1
|
LaCour RA, Heindel JP, Zhao R, Head-Gordon T. The Role of Interfaces and Charge for Chemical Reactivity in Microdroplets. J Am Chem Soc 2025; 147:6299-6317. [PMID: 39960051 DOI: 10.1021/jacs.4c15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
A wide variety of reactions are reported to be dramatically accelerated in aqueous microdroplets, making them a promising platform for environmentally clean chemical synthesis. However, to fully utilize the microdroplets for accelerating chemical reactions requires a fundamental understanding of how microdroplet chemistry differs from that of a homogeneous phase. Here we provide our perspective on recent progress to this end, both experimentally and theoretically. We begin by reviewing the many ways in which microdroplets can be prepared, creating water/hydrophobic interfaces that have been frequently implicated in microdroplet reactivity due to preferential surface adsorption of solutes, persistent electric fields, and their acidity or basicity. These features of the interface interplay with specific mechanisms proposed for microdroplet reactivity, including partial solvation, possible gas phase channels, and the presence of highly reactive intermediates. We especially highlight the role of droplet charge and associated electric fields, which appears to be key to understanding how certain reactions, like the formation of hydrogen peroxide and reduced transition metal complexes, are thermodynamically possible in microdroplets. Lastly, we emphasize opportunities for theoretical advances and suggest experiments that would greatly enhance our understanding of this fascinating subject.
Collapse
|
2
|
Fellows A, John B, Wolf M, Thämer M. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. J Phys Chem Lett 2024; 15:10849-10857. [PMID: 39436358 PMCID: PMC11533227 DOI: 10.1021/acs.jpclett.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ultrathin molecular films are widespread in both natural and industrial settings, where details of the molecular structure such as density, out-of-plane tilt angles, and in-plane directionality determine their physicochemical properties. Many of these films possess important molecular-to-macroscopic heterogeneity in these structural parameters, which have traditionally been difficult to characterize. Here, we show how extending sum-frequency generation (SFG) microscopy measurements to higher dimensionality by azimuthal-scanning can extract the spatial variation in the three-dimensional molecular structure at an interface. We extend the commonly applied theoretical assumptions used to analyze SFG signals to the study of systems possessing in-plane anisotropy. This theoretical framework is then applied to a phase-separated mixed lipid monolayer to investigate the variation in molecular density and 3D orientation across the chirally packed lipid domains. The results show little variation in out-of-plane structure but a distinct micron-scale region at the domain boundaries with a reduction in both density and in-plane ordering.
Collapse
Affiliation(s)
- Alexander
P. Fellows
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Ben John
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
3
|
Huang-Fu ZC, Zhang T, Brown JB, Qian Y, Fisher H, Rao Y. In-plane orientational motions of the functional groups of molecules at the air/water interface by time-resolved vibrational sum frequency generation. J Chem Phys 2024; 161:164711. [PMID: 39469964 DOI: 10.1063/5.0230223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
The movements of molecules at interfaces and surfaces are restricted by their asymmetric environments, leading to anisotropic orientational motions. In this work, in-plane orientational motions of the -C=O and -CF3 groups of coumarin 153 (C153) at the air/water interface were measured using time-resolved (TR) vibrational sum frequency generation (SFG). The in-plane orientational time constants of the -C=O and -CF3 groups of C153 are found to be 41.5 ± 8.2 and 36.0 ± 4.5 ps. These values are over five-times faster than that of 198 ± 15 ps for the permanent dipole of the whole C153 molecule at the interface, which may indicate that the two groups experience different interfacial friction in the plane. These differences could also be the result of the permanent dipole of C153 being almost five times those of the -C=O and -CF3 groups. The difference in orientational motions reveals the microscopic heterogeneous environment that molecules experience at the interface. While the interfacial dynamics of the two functional groups are similar, our TR-SFG experiments allowed the quantification of the in-plane dynamics of individual functional groups for the first time. Our experimental findings about the interfacial molecular motion have implications for molecular rotations, energy transfer, and charge transfer at material interfaces, photocatalysis interfaces, and biological cell/membrane aqueous interfaces.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Haley Fisher
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
4
|
Ojha D, Henao A, Zysk F, Kühne TD. Nuclear quantum effects on the vibrational dynamics of the water-air interface. J Chem Phys 2024; 160:204114. [PMID: 38804494 DOI: 10.1063/5.0204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
