1
|
Tang Y, Liu L, Zhou Q, Wang D, Guo H, Liu N, Yan X, Wang Z, He B, Hu L, Jiang G. Rapid determination of toxic and essential metal binding proteins in biological samples by size exclusion chromatography-inductively coupled plasma tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124235. [PMID: 38996753 DOI: 10.1016/j.jchromb.2024.124235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Metalloproteins binding with trace elements play a crucial role in biological processes and on the contrary, those binding with exogenous heavy metals have adverse effects. However, the methods for rapid, high sensitivity and simultaneous analysis of these metalloproteins are still lacking. In this study, a fast method for simultaneously determination of both essential and toxic metal-containing proteins was developed by coupling size exclusion chromatography (SEC) with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). After optimization of the separation and detection conditions, seven metalloproteins with different molecular weight (from 16.0 to 443.0 kDa) were successfully separated within 10 min and the proteins containing iron (Fe), copper (Cu), zinc (Zn), iodine (I) and lead (Pb) elements could be simultaneously detected with the use of oxygen as the collision gas in ICP-MS/MS. Accordingly, the linear relationship between log molecular weight and retention time was established to estimate the molecular weight of unknown proteins. Thus, the trace metal and toxic metal containing proteins could be detected in a single run with high sensitivity (detection limits in the range of 0.0020-2.5 μg/mL) and good repeatability (relative standard deviations lower than 4.5 %). This method was then successfully used to analyze metal (e.g., Pb, Zn, Cu and Fe) binding proteins in the blood of Pb-intoxicated patients, and the results showed a negative correlation between the contents of zinc and lead binding proteins, which was identified to contain hemoglobin subunit. In summary, this work provided a rapid and sensitive tool for screening metal containing proteins in large number of biological samples.
Collapse
Affiliation(s)
- Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Nian Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Sarpong-Kumankomah S, Gailer J. Identification of a haptoglobin-hemoglobin complex in human blood plasma. J Inorg Biochem 2019; 201:110802. [PMID: 31514091 DOI: 10.1016/j.jinorgbio.2019.110802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/06/2019] [Accepted: 08/17/2019] [Indexed: 12/25/2022]
Abstract
Blood plasma metalloproteins that contain copper (Cu), iron (Fe), zinc (Zn) and/or other metals/metalloids are potential disease biomarkers because the bloodstream is in permanent contact with organs. Their quantification and/or the presence of additional metal-entities or the absence of certain metalloproteins in blood plasma (e.g. in Wilson's disease) may provide insight into the dyshomeostasis of the corresponding metal (s) to gain insight into disease processes. The first step in investigating if the determination of plasma metalloproteins is useful for the diagnosis of diseases is their definitive qualitative identification. To this end, we have added individual highly pure Cu, Fe or Zn-containing metalloproteins to plasma (healthy volunteer) and analyzed this mixture by size-exclusion chromatography (SEC) coupled to an inductively coupled plasma atomic spectrometer (ICP-AES), simultaneously monitoring the emission lines of Cu, Fe and Zn. The results clearly identified ceruloplasmin (Cp), holo-transferrin (hTf), and α2-macroglobulin (α2M), which verifies our previous assignments. Interestingly, another major Fe-peak in plasma was identified as a haptoglobin (Hp)-hemoglobin (Hb) complex. This Hp-Hb complex is formed after Hb, which is released during the hemolysis of erythrocytes, binds to the plasma protein Hp. The Hp-Hb complex formation is known to be one of the strongest interactions in biochemistry (Kd≈1pmol/L) and is critical because it prevents kidney toxicity of free Hb. Hence, the simultaneous determination of Cp, hTf, α2M and the Hp-Hb complex in plasma in <25min has the potential to provide new insight into disease processes associated with the bioinorganic chemistry of Cu, Fe and Zn.
Collapse
Affiliation(s)
- Sophia Sarpong-Kumankomah
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
3
|
Obanewa O, Newell ML. Maternal nutritional status during pregnancy and infant immune response to routine childhood vaccinations. Future Virol 2017; 12:525-536. [PMID: 29225661 PMCID: PMC5716389 DOI: 10.2217/fvl-2017-0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/08/2017] [Indexed: 01/08/2023]
Abstract
To systematically review the association between maternal nutritional status in pregnancy and infant immune response to childhood vaccines. We reviewed literature on maternal nutrition during pregnancy, fetal immune system and vaccines and possible relationships. Thereafter, we undertook a systematic review of the literature of maternal nutritional status and infant vaccine response, extracted relevant information, assessed quality of the nine papers identified and present findings in a narrative format. From limited evidence of average quality, intrauterine nutrition deficiency could lead to functional deficit in the infant's immune function; child vaccine response may thus be negatively affected by maternal malnutrition. Response to childhood vaccination may be associated with fetal and early life environment; evaluation of programs should take this into account.
