocretin neurons. Although a role for hypocretin in the regulation of sleep/wakefulness state is widely recognized, other functions, not necessarily related to arousal, have been identified. Hence, the hypocretin system enhances signaling in the mesolimbic pathways regulating reward processing, emotion and mood regulation, and addiction. Although studies on hypocretin-deficient mice have shown that hypocretin plays an essential role in reward-seeking, depression-like behavior and addiction, results in human narcolepsy remained subject to debate. Most of studies revealed that hypocretin-deficient narcolepsy patients either drug-free or medicated with psychostimulant had preferences toward risky choices in a decision-making task under ambiguity together with higher frequency of depressive symptoms and binge eating disorder compared to controls. However, human studies mostly reported the lack of association with pathological impulsivity and gambling, and substance and alcohol abuse in the context of narcolepsy-cataplexy. Prospective larger studies are required to confirm these findings in drug-free and medicated patients with narcolepsy. Inclusion of patients with other central hypersomnias without hypocretin deficiency will provide answer to the major question of the role of the hypocretin system in reward-based behaviors and emotional processing in humans.
Collapse
Affiliation(s)
- Sophie Bayard
- Department of Neurology, National Reference Network for Narcolepsy, Gui-de-Chauliac Hospital, CHU Montpellier, INSERM U1061, University of Montpellier 1 Montpellier, France
| | | |
Collapse
|