We have applied path-integral molecular dynamics simulations to investigate the impact of nuclear quantum effects on the vibrational dynamics of water molecules at the water-air interface. The instantaneous fluctuations in the frequencies of the O-H stretch modes are calculated using the wavelet method of time series analysis, while the time scales of vibrational spectral diffusion are determined from frequency-time correlation functions and joint probability distributions. We find that the inclusion of nuclear quantum effects leads not only to a redshift in the vibrational frequency distribution by about 120 cm-1 for both the bulk and interfacial water molecules but also to an acceleration of the vibrational dynamics at the water-air interface by as much as 35%. In addition, a blueshift of about 45 cm-1 is seen in the vibrational frequency distribution of interfacial water molecules compared to that of the bulk. Furthermore, the dynamics of water molecules beyond the topmost molecular layer was found to be rather similar to that of bulk water.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Andrés Henao
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Advanced Systems Understanding (CASUS), Untermarkt 20, D-02826 Görlitz, Germany, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany, and TU Dresden, Institute of Artificial Intelligence, Chair of Computational System Sciences, Nöthnitzer Straße 46, D-01187 Dresden, Germany
| |
Collapse
|
5
|
Raji F, Nguyen NN, Nguyen CV, Nguyen AV. Lead (II) ions enable the ion-specific effects of monovalent anions on the molecular structure and interactions at silica/aqueous interfaces. J Colloid Interface Sci 2024; 662:653-662. [PMID: 38367582 DOI: 10.1016/j.jcis.2024.02.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
HYPOTHESIS The adsorption of heavy metal ions such as Pb(II) onto negatively charged minerals such as silica is expected to alter the structure and the interactions at the silica/aqueous interfaces. Besides the solution pH, the inner-sphere sorption of Pb(II) is expected to regulate the surface charge/potential, hypothesized to control the actions of monovalent anions in the aqueous environment. These complex pictures can be probed directly using surface-sensitive sum-frequency generation (SFG) spectroscopy. EXPERIMENTS The pH-dependent water structure within the double layer at silica/aqueous interfaces under the influence of different ions was examined using SFG. The recorded SFG spectra were deconvoluted into the Stern layer (SL) and diffuse layer (DL) using the maximum entropy method in conjunction with the electrical double-layer theory. FINDINGS Standalone monovalent sodium salts do not exhibit ion-specific effects on the silica/aqueous interfaces. However, the mixture of Pb(II) species and each of these salts display profound ion-specific effects on the structure of silica/aqueous interfaces, indicating the role of Pb(II) as an enabler of the ion-specificity of the investigated monovalent anions. The interesting effect arises from a complex interplay between the physical processes (i.e., electrostatic interactions, screening effects, etc.) and chemical processes such as the hydrolysis of Pb(II) ions, ion complexation, protonation and deprotonation of the surface silanol group.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- Department of Water and Environmental Regulation, Joondalup, WA 6027, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Nguyen TTP, Raji F, Nguyen CV, Nguyen NN, Nguyen AV. Effects of Charged Surfactants on Interfacial Water Structure and Macroscopic Properties of the Air-Water Interface. Chemphyschem 2023:e202300062. [PMID: 37679310 DOI: 10.1002/cphc.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br- counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.
Collapse
Affiliation(s)
- Thao T P Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Foad Raji
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Pullanchery S, Zhang L, Kulik S, Roke S. Interfacial Inversion, Interference, and IR Absorption in Vibrational Sum Frequency Scattering Experiments. J Phys Chem B 2023; 127:6795-6803. [PMID: 37470215 PMCID: PMC10405221 DOI: 10.1021/acs.jpcb.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Indexed: 07/21/2023]
Abstract
Molecular interfacial structure greatly determines the properties of nano- and microscale systems. Vibrational sum frequency scattering (SFS) spectroscopy is a unique interface-selective tool to measure the interfacial vibrational spectrum of sub-micron to micron-scale objects dispersed in liquid and solid media. The interfacial structure is extracted from the interfacial susceptibility, a physical property derived from the intensity. Here, we describe the effect of infrared absorption that occurs in a bulk medium that is spectroscopically complex and use the results to investigate the effects of interfacial inversion, interfacial interference, and interfacial interference combined with absorption. We use the same three chemicals to do so, hexadecane oil, water, and a neutral Span80 surfactant. For all cases, the effective surface susceptibility can be retrieved from the intensity. We further find that inverting the phases results in different interfacial structures, even though they are composed of the same three chemicals, and explain this in terms of the different interactions that are necessary to stabilize the drops: steric stabilization for water drops in oil vs. charge stabilization for oil drops in water. Interfacial interference can be used to estimate the surface density of different compounds.