Collapse
Affiliation(s)
- Olayinka Obanewa
- Human Development & Health, Global Health Research Institute, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Marie-Louise Newell
- Human Development & Health, Global Health Research Institute, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Huang ZL, Failla ML, Reeves PG. Differentiation of Human U937 Promonocytic Cells is Impaired by Moderate Copper Deficiency. Exp Biol Med (Maywood) 2016. [DOI: 10.1177/153537020122600310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) deficiency suppresses macrophage activities in animals and humans. Our previous studies indicated that the Induction of Cu deficiency in differentiated U937 monocytic cells impairs respiratory burst and bactericidal activities and lipopolysaccharide-mediated secretion of inflammatory mediators. The current investigation examined the roles of Cu in the monocytic differentiation process. Human U937 promonocytic cells were exposed to a high affinity Cu chelator (5 µM 2,3,2-tetraamine [tet]) for 24 hr before inducing differentiation by treatment with 1,25-dihydroxyvitamin D3 plus Interferon-γ (DI). This procedure decreased cell Cu by 55% without compromising cellular Zn, Fe, or general metabolic activities. Lower Cu status significantly attenuated the expression of maturation markers Mac-1 (CD11b), ICAM-1 (CD54), and LPS-R (CD14). This change was associated with a marked suppression in respiratory burst activity and killing of Salmonella. To examine if the adverse effect of inadequate Cu on the DI-induced differentiation represented a more general defect, U937 cells were treated with phorbol 12-myrlstate 13-acetate (PMA). Lower Cu status also suppressed PMA-mediated differentiation of U937 cells. Supplemental Cu, but not Zn or Fe, blocked the tet-induced declines in cell Cu, expression of maturation markers, and respiratory burst and bactericidal activities. These results demonstrate that Cu is essential for the monocytic differentiation process that contributes to the competency of the host's defense system.
Collapse
Affiliation(s)
- Zhixin L. Huang
- Graduate Program in Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402
| | - Mark L. Failla
- Graduate Program in Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402
| | - Philip G. Reeves
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58203
| |
Collapse
|
5
|
González PM, Abele D, Puntarulo S. A kinetic approach to assess oxidative metabolism related features in the bivalve Mya arenaria. Theory Biosci 2012; 131:253-64. [PMID: 22829190 DOI: 10.1007/s12064-012-0159-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/06/2012] [Indexed: 12/24/2022]
Abstract
Electron paramagnetic resonance uses the resonant microwave radiation absorption of paramagnetic substances to detect highly reactive and, therefore, short-lived oxygen and nitrogen centered radicals. Previously, steady state concentrations of nitric oxide, ascorbyl radical (A·) and the labile iron pool (LIP) were determined in digestive gland of freshly collected animals from the North Sea bivalve Mya arenaria. The application of a simple kinetic analysis of these data based on elemental reactions allowed us to estimate the steady state concentrations of superoxide anion, the rate of A· disappearance and the content of unsaturated lipids. This analysis applied to a marine invertebrate opens the possibility of a mechanistic understanding of the complexity of free radical and LIP interactions in a metabolically slow, cold water organism under unstressed conditions. This data can be further used as a basis to assess the cellular response to stress in a simple system as the bivalve M. arenaria that can then be compared to cells of higher organisms.
Collapse
Affiliation(s)
- Paula Mariela González
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
6
|
Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17:282-301. [PMID: 22044276 PMCID: PMC3353821 DOI: 10.1089/ars.2011.4381] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. RECENT ADVANCES DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. CRITICAL ISSUES Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. FUTURE DIRECTIONS Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Scott V. Dindot
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - M. Carey Satterfield
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 2012; 26 Suppl 1:4-26. [PMID: 22742599 DOI: 10.1111/j.1365-3016.2012.01291.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review paper highlights mechanisms for nutritional regulation of maternal health and fetal development. Malnutrition (nutrient deficiencies or obesity) in pregnant women adversely affects their health by causing or exacerbating a plethora of problems, such as anaemia, maternal haemorrhage, insulin resistance, and hypertensive disorders (e.g. pre-eclampsia/eclampsia). Maternal malnutrition during gestation also impairs embryonic and fetal growth and development, resulting in deleterious outcomes, including intrauterine growth restriction (IUGR), low birthweight, preterm birth, and birth defects (e.g. neural tube defects and iodine deficiency disorders). IUGR and preterm birth contribute to high rates of neonatal morbidity and mortality. Major common mechanisms responsible for malnutrition-induced IUGR and preterm birth include: (i) abnormal growth and development of the placenta; (ii) impaired placental transfer of nutrients from mother to fetus; (iii) endocrine disorders; and (iv) disturbances in normal metabolic processes. Activation of a series of physiological responses leading to premature and sustained contraction of the uterine myometrium also results in preterm birth. Recent epidemiologic studies have suggested a link between IUGR and chronic metabolic disease in children and adults, and the effects of IUGR may be carried forward to subsequent generations through epigenetics. While advanced medical therapies, which are generally unavailable in low-income countries, are required to support preterm and IUGR infants, optimal nutrition during pregnancy may help ameliorate many of these problems. Future studies are necessary to develop effective nutritional interventions to enhance fetal growth and development and alleviate the burden of maternal morbidity and mortality in low- and middle-income countries.
Collapse
Affiliation(s)
- Guoyao Wu
- Faculty of Nutrition and Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA.
| | | | | |
Collapse
|
8
|
Schelder S, Zaade D, Litsanov B, Bott M, Brocker M. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS One 2011; 6:e22143. [PMID: 21799779 PMCID: PMC3140484 DOI: 10.1371/journal.pone.0022143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022] Open
Abstract
Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO) and a copper-transport ATPase (CopB). In addition, this region includes the copRS genes (previously named cgtRS9) which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR) and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress.
Collapse
Affiliation(s)
- Stephanie Schelder
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Daniela Zaade
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Boris Litsanov
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Melanie Brocker
- Institut für Bio-und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
9
|
MOSHA THEOBALDC, BENNINK MAURICER. MICROELEMENT AND AMINO ACID PROFILES OF CEREAL-BEAN-SARDINE COMPOSITE SUPPLEMENTARY FOODS FOR PRESCHOOL-AGE CHILDREN IN TANZANIA. J FOOD PROCESS PRES 2011. [DOI: 10.1111/j.1745-4549.2009.00443.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Judd TM, Magnus RM, Fasnacht MP. A nutritional profile of the social wasp Polistes metricus: differences in nutrient levels between castes and changes within castes during the annual life cycle. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:42-56. [PMID: 19781547 DOI: 10.1016/j.jinsphys.2009.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 08/30/2009] [Accepted: 09/09/2009] [Indexed: 05/11/2023]
Abstract
In wasps, nutrition plays a vital role for colony cohesion and caste determination. However, there is no baseline data set for the nutritional levels of wasps during the different stages of the colony cycle. Here we examined the levels of carbohydrates, lipids, protein, Ca, Cu, Fe, K, Mg, Mn, Na, and Zn in the wasp Polistes metricus at different stages of the wasp's lifecycle. Individuals were collected at the following stages (1) spring gynes, (2) foundress colonies, (3) early worker colonies, (4) late worker colonies, (5) emerging reproductives (gynes and males), (6) early fall reproductives, and (7) late fall reproductives. All eggs, larvae, pupae and adults were analyzed for their nutritional content to determine if there were any differences between the nutrient levels in the different castes and how these nutrients changed within a caste during its lifetime. The results show there are differences in macro and micronutrient levels between the reproductive females and workers during development. Gynes showed changes in nutrient levels during their lifetime especially as they changed roles from a solitary individual to a nesting queen. Males also showed distinct nutritional changes during their lifetime. The implications for these nutritional differences are discussed.
Collapse
Affiliation(s)
- Timothy M Judd
- Department of Biology, Southeast Missouri State University, Cape Girardeau MO, 63701, USA.
| | | | | |
Collapse
|
11
|
Zhou G, Velasquez LS, Geiser DL, Mayo JJ, Winzerling JJ. Differential regulation of transferrin 1 and 2 in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:234-244. [PMID: 19166934 DOI: 10.1016/j.ibmb.2008.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/17/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
Available evidence has shown that transferrins are involved in iron metabolism, immunity and development in eukaryotic organisms including insects. Here we characterize the gene and message expression profile of Aedes aegypti transferrin 2 (AaTf2) in response to iron, bacterial challenge and life stage. We show that AaTf2 shares a low similarity with A. aegypti transferrin 1 (AaTf1), but higher similarity with mammalian transferrins and avian ovotransferrin. Iron-binding pocket analysis indicates that AaTf2 has residue substitutions of Y188F, T120S, and R124S in the N lobe, and Y517N, H585N, T452S, and R456T in the C lobe, which could alter or reduce iron-binding activity. In vivo studies of message expression reveal that AaTf2 message is expressed at higher levels in larva and pupa, as well as adult female ovaries 72h post blood meal (PBM) and support that AaTf2 could play a role in larval and pupal development and in late physiological events of the gonotrophic cycle. Bacterial challenge significantly increases AaTf1 expression in ovaries at 0 and 24h PBM, but decreases AaTf2 expression in ovaries at 72h PBM, suggesting that AaTf1 and AaTf2 play different roles in immunity of female adults during a gonotrophic cycle.
Collapse
Affiliation(s)
- Guoli Zhou
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
12
|
Manley SA, Byrns S, Lyon AW, Brown P, Gailer J. Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography–inductively coupled plasma atomic emission spectroscopy. J Biol Inorg Chem 2008; 14:61-74. [DOI: 10.1007/s00775-008-0424-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
|
13
|
Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation. J Bacteriol 2008; 190:6706-17. [PMID: 18708503 DOI: 10.1128/jb.00450-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.
Collapse
|
14
|
Abebe AT, Devoid SJ, Sugumaran M, Etter R, Robinson WE. Identification and quantification of histidine-rich glycoprotein (HRG) in the blood plasma of six marine bivalves. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:74-81. [PMID: 17276716 DOI: 10.1016/j.cbpb.2006.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/20/2006] [Accepted: 12/29/2006] [Indexed: 11/19/2022]
Abstract
Histidine-rich Glycoprotein (HRG) is a metal-binding protein described from the blood plasma of a pteriomorph bivalve, the marine mussel Mytilus edulis L. We demonstrate here, using Cd-Immobilized Metal Affinity Chromatography (IMAC), SDS-PAGE, Western Blotting, and ELISA, that HRG is present in three additional pteriomorphs and two heterodont bivalves. ELISA indicates that HRG is the predominant blood plasma protein in all six species (41 to 61% of total plasma proteins by weight). Thus, HRG appears to be a widespread metal-binding protein in the plasma of bivalves.
Collapse
Affiliation(s)
- Adal T Abebe
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA
| | | | | | | | | |
Collapse
|
15
|
MOSHA THEOBALDC, VICENT MARYM. NUTRITIONAL QUALITY, STORAGE STABILITY AND ACCEPTABILITY OF HOME-PROCESSED READY-TO-EAT COMPOSITE FOODS FOR REHABILITATING UNDERNOURISHED PRESCHOOL CHILDREN IN LOW-INCOME COUNTRIES. J FOOD PROCESS PRES 2005. [DOI: 10.1111/j.1745-4549.2005.00032.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Chung J, Haile DJ, Wessling-Resnick M. Copper-induced ferroportin-1 expression in J774 macrophages is associated with increased iron efflux. Proc Natl Acad Sci U S A 2004; 101:2700-5. [PMID: 14973193 PMCID: PMC365684 DOI: 10.1073/pnas.0306622101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/30/2003] [Indexed: 12/31/2022] Open
Abstract
Copper is known to play a role in iron recycling from macrophages. To examine whether cellular copper status affects expression of the iron exporter ferroportin-1 (FPN1), J774 macrophage cells were exposed to 10-100 microM CuSO(4) for up to 20 h. Copper treatment significantly increased FPN1 mRNA in a dose- and time-dependent manner. After 20 h, 100 microM CuSO(4) up-regulated FPN1 transcript levels approximately 13-fold compared to untreated controls. Induction was detected 8 h after copper treatment was initiated and markedly increased thereafter. A corresponding increase in FPN1 protein levels was observed upon copper treatment. Induction of J774 cell FPN1 expression by copper was also associated with a dose-dependent increase in (59)Fe release after erythrophagocytosis of labeled red blood cells. Thus, a previously uncharacterized role for copper in the regulation of macrophage iron recycling is suggested by the induction of FPN1 gene expression and iron efflux by this metal.