Collapse
Affiliation(s)
- S. Pullanchery
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - L. Zhang
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Kulik
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Roke
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science and Engineering (IMX), School of Engineering
(STI), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Voci S, Dick JE. An electrochemical perspective on the interfacial width between two immiscible liquid phases. CURRENT OPINION IN ELECTROCHEMISTRY 2023; 39:101244. [PMID: 37538354 PMCID: PMC10399975 DOI: 10.1016/j.coelec.2023.101244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Molecular dynamics simulations and vibrational sum-frequency spectroscopy are historically the main techniques applied to the description of the molecular structure and dynamics of the immiscible liquid/liquid interface. A molecular sharpness is estimated for oil/water interfaces, with an interfacial width that extends from hundreds of Å to 1 nm. However, electrochemical studies have elucidated a deeper liquid/liquid interface on the order of several micrometers. The breaking down of single-entity electrochemistry to simpler systems and the combination of high-resolution microscopies is confirming a larger extension of the interface. What can be the role of the electrochemist in clarifying this fundamental question? We try to give a suggestion at the end of a brief historical overview of the liquid/liquid interface studies.
Collapse
|
9
|
Gao J, Khan MR, Wu Y, Hawker DD, Gutowski KE, Konradi R, Mayr L, Hankett JM, Kellermeier M, Chen Z. Probing Interfacial Behavior and Antifouling Activity of Adsorbed Copolymers at Solid/Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4557-4570. [PMID: 36947877 DOI: 10.1021/acs.langmuir.2c03056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymers containing poly(ethylene glycol) (PEG) units can exhibit excellent antifouling properties, which have been proposed/used for coating of biomedical implants, separation membranes, and structures in marine environments, as well as active ingredients in detergent formulations to avoid soil redepositioning in textile laundry. This study aimed to elucidate the molecular behavior of a copolymer poly(MMA-co-MPEGMA) containing antiadhesive PEG side chains and a backbone of poly(methyl methacrylate), at a buried polymer/solution interface. Polyethylene terephthalate (PET) was used as a substrate to model polyester textile surfaces. Sum frequency generation (SFG) vibrational spectroscopy was applied to examine the interfacial behavior of the copolymer at PET/solution interfaces in situ and in real time. Complementarily, copolymer adsorption on PET and subsequent antiadhesion against protein foulants were probed by quartz-crystal microbalance experiments with dissipation monitoring (QCM-D). Both applied techniques show that poly(MMA-co-MPEGMA) adsorbs significantly to the PET/solution interface at bulk polymer solution concentrations as low as 2 ppm, while saturation of the surface was reached at 20 ppm. The hydrophobic MMA segments provide an anchor for the copolymer to bind onto PET in an ordered way, while the pendant PEG segments are more disordered but contain ordered interfacial water. In the presence of considerable amounts of dissolved surfactants, poly(MMA-co-MPEGMA) could still effectively adsorb on the PET surface and remained stable at the surface upon washing with hot and cold water or surfactant solution. In addition, it was found that adsorbed poly(MMA-co-MPEGMA) provided the PET surface with antiadhesive properties and could prevent protein deposition, highlighting the superior surface affinity and antifouling performance of the copolymer. The results obtained in this work demonstrate that amphiphilic copolymers containing PMMA anchors and PEG side chains can be used in detergent formulations to modify polyester surfaces during laundry and reduce deposition of proteins (and likely also other soils) on the textile.