Collapse
Affiliation(s)
- Jayong Chung
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Carriquiriborde P, Handy RD, Davies SJ. Physiological modulation of iron metabolism in rainbow trout (Oncorhynchus mykiss) fed low and high iron diets. ACTA ACUST UNITED AC 2004; 207:75-86. [PMID: 14638835 DOI: 10.1242/jeb.00712] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Iron (Fe) is an essential element, but Fe metabolism is poorly described in fish and the role of ferrireductase and transferrin in iron regulation by teleosts is unknown. The aim of the present study was to provide an overview of the strategy for Fe handling in rainbow trout, Oncorhynchus mykiss. Fish were fed Fe-deficient, normal and high-Fe diets (33, 175, 1975 mg Fe kg(-1) food, respectively) for 8 weeks. Diets were chosen so that no changes in growth, food conversion ratio, haematology, or significant oxidative stress (TBARS) were observed. Elevation of dietary Fe caused Fe accumulation particularly in the stomach, intestine, liver and blood. The increase in total serum Fe from 10 to 49 micro mol l(-1) over 8 weeks was associated with elevated total Fe binding capacity and decreased unsaturated Fe binding capacity, so that in fish fed a high-Fe diet transferrin saturation increased from 15% at the start of the experiment to 37%. Fish on the high-Fe diet increased Fe accumulation in the liver, which was correlated with elevation of hepatic ferrireductase activity and serum transferrin saturation. Conversely, fish on the low-Fe diet did not show tissue Fe depletion compared with normal diet controls and did not change Fe binding to serum transferrin. Instead, these fish doubled intestinal ferrireductase activity which may have contributed to the maintenance of tissue Fe status. The absence of clear treatment-dependent changes in branchial Fe accumulation and ferrireductase activity indicated that the gills do not have a major role in Fe metabolism. Some transient changes in Cu, Zn and Mn status of tissues occurred.
Collapse
Affiliation(s)
- P Carriquiriborde
- Environmental Research Centre, National University of La Plata-CONICET, La Plata, Bs. As., Argentina
| | | | | |
Collapse
|
18
|
Zhang D, Dimopoulos G, Wolf A, Miñana B, Kafatos FC, Winzerling JJ. Cloning and molecular characterization of two mosquito iron regulatory proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:579-589. [PMID: 11891134 DOI: 10.1016/s0965-1748(01)00138-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Iron regulatory proteins (IRPs) control the synthesis of various proteins at the translational level by binding to iron responsive elements (IREs) in the mRNAs. Iron, infection, and stress can alter IRP/IRE binding activity. Insect messenger RNAs for ferritin and succinate dehydrogenase subunit b have IREs that are active translational control sites. We have cloned and sequenced cDNAs encoding proteins from the IRP1 family for the mosquitoes, Aedes aegypti and Anopheles gambiae. Both deduced amino acid sequences show substantial similarity to human IRP1 and Drosophila IRP1A and IRP1B, and all of the residues thought to be involved in aconitase activity and iron-sulfur cluster formation are conserved. Recombinant A. aegypti IRP1 binds to transcripts of the IREs of mosquito or human ferritin subunit mRNAs. No significant change in A. gambiae IRP1 messenger RNA could be detected during the various developmental stages of the life cycle, following iron loading by blood feeding, or after bacterial or parasitic infections. These data suggest that there is no change in gene transcription. Furthermore, bacterial challenge of A. gambiae cells did not change IRP1 protein levels. In contrast, IRP1 binding activity for the IRE was elevated following immune induction. These data show that changes in IRP1/IRE binding activity occur as part of the insect immune response.
Collapse
Affiliation(s)
- D Zhang
- Department of Nutritional Sciences, University of Arizona, Shantz 309, P.O. Box 210038, Tucson, AZ 85721-0038, USA
| | | | | | | | | | | |
Collapse
|
19
|
Han O, Wessling-Resnick M. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2002; 282:G527-33. [PMID: 11842003 DOI: 10.1152/ajpgi.00414.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The influence of copper status on Caco-2 cell apical iron uptake and transepithelial transport was examined. Cells grown for 7-8 days in media supplemented with 1 microM CuCl(2) had 10-fold higher cellular levels of copper compared with control. Copper supplementation did not affect the integrity of differentiated Caco-2 cell monolayers grown on microporous membranes. Copper-repleted cells displayed increased uptake of iron as well as increased transport of iron across the cell monolayer. Northern blot analysis revealed that expression of the apical iron transporter divalent metal transporter-1 (DMT1), the basolateral transporter ferroportin-1 (Fpn1), and the putative ferroxidase hephaestin (Heph) was upregulated by copper supplementation, whereas the recently identified ferrireductase duodenal cytochrome b (Dcytb) was not. These results suggest that DMT1, Fpn1, and Heph are involved in the iron uptake process modulated by copper status. Although a clear role for Dcytb was not identified, an apical surface ferrireductase was modulated by copper status, suggesting that its function also contributes to the enhanced iron uptake by copper-repleted cells. A model is proposed wherein copper promotes iron depletion of intestinal Caco-2 cells, creating a deficiency state that induces upregulation of iron transport factors.