Collapse
Affiliation(s)
- Jinpeng Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Md Rubel Khan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dustin D Hawker
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Keith E Gutowski
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Rupert Konradi
- Biointerfaces & Delivery Systems, BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Lukas Mayr
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Jeanne M Hankett
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Matthias Kellermeier
- Material Physics, BASF SE, RAA/OS - B007, Carl-Bosch-Strasse 38, Ludwigshafen D-67056, Germany
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Jana R, Ahmed SA, Seth D. Interaction between Cucurbit[7]uril and Bile Salts: An Isothermal Titration Calorimetry Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rabindranath Jana
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| | - Sayeed Ashique Ahmed
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| | - Debabrata Seth
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| |
Collapse
|
11
|
Nakajima R, Miura A, Abe S, Kitamura N. Optical Trapping-Polarized Raman Microspectroscopy of Single Ethanol Aerosol Microdroplets: Droplet Size Effects on Rotational Relaxation Time and Viscosity. Anal Chem 2021; 93:5218-5224. [PMID: 33724784 DOI: 10.1021/acs.analchem.0c05406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical trapping-polarized Raman microspectroscopy of single ethanol (EtOH) microdroplets with a diameter (d) of 6.1-16.5 μm levitated in an EtOH vapor-saturated air/N2 gas atmosphere has been explored to elucidate the vibrational and rotational motions of EtOH in the droplets at 22.0 °C. The Raman spectral bandwidth of the C-C stretching vibrational mode observed for an aerosol EtOH microdroplet was narrower than that of bulk EtOH, suggesting that the vibrational/rotational motions of EtOH in the aerosol system were restricted compared to those in the bulk system. In practice, polarized Raman microspectroscopy demonstrated that the rotational relaxation time (τrot) of EtOH in an aerosol microdroplet with d = 16. 5 μm was slower (2.33 ps) than that in a bulk EtOH (1.65 ps), while the vibrational relaxation times (τvib) in the aerosol and bulk EtOH systems were almost comparable with one another: 0.86-0.98 ps. Furthermore, although the τvib value of an aerosol EtOH microdroplet was almost unchanged irrespective of d as described above, the τrot value increased from 2.33 to 3.57 ps with a decrease in d from 16.5 to 6.1 μm, which corresponded to the increase in EtOH viscosity (η) from 1.33 to 2.04 cP with the decrease in d. The droplet size dependences of τrot and η in an aerosol EtOH microdroplet were discussed in terms of the gas/droplet interfacial molecular arrangements of EtOH and Laplace pressure experienced by a spherical EtOH microdroplet in the gas phase.
Collapse
Affiliation(s)
- Ryosuke Nakajima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Miura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Sayaka Abe
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Noboru Kitamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
12
|
Unveiling the thermodynamic signature underlying the interaction of human serum albumin with sub-micellar concentrations of a surface active ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Hou J, Sun G, Liu J, Gao X, Zhang X, Lu Z. Liquid/Vapor Interface of Dimethyl Carbonate-Methanol Binary Mixtures Investigated by Sum Frequency Generation Vibrational Spectroscopy and Molecular Dynamics Simulation. J Phys Chem B 2020; 124:4211-4221. [PMID: 32338908 DOI: 10.1021/acs.jpcb.0c01566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, the dimethyl carbonate (DMC)-methanol binary mixture was used as a benchmark system to study the molecular structures of the liquid/vapor interface of organic-organic mixtures by sum frequency generation vibrational spectroscopy (SFG-VS) and molecular dynamics (MD) simulations. It was discovered that both the methanol and DMC molecules are anisotropically oriented at the surface, yielding strong SFG-VS signals in the C-H stretching frequency range for both molecules. The detailed analyses of the spectroscopic and MD data reveal that the increase of the methanol bulk concentrations reduces the orientational order of the methyl groups for both the interfacial DMC and methanol molecules but does not significantly affect the orientations of the carbonyl group in DMC. Moreover, no obvious correlations were found between the room-temperature orientations of the surface molecules and the azeotropic mole fraction. The present work paves the road for future investigations on the molecular structures of the liquid/vapor interfaces of other organic-organic mixtures, especially those that are important in industrial separations.
Collapse
Affiliation(s)
- Jian Hou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanlun Sun
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jianchuan Liu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Gao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
14
|
Boily JF, Fu L, Tuladhar A, Lu Z, Legg BA, Wang ZM, Wang H. Hydrogen bonding and molecular orientations across thin water films on sapphire. J Colloid Interface Sci 2019; 555:810-817. [PMID: 31425917 DOI: 10.1016/j.jcis.2019.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
HYPOTHESIS Water vapor binding to metal oxide surfaces produces thin water films with properties controlled by interactions with surface hydroxo sites. Hydrogen bonding populations vary across films and induce different molecular orientations than at the surface of liquid water. Identifying these differences can open possibilities for tailoring film-mediated catalytic reactions by choice of the supporting metal oxide substrate. EXPERIMENTS The (0001) face of a single sapphire (α-Al2O3) sample exposed to water vapor and the surface of liquid water were probed by polarization dependent Sum Frequency Generation-Vibration Spectroscopy (SFG-VS). Molecular dynamics (MD) provided insight into the hydrogen bond populations and molecular orientations across films and liquid water. FINDINGS SFG-VS revealed a submonolayer film on sapphire exposed to 43% relative humidity (R.H.), and a multilayer film at 78% R.H. Polarization dependent SFG-VS spectra showed that median tilt angles of free OH bonds on the top of films are at ∼43° from the normal of the (0001) face but at 38° on neat liquid water. These values align with MD simulations, which also show that up to 36% of all OH bonds on films are free. This offers new means for understanding how interfacial reactions on sapphire-supported water films could contrast with those involving liquid water.
Collapse
Affiliation(s)
| | - Li Fu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Aashish Tuladhar
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Zhou Lu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Benjamin A Legg
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Zheming M Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Hongfei Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Ojha D, Kaliannan NK, Kühne TD. Time-dependent vibrational sum-frequency generation spectroscopy of the air-water interface. Commun Chem 2019. [DOI: 10.1038/s42004-019-0220-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Vibrational sum-frequency generation spectroscopy is a powerful method to study the microscopic structure and dynamics of interfacial systems. Here we demonstrate a simple computational approach to calculate the time-dependent, frequency-resolved vibrational sum-frequency generation spectrum (TD-vSFG) of the air-water interface. Using this approach, we show that at the air-water interface, the transition of water molecules with bonded OH modes to free OH modes occurs at a time scale of $$\sim$$
~
3 ps, whereas water molecules with free OH modes rapidly make a transition to a hydrogen-bonded state within $$\sim$$
~
2 ps. Furthermore, we also elucidate the origin of the observed differential dynamics based on the time-dependent evolution of water molecules in the different local solvent environments.
Collapse
|
16
|
Niga P, Hansson-Mille PM, Swerin A, Claesson PM, Schoelkopf J, Gane PAC, Dai J, Furó I, Campbell RA, Johnson CM. Propofol adsorption at the air/water interface: a combined vibrational sum frequency spectroscopy, nuclear magnetic resonance and neutron reflectometry study. SOFT MATTER 2018; 15:38-46. [PMID: 30516226 DOI: 10.1039/c8sm01677a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Propofol is an amphiphilic small molecule that strongly influences the function of cell membranes, yet data regarding interfacial properties of propofol remain scarce. Here we consider propofol adsorption at the air/water interface as elucidated by means of vibrational sum frequency spectroscopy (VSFS), neutron reflectometry (NR), and surface tensiometry. VSFS data show that propofol adsorbed at the air/water interface interacts with water strongly in terms of hydrogen bonding and weakly in the proximity of the hydrocarbon parts of the molecule. In the concentration range studied there is almost no change in the orientation adopted at the interface. Data from NR show that propofol forms a dense monolayer with a thickness of 8.4 Å and a limiting area per molecule of 40 Å2, close to the value extracted from surface tensiometry. The possibility that islands or multilayers of propofol form at the air/water interface is therefore excluded as long as the solubility limit is not exceeded. Additionally, measurements of the 1H NMR chemical shifts demonstrate that propofol does not form dimers or multimers in bulk water up to the solubility limit.
Collapse
Affiliation(s)
- Petru Niga
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden.
| | - Petra M Hansson-Mille
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden.
| | - Agne Swerin
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden. and KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| | - Per M Claesson
- RISE Research Institutes of Sweden - Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden. and KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| | | | - Patrick A C Gane
- Omya International AG, Baslerstrasse 42, CH-4665 Oftringen, Switzerland and Aalto University, School of Chemical Technology, Department of Bioproducts and Biosystems, FI-00076 Aalto, Helsinki, Finland
| | - Jing Dai
- KTH Royal Institute of Technology, Department of Chemistry, Division of Applied Physical Chemistry, SE-100 44 Stockholm, Sweden
| | - István Furó
- KTH Royal Institute of Technology, Department of Chemistry, Division of Applied Physical Chemistry, SE-100 44 Stockholm, Sweden
| | - Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France and Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - C Magnus Johnson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
17
|
Malila J, Prisle NL. A Monolayer Partitioning Scheme for Droplets of Surfactant Solutions. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2018; 10:3233-3251. [PMID: 31007837 PMCID: PMC6472654 DOI: 10.1029/2018ms001456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Bulk-surface partitioning of surface active species affects both cloud droplet activation by aerosol particles and heterogeneous atmospheric chemistry. Various approaches are given in the literature to capture this effect in atmospheric models. Here we present a simple, yet physically self-contained, monolayer model for prediction of both composition and thickness of the surface layer of an aqueous droplet. The monolayer surface model is based on assuming a finite surface layer and mass balance of all species within the droplet. Model predictions are presented for binary and ternary aqueous surfactant model systems and compared to both experimental and model data from the literature and predictions using a common Gibbsian model approach. Deviations from Gibbsian surface thermodynamics due to volume constraints imposed by the finite monolayer lead to stronger predicted surface tension reduction at smaller droplet sizes with the monolayer model. Process dynamics of the presented monolayer model are also contrasted to other recently proposed approaches to treating surface partitioning in droplets, with different underlying assumptions.