Collapse
Affiliation(s)
- Okhee Han
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
Krasko A, Schröder HC, Batel R, Grebenjuk VA, Steffen R, Müller IM, Müller WEG. Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol 2002; 21:67-80. [PMID: 11879581 DOI: 10.1089/10445490252810320] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dissociated cells from marine demosponges retain their proliferation capacity if they are allowed to form special aggregates, the primmorphs. On the basis of incorporation studies and septin gene expression, we show that Fe3+ ions are required for the proliferation of cells in primmorphs from Suberites domuncula. In parallel, Fe3+ induced the expression of ferritin and strongly stimulated the synthesis of spicules. This result is supported by the finding that the enzymatic activity of silicatein, converting organosilicon to silicic acid, depends on Fe3+. Moreover, the expression of a scavenger receptor molecule, possibly involved in the morphology of spicules, depends on the presence of Fe3+. We conclude that iron is an essential factor in proliferative and morphogenetic processes in primmorphs.
Collapse
Affiliation(s)
- Anatoli Krasko
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang D, Albert DW, Kohlhepp P, D-Pham DQ, Winzerling JJ. Repression of Manduca sexta ferritin synthesis by IRP1/IRE interaction. INSECT MOLECULAR BIOLOGY 2001; 10:531-539. [PMID: 11903622 DOI: 10.1046/j.0962-1075.2001.00293.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mammalian ferritin subunit synthesis is controlled at the translational level by the iron regulatory protein 1 (IRP1)/iron responsive element (IRE) interaction. Insect haemolymph ferritin subunit messages have an IRE in the 5'-untranslated region (UTR). We have shown that recombinant M. sexta IRP1 represses the in vitro translation of both the heavy and light chain ferritin subunits from this species without altering transcription. Deletion of either the 5'-UTR or the IRE from the mRNA abolishes IRP1 repression. Our studies indicated that the translational control of ferritin synthesis by IRP/IRE interaction could occur in insects in a manner similar to that of mammals. To our knowledge, this is the first report of the control of insect ferritin synthesis by IRP1/IRE interaction. Furthermore, this is the first indication that the synthesis of a secreted ferritin subunit can also be controlled in this manner.
Collapse
Affiliation(s)
- D Zhang
- Department of Nutritional Sciences, Center of Insect Science, University of Arizona, Shantz 309, Tucson, AZ 85721-0038, USA
| | | | | | | | | |
Collapse
|
22
|
Shinyashiki M, Pan CJ, Switzer CH, Fukuto JM. Mechanisms of nitrogen oxide-mediated disruption of metalloprotein function: an examination of the copper-responsive yeast transcription factor Ace1. Chem Res Toxicol 2001; 14:1584-9. [PMID: 11743740 DOI: 10.1021/tx010102i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) has been found to inhibit the copper-responsive yeast transcription factor Ace1 in an oxygen-dependent manner. However, the mechanism responsible for NO-dependent inhibition of Ace1 remains unestablished. In the present study, the chemical interaction of nitrogen oxide species with Ace1 was examined using a yeast reporter system. Exposure of yeast to various nitrogen oxides, under a variety of conditions, revealed that the oxygen-dependent inhibition of Ace1 is due to the reaction of NO with O(2). The nitrosating nitrogen oxide species N(2)O(3) is likely to be the disrupter of Ace1 activity. Considering the similarity of metal-thiolate ligation in Ace1 with other mammalian metalloproteins such as metallothionein, metal chaperones, and zinc-finger proteins, these results help to understand the biochemical interactions of NO with those mammalian metalloproteins.
Collapse
Affiliation(s)
- M Shinyashiki
- Department of Pharmacology, UCLA School of Medicine, Center for the Health Sciences, Los Angeles, California 90095-1735, USA
| | | | | | | |
Collapse
|
23
|
Abe Y, Nagata R, Hasunuma Y, Yokosawa H. Isolation, characterization and cDNA cloning of a one-lobed transferrin from the ascidian Halocynthia roretzi. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:73-9. [PMID: 11163306 DOI: 10.1016/s1096-4959(00)00298-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transferrin was isolated from plasma of the ascidian Halocynthia roretzi by ion-exchange chromatography. The molecular weight of the plasma transferrin was determined to be 52K by SDS-polyacrylamide gel electrophoresis and gel filtration. Ascidian plasma transferrin was found to bind one mole of iron ion per mole of protein. The reductive S-pyridylethylated transferrin was subjected to Edman degradation analysis for determination of the N-terminal amino acid sequence, and it was also subjected to proteolytic fragmentation to yield peptide fragments, whose amino acid sequences were determined by Edman degradation analysis. Using the above amino acid sequences, a cDNA clone (1880 base pairs) encoding a protein of 372 amino acids containing a signal peptide of 21 amino acids was isolated from an H. roretzi hepatopancreas cDNA library. The reduced amino acid sequence contains the same sequences of the peptide fragments. A comparison of the amino acid sequence of ascidian transferrin with those of other members of the transferrin family revealed that the ascidian transferrin is composed of only the N-terminal lobe of two-lobed vertebrate transferrins. Thus, a one-lobed transferrin is present in the ascidian H. roretzi.