Collapse
Affiliation(s)
- J. Malila
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| | - N. L. Prisle
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
18
|
Pezzotti S, Galimberti DR, Shen YR, Gaigeot MP. Structural definition of the BIL and DL: a new universal methodology to rationalize non-linearχ(2)(ω) SFG signals at charged interfaces, includingχ(3)(ω) contributions. Phys Chem Chem Phys 2018; 20:5190-5199. [DOI: 10.1039/c7cp06110b] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BIL (Binding Interfacial Layer) and DL (Diffuse Layer) at aqueous interfaces: universal structural definitions, deconvolution of their SFG signals andχ3contribution.
Collapse
Affiliation(s)
- Simone Pezzotti
- LAMBE CNRS UMR8587
- Université d’Evry val d’Essonne
- France & Université Paris-Saclay
- 91025 Evry
- France
| | - Daria Ruth Galimberti
- LAMBE CNRS UMR8587
- Université d’Evry val d’Essonne
- France & Université Paris-Saclay
- 91025 Evry
- France
| | - Y. Ron Shen
- Department of Physics
- University of California
- Berkeley
- USA
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587
- Université d’Evry val d’Essonne
- France & Université Paris-Saclay
- 91025 Evry
- France
| |
Collapse
|
19
|
Zdrali E, Chen Y, Okur HI, Wilkins DM, Roke S. The Molecular Mechanism of Nanodroplet Stability. ACS NANO 2017; 11:12111-12120. [PMID: 29224343 DOI: 10.1021/acsnano.7b05100] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mixtures of nano- and microscopic oil droplets in water have recently been rediscovered as miniature reaction vessels in microfluidic environments and are important constituents of many environmental systems, food, personal care, and medical products. The oil nanodroplet/water interface stabilized by surfactants determines the physicochemical properties of the droplets. Surfactants are thought to stabilize nanodroplets by forming densely packed monolayers that shield the oil phase from the water. This idea has been inferred from droplet stability measurements in combination with molecular structural data obtained from extended planar interfaces. Here, we present a molecular level investigation of the surface structure and stability of nanodroplets and show that the surface structure of nanodroplets is significantly different from that of extended planar interfaces. Charged surfactants form monolayers that are more than 1 order of magnitude more dilute than geometrically packed ones, and there is no experimental correlation between stability and surfactant surface density. Moreover, dilute negatively charged surfactant monolayers produce more stable nanodroplets than dilute positively charged and dense geometrically packed neutral surfactant monolayers. Droplet stability is found to depend on the relative cooperativity between charge-charge, charge-dipole, and hydrogen-bonding interactions. The difference between extended planar interfaces and nanoscale interfaces stems from a difference in the thermally averaged total charge-charge interactions in the two systems. Low dielectric oil droplets with a size smaller than the Debye length in oil permit repulsive interactions between like charges from opposing interfaces in small droplets. This behavior is generic and extends up to the micrometer length scale.
Collapse
Affiliation(s)
- Evangelia Zdrali
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Yixing Chen
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - David M Wilkins
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Boulesbaa A, Borguet E. Capturing the Ultrafast Vibrational Decoherence of Hydrogen Bonding in Interfacial Water. J Phys Chem Lett 2016; 7:5080-5085. [PMID: 27973903 DOI: 10.1021/acs.jpclett.6b01870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vibrational sum-frequency generation (vSFG) measurements in the frequency and time domains reveal that the interfacial hydrogen bonded OH stretch at the water/calcium fluoride interface is composed of two populations oriented oppositely. The time-resolved vSFG free-induction decay suggested that, whereas the strongly hydrogen bonded OH vibrational stretches, centered near 3140 ± 11 cm-1, are oriented toward bulk water and lose their collective coherence within ∼70 ± 7 fs, the weakly hydrogen bonded OH species, centered near 3410 ± 12 cm-1, are pointed toward the interface and dephase within ∼50 ± 6 fs.
Collapse
Affiliation(s)
- Abdelaziz Boulesbaa
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Eric Borguet
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
21
|
Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, Michaelides A, Pedevilla P, Rossmeisl J, Shen H, Tocci G, Tyrode E, Walz MM, Werner J, Bluhm H. Water at Interfaces. Chem Rev 2016; 116:7698-726. [PMID: 27232062 DOI: 10.1021/acs.chemrev.6b00045] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
Collapse
Affiliation(s)
- Olle Björneholm
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Martin H Hansen
- Technical University of Denmark , 2800 Kongens Lyngby, Denmark.,Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andrew Hodgson
- Department of Chemistry, University of Liverpool , Liverpool L69 7ZD, United Kingdom
| | - Li-Min Liu
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Beijing Computational Science Research Center , Beijing, 100193, China
| | - David T Limmer
- Princeton Center for Theoretical Science, Princeton University , Princeton, New Jersey 08544, United States
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Philipp Pedevilla
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Huaze Shen
- International Center for Quantum Materials and School of Physics, Peking University , Beijing 100871, China
| | - Gabriele Tocci
- Thomas Young Centre, London Centre for Nanotechnology, Department of Physics and Astronomy, and Department of Chemistry, University College London , London WC1E 6BT, United Kingdom.,Laboratory for fundamental BioPhotonics, Laboratory of Computational Science and Modeling, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Eric Tyrode
- Department of Chemistry, KTH Royal Institute of Technology , 10044 Stockholm, Sweden
| | - Marie-Madeleine Walz
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
| | - Josephina Werner
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden.,Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences , Box 7015, 750 07 Uppsala, Sweden
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
22
|
Upshur MA, Chase HM, Strick BF, Ebben CJ, Fu L, Wang H, Thomson RJ, Geiger FM. Vibrational Mode Assignment of α-Pinene by Isotope Editing: One Down, Seventy-One To Go. J Phys Chem A 2016; 120:2684-90. [PMID: 27063197 DOI: 10.1021/acs.jpca.6b01995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aims to reliably assign the vibrational sum frequency generation (SFG) spectrum of α-pinene at the vapor/solid interface using a method involving deuteration of various methyl groups. The synthesis of five deuterated isotopologues of α-pinene is presented to determine the impact that removing contributions from methyl group C-H oscillators has on its SFG response. 0.6 cm(-1) resolution SFG spectra of these isotopologues show varying degrees of differences in the C-H stretching region when compared to the SFG response of unlabeled α-pinene. The largest spectral changes were observed for the isotopologue containing a fully deuterated vinyl methyl group. Noticeable losses in signal intensities allow us to reliably assign the 2860 cm(-1) peak to the vinyl methyl symmetric stretch. Furthermore, upon removing the vinyl methyl group entirely by synthesizing apopinene, the steric influence of the unlabeled C9H14 fragment on the SFG response of α-pinene SFG can be readily observed. The work presented here brings us one step closer to understanding the vibrational spectroscopy of α-pinene.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Hilary M Chase
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Benjamin F Strick
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Carlena J Ebben
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Hongfei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Paul BK, Ghosh N, Mukherjee S. Interaction of Bile Salts with β-Cyclodextrins Reveals Nonclassical Hydrophobic Effect and Enthalpy–Entropy Compensation. J Phys Chem B 2016; 120:3963-8. [DOI: 10.1021/acs.jpcb.6b01385] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bijan K. Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal
Bypass Road, Bhopal 426066, Madhya Pradesh, India
| | - Narayani Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal
Bypass Road, Bhopal 426066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal
Bypass Road, Bhopal 426066, Madhya Pradesh, India
| |
Collapse
|
24
|
Chen SL, Fu L, Gan W, Wang HF. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy. J Chem Phys 2016; 144:034704. [DOI: 10.1063/1.4940145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shun-Li Chen
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Wei Gan
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
25
|
Kirsch H, Tong Y, Campen RK. Experimental Characterization of CCH(ads) and CCH2(ads) during the Thermal Decomposition of Methane and Ethylene on Ru(0 0 0 1). ChemCatChem 2016. [DOI: 10.1002/cctc.201501046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Harald Kirsch
- Fritz Haber Institute of the Max Planck Society; 4-6 Faradayweg 14195 Berlin Germany
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society; 4-6 Faradayweg 14195 Berlin Germany
| | - Richard Kramer Campen
- Fritz Haber Institute of the Max Planck Society; 4-6 Faradayweg 14195 Berlin Germany
| |
Collapse
|
26
|
|
27
|
Wang HF, Velarde L, Gan W, Fu L. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization, and Orientation. Annu Rev Phys Chem 2015; 66:189-216. [DOI: 10.1146/annurev-physchem-040214-121322] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260
| | - Wei Gan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352;
| |
Collapse
|
28
|
Pozniak BP, Cole RB. Perspective on electrospray ionization and its relation to electrochemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:369-385. [PMID: 25623197 DOI: 10.1007/s13361-014-1066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