Collapse
Affiliation(s)
- Y Abe
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Sapporo, Japan
| | | | | | | |
Collapse
|
24
|
Chiang KT, Shinyashiki M, Switzer CH, Valentine JS, Gralla EB, Thiele DJ, Fukuto JM. Effects of nitric oxide on the copper-responsive transcription factor Ace1 in Saccharomyces cerevisiae: cytotoxic and cytoprotective actions of nitric oxide. Arch Biochem Biophys 2000; 377:296-303. [PMID: 10845707 DOI: 10.1006/abbi.2000.1785] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies indicate that nitric oxide (NO) can serve as a regulator/disrupter of metal-metabolizing systems in cells and, indeed, this function may represent an important physiological and/or pathophysiological role for NO. In order to address possible mechanisms of this aspect of NO biology, the effect of NO on copper metabolism and toxicity in the yeast Saccharomyces cerevisiae was examined. Exposure of S. cerevisiae to NO resulted in an alteration of the activity of the copper-responsive transcription factor Acel. Low concentrations of the NO donor DEA/NO were found to slightly enhance copper-mediated activation of Acel. Since Acel regulates the expression of genes responsible for the protection of S. cerevisiae from metal toxicity, the effect of NO on the toxicity of copper toward S. cerevisiae was also examined. Interestingly, low concentrations of NO were also found to protect S. cerevisiae against the toxicity of copper. The effect of NO at high concentrations was, however, opposite. High concentrations of DEA/NO inhibited copper-mediated Acel activity. Correspondingly, high concentrations of DEA/NO (1 mM) dramatically enhanced copper toxicity. An intermediate concentration of DEA/NO (0.5 mM) exhibited a dual effect, enhancing toxicity at lower copper concentrations (<0.5 mM) and protecting at higher (> or =0.5 mM) copper concentrations. Thus, it is proposed that the ability of NO to both protect against (at low concentrations) and enhance (at high concentration) copper toxicity in S. cerevisiae is, at least partially, a result of its effect on Acel. The results of this study have implications for the role of NO as a mediator of metal metabolism.
Collapse
Affiliation(s)
- K T Chiang
- Department of Pharmacology, UCLA Medical School, Center for the Health Sciences, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Maraschiello C, Sarraga C, Esteve-Garcia E, Regueiro JG. Dietary Iron and Copper Removal Does Not Improve Cholesterol and Lipid Oxidative Stability of Raw and Cooked Broiler Meat. J Food Sci 2000. [DOI: 10.1111/j.1365-2621.2000.tb15981.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Labbé S, Peña MM, Fernandes AR, Thiele DJ. A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J Biol Chem 1999; 274:36252-36260. [PMID: 10593913 DOI: 10.1074/jbc.274.51.36252] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper and iron serve essential functions as catalytic co-factors in a wide variety of critical cellular enzymes. Studies in yeast have demonstrated an absolute dependence upon copper acquisition for proper assembly and function of the iron transport machinery. We have cloned genes for a high affinity copper transporter (Ctr4) and copper-sensing transcription factor (Cuf1) from Schizosaccharomyces pombe. Interestingly, the primary structure of Ctr4 and a putative human high affinity copper transport protein, hCtr1, suggests that they are derived from a fusion of the functionally redundant but structurally distinct Ctr1 and Ctr3 copper transporters from Saccharomyces cerevisiae. Furthermore, although Cuf1 activates ctr4(+) gene expression under copper starvation conditions, under these same conditions Cuf1 directly represses expression of genes encoding components of the iron transport machinery. These studies have identified an evolutionary step in which copper transport modules have been fused, and describe a mechanism by which a copper-sensing factor directly represses expression of the iron uptake genes under conditions in which the essential copper co-factor is scarce.
Collapse
Affiliation(s)
- S Labbé
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The transferrin receptor is a membrane glycoprotein whose only clearly defined function is to mediate cellular uptake of iron from a plasma glycoprotein, transferrin. Iron uptake from transferrin involves the binding of transferrin to the transferrin receptor, internalization of transferrin within an endocytic vesicle by receptor-mediated endocytosis and the release of iron from the protein by a decrease in endosomal pH. With the exception of highly differentiated cells, transferrin receptors are probably expressed on all cells but their levels vary greatly. Transferrin receptors are highly expressed on immature erythroid cells, placental tissue, and rapidly dividing cells, both normal and malignant. In proliferating nonerythroid cells the expression of transferrin receptors is negatively regulated post-transcriptionally by intracellular iron through iron responsive elements (IREs) in the 3' untranslated region of transferrin receptor mRNA. IREs are recognized by specific cytoplasmic proteins (IRPs; iron regulatory proteins) that, in the absence of iron in the labile pool, bind to the IREs of transferrin receptor mRNA, preventing its degradation. On the other hand, the expansion of the labile iron pool leads to a rapid degradation of transferrin receptor mRNA that is not protected since IRPs are not bound to it. However, some cells and tissues with specific requirements for iron probably evolved mechanisms that can override the IRE/IRP-dependent control of transferrin receptor expression. Erythroid cells, which are the most avid consumers of iron in the organism, use a transcriptional mechanism to maintain very high transferrin receptor levels. Transcriptional regulation is also involved in the receptor expression during T and B lymphocyte activation. Macrophages are another example of a cell type that shows 'unorthodox' responses in terms of IRE/IRP paradigm since in these cells elevated iron levels increase (rather than decrease) transferrin receptor mRNA and protein levels. Erythroid cells contain the highest mass of the total organismal transferrin receptors which are released from reticulocytes during their maturation to erythrocytes. Hence, plasma contains small amounts of transferrin receptors which represent a soluble fragment of the extracellular receptor domain. Measurements of serum transferrin receptor concentrations are clinically useful since their levels correlate with the total mass of immature erythroid cells.
Collapse
Affiliation(s)
- P Ponka
- Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC, Canada.
| | | |
Collapse
|
28
|
Abstract
The nutritional health and well-being of humans are entirely dependent on plant foods either directly or indirectly when plants are consumed by animals. Plant foods provide almost all essential vitamins and minerals and a number of other health-promoting phytochemicals. Because micronutrient concentrations are often low in staple crops, research is under way to understand and manipulate synthesis of micronutrients in order to improve crop nutritional quality. Genome sequencing projects are providing novel approaches for identifying plant biosynthetic genes of nutritional importance. The term "nutritional genomics" is used to describe work at the interface of plant biochemistry, genomics, and human nutrition.
Collapse
Affiliation(s)
- D DellaPenna
- Department of Biochemistry/MS200, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
29
|
Peña MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999; 129:1251-60. [PMID: 10395584 DOI: 10.1093/jn/129.7.1251] [Citation(s) in RCA: 488] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cellular uptake and intracellular distribution of the essential but highly toxic nutrient, copper, is a precisely orchestrated process. Copper homeostasis is coordinated by several proteins to ensure that it is delivered to specific subcellular compartments and copper-requiring proteins without releasing free copper ions that will cause damage to cellular components. Genetic studies in prokaryotic organisms and yeast have identified membrane-associated proteins that mediate the uptake or export of copper from cells. Within cells, small cytosolic proteins, called copper chaperones, have been identified that bind copper ions and deliver them to specific compartments and copper-requiring proteins. The identification of mammalian homologues of these proteins reveal a remarkable structural and functional conservation of copper metabolism between bacteria, yeast and humans. Furthermore, studies on the function and localization of the products of the Menkes and Wilson's disease genes, which are defective in patients afflicted with these diseases, have provided valuable insight into the mechanisms of copper balance and their role in maintaining appropriate copper distribution in mammals.
Collapse
Affiliation(s)
- M M Peña
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | | | |
Collapse
|
30
|
Grusak MA, DellaPenna D. IMPROVING THE NUTRIENT COMPOSITION OF PLANTS TO ENHANCE HUMAN NUTRITION AND HEALTH. ACTA ACUST UNITED AC 1999; 50:133-161. [PMID: 15012206 DOI: 10.1146/annurev.arplant.50.1.133] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant foods contain almost all of the mineral and organic nutrients established as essential for human nutrition, as well as a number of unique organic phytochemicals that have been linked to the promotion of good health. Because the concentrations of many of these dietary constituents are often low in edible plant sources, research is under way to understand the physiological, biochemical, and molecular mechanisms that contribute to their transport, synthesis and accumulation in plants. This knowledge can be used to develop strategies with which to manipulate crop plants, and thereby improve their nutritional quality. Improvement strategies will differ between various nutrients, but generalizations can be made for mineral or organic nutrients. This review focuses on the plant nutritional physiology and biochemistry of two essential human nutrients, iron and vitamin E, to provide examples of the type of information that is needed, and the strategies that can be used, to improve the mineral or organic nutrient composition of plants.
Collapse
Affiliation(s)
- Michael A. Grusak
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas 77030; e-mail: , Department of Biochemistry, University of Nevada, Reno, Nevada 89557; e-mail:
| | | |
Collapse
|
31
|
Georgieva T, Dunkov BC, Harizanova N, Ralchev K, Law JH. Iron availability dramatically alters the distribution of ferritin subunit messages in Drosophila melanogaster. Proc Natl Acad Sci U S A 1999; 96:2716-21. [PMID: 10077577 PMCID: PMC15835 DOI: 10.1073/pnas.96.6.2716] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect ferritins have subunits homologous to the heavy and light chains of vertebrate ferritins. Cloning and sequence of the heavy chain homologue (HCH) of Drosophila melanogaster ferritin subunit have been reported earlier. When Northern blots of D. melanogaster RNA were probed with a cDNA for this HCH, three bands were observed. It was shown that these represented at least four classes of mRNA of various lengths. The polymorphism results from alternative splicing of an intron in the 5' untranslated region (UTR) that contains the iron-responsive element (IRE) and from two alternative polyadenylation sites in the 3' UTR. This has also been reported by others [Lind, M. I., Ekengren, S., Melefors, O. & Söderhäll, K. (1998) FEBS Lett. 436, 476-482]. By hybridizing Northern blots with specific probes, it has been shown that the relative proportions of the messages vary with the life stage and especially with iron supplementation of the diet. Iron significantly increases the amount of ferritin HCH messages and dramatically shifts the balance toward those messages that lack an IRE and/or have a short 3' UTR. In the larvae this change takes place in the gut, but not in the fat body. We speculate that this dramatic shift in message distribution may result from an effect of iron on the rate of transcription or message degradation, or from an effect on the splicing process itself. Synthesis of ferritin HCH subunit mRNAs that lack an IRE may be important under conditions of iron overload.
Collapse
Affiliation(s)
- T Georgieva
- Department of Biochemistry and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
An intracellular, membrane-bound enzyme exhibiting both p-phenylenediamine oxidase activity and ferrous iron oxidase activity was isolated with the plasma membrane fraction of horse heart and studied for its ability to load iron into ferritin. The ferroxidase activity of the tissue oxidase was stimulated approximately twofold by horse spleen apoferritin, and the iron was loaded into ferritin. The loading of iron into ferritin by the tissue oxidase was inhibited by anti-horse serum ceruloplasmin antibody. The stoichiometry of iron oxidation and oxygen consumption during iron loading into ferritin by the tissue-derived oxidase and serum ceruloplasmin were 3.6 +/- 0.2 and 3.9 +/- 0.2, respectively. These data provide evidence that an enzyme analogous to ceruloplasmin is present on the plasma membrane of horse heart and that this ferroxidase is capable of catalyzing the loading of iron into ferritin. The implications of these data on the present models for the uptake and storage of iron by cells are discussed.
Collapse
Affiliation(s)
- C A Reilly
- Biotechnology Center, Utah State University, Logan, Utah, 84322-4705, USA
| | | |
Collapse
|
33
|
Lind MI, Ekengren S, Melefors O, Söderhäll K. Drosophila ferritin mRNA: alternative RNA splicing regulates the presence of the iron-responsive element. FEBS Lett 1998; 436:476-82. [PMID: 9801172 DOI: 10.1016/s0014-5793(98)01186-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several mRNAs encoding the same ferritin subunit of Drosophila melanogaster were identified. Alternative RNA splicing and utilisation of different polyadenylation sites were found to generate the transcripts. The alternative RNA splicing results in ferritin transcripts with four unique 5' untranslated regions. Only one of them contains an iron-responsive element. The iron-responsive element was found to bind in vitro specifically to human recombinant iron regulatory protein 1. Furthermore, the ferritin subunit mRNAs are differentially expressed during development. Our data provides the first molecular evidence that the presence of iron-responsive element in a ferritin mRNA is regulated by alternative RNA splicing.
Collapse
Affiliation(s)
- M I Lind
- Department of Physiological Mycology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
34
|
Yu J, Wessling-Resnick M. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport. J Biol Chem 1998; 273:6909-15. [PMID: 9506995 DOI: 10.1074/jbc.273.12.6909] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified a novel factor involved in cellular iron assimilation called SFT or Stimulator of Fe Transport (Gutierrez, J. A., Yu, J., Rivera, S., and Wessling-Resnick, M. (1997) J. Cell Biol. 149, 895-905). When stably expressed in HeLa cells, SFT was found to stimulate the uptake of both transferrin- and nontransferrin-bound Fe (iron). Assimilation of nontransferrin-bound Fe by HeLa cells stably expressing SFT was time- and temperature-dependent; both the rate and extent of uptake was enhanced relative to the activity of control nontransfected cells. Although the apparent Km for Fe uptake was unaffected by expression of SFT (5.6 versus 5.1 microM measured for control), the Vmax of transport was increased from 7.0 to 14.7 pmol/min/mg protein. Transport mediated by SFT was inhibitable by diethylenetriaminepentaacetic acid and ferrozine, Fe3+- and Fe2+-specific chelators. Because cellular copper status is known to influence Fe assimilation, we investigated the effects of Cu (copper) depletion on SFT function. After 4 days of culture in Cu-deficient media, HeLa cell Cu,Zn superoxide dismutase activity was reduced by more than 60%. Both control cells and cells stably expressing SFT displayed reduced Fe uptake as well; levels of transferrin-mediated import fell by approximately 80%, whereas levels of nontransferrin-bound Fe uptake were approximately 50% that of Cu-replete cells. The failure of SFT expression to stimulate Fe uptake above basal levels in Cu-depleted cells suggests a critical role for Cu in SFT function. A current model for both transferrin- and nontransferrin-bound Fe uptake involves the function of a ferrireductase that acts to reduce Fe3+ to Fe2+, with subsequent transport of the divalent cation across the membrane bilayer. SFT expression did not enhance levels of HeLa cell surface reductase activity; however, Cu depletion was found to reduce endogenous activity by 60%, suggesting impaired ferrireductase function may account for the influence of Cu depletion on SFT-mediated Fe uptake. To test this hypothesis, the ability of SFT to directly mediate Fe2+ import was examined. Although expression of SFT enhanced Fe2+ uptake by HeLa cells, Cu depletion did not significantly reduce this activity. Thus, we conclude that a ferrireductase activity is required for SFT function in Fe3+ transport and that Cu depletion reduces cellular iron assimilation by affecting this activity.
Collapse
Affiliation(s)
- J Yu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
Yoshiga T, Hernandez VP, Fallon AM, Law JH. Mosquito transferrin, an acute-phase protein that is up-regulated upon infection. Proc Natl Acad Sci U S A 1997; 94:12337-42. [PMID: 9356450 PMCID: PMC24933 DOI: 10.1073/pnas.94.23.12337] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
When treated with heat-killed bacterial cells, mosquito cells in culture respond by up-regulating several proteins. Among these is a 66-kDa protein (p66) that is secreted from cells derived from both Aedes aegypti and Aedes albopictus. p66 was degraded by proteolysis and gave a virtually identical pattern of peptide products for each mosquito species. The sequence of one peptide (31 amino acids) was determined and found to have similarity to insect transferrins. By using conserved regions of insect transferrin sequences, degenerate oligonucleotide PCR primers were designed and used to isolate a cDNA clone encoding an A. aegypti transferrin. The encoded protein contained a signal sequence that, when cleaved, would yield a mature protein of 68 kDa. It contained the 31-amino acid peptide, and the 3' end exactly matched a cDNA encoding a polypeptide that is up-regulated when A. aegypti encapsulates filarial worms [Beerntsen, B. T., Severson, D. W. & Christensen, B. M. (1994) Exp. Parasitol. 79, 312-321]. This transferrin, like those of two other insect species, has conserved iron-binding residues in the N-terminal lobe but not in the C-terminal lobe, which also has large deletions in the polypeptide chain, compared with transferrins with functional C-terminal lobes. The hypothesis is developed that this transferrin plays a role similar to vertebrate lactoferrin in sequestering iron from invading organisms and that degradation of the structure of the C-terminal lobe might be a mechanism for evading pathogens that elaborate transferrin receptors to tap sequestered iron.
Collapse
Affiliation(s)
- T Yoshiga
- The Department of Biochemistry and the Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|