The phenomenon of electrospraying of liquids is presented from the perspective of the electrochemistry involved. Basics of current and liquid flow in the capillary and spray tip are discussed, followed by specifics of charging and discharging of the sprayed liquid surface. Fundamental theories and numerical modeling relating electrospray current to solution and spray parameters are described and then compared with our own experimentally obtained data. The method of mapping potentials and currents inside the electrospray capillary by using an inserted electrically-isolated small wire probe electrode is discussed in detail with illustrations from new and published data. Based on these experimentally obtained results, a new mathematical model is derived. The introduced "nonlinear resistor electrospray capillary model" divides the electrospray capillary into small sections, adds their contributions, and then, by transition to infinitely small section thickness, produces analytical formulas that relate current and potential maps to other properties of the electrospraying liquid: primarily conductivity and current density. The presentation of the model is undertaken from an elementary standpoint, and it offers the possibility to obtain quantitative information regarding operating parameters from typical analytical systems subjected to electrospray. The model stresses simplicity and ease of use; examples applying experimental data are shown and some predictions of the model are also presented. The developed nonlinear resistor electrospray capillary model is intended to provide a new quantitative basis for improving the understanding of electrochemical transformations occurring in the electrospray emitter. A supplemental material section gives full derivation of the model and discusses other consequences.
Collapse
Affiliation(s)
- Boguslaw P Pozniak
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA, 70148, USA
| | | |
Collapse
|
29
|
Mifflin AL, Velarde L, Ho J, Psciuk BT, Negre CFA, Ebben CJ, Upshur MA, Lu Z, Strick BL, Thomson RJ, Batista VS, Wang HF, Geiger FM. Accurate Line Shapes from Sub-1 cm–1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature. J Phys Chem A 2015; 119:1292-302. [DOI: 10.1021/jp510700z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Amanda L. Mifflin
- Department
of Chemistry, University of Puget Sound, Tacoma, Washington 98416, United States
| | - Luis Velarde
- William
R. Wiley
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Junming Ho
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Brian T. Psciuk
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Christian F. A. Negre
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Carlena J. Ebben
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mary Alice Upshur
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhou Lu
- William
R. Wiley
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Benjamin L. Strick
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Hong-Fei Wang
- William
R. Wiley
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Shrestha M, Zhang Y, Upshur MA, Liu P, Blair SL, Wang HF, Nizkorodov SA, Thomson RJ, Martin ST, Geiger FM. On Surface Order and Disorder of α-Pinene-Derived Secondary Organic Material. J Phys Chem A 2015; 119:4609-17. [DOI: 10.1021/jp510780e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mona Shrestha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yue Zhang
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mary Alice Upshur
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Pengfei Liu
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Sandra L. Blair
- Department
of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, California 92697, United States
| | - Hong-fei Wang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovative Boulevard, Richland, Washington 99354, United States
| | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, California 92697, United States
| | - Regan J. Thomson
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Scot T. Martin
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Kirsch H, Zhao X, Ren Z, Levchenko SV, Wolf M, Campen RK. Controlling CH 2 dissociation on Ru(0001) through surface site blocking by adsorbed hydrogen. J Catal 2014. [DOI: 10.1016/j.jcat.2014.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Feng RR, Guo Y, Wang HF. Reorientation of the “free OH” group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy. J Chem Phys 2014; 141:18C507. [PMID: 25399172 DOI: 10.1063/1.4895561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ran-Ran Feng
- International Center for Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Fei Wang
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
33
|
Smolentsev N, Chen Y, Jena KC, Brown MA, Roke S. Sum frequency and second harmonic generation from the surface of a liquid microjet. J Chem Phys 2014; 141:18C524. [DOI: 10.1063/1.4896996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Yan ECY, Fu L, Wang Z, Liu W. Biological Macromolecules at Interfaces Probed by Chiral Vibrational Sum Frequency Generation Spectroscopy. Chem Rev 2014; 114:8471-98. [DOI: 10.1021/cr4006044] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Li Fu
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Zhuguang Wang
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| | - Wei Liu
- Department of Chemistry, Yale University, 225 Prospect
Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
35
|
Hall SA, Jena KC, Covert PA, Roy S, Trudeau TG, Hore DK. Molecular-Level Surface Structure from Nonlinear Vibrational Spectroscopy Combined with Simulations. J Phys Chem B 2014; 118:5617-36. [DOI: 10.1021/jp412742u] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shaun A. Hall
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Kailash C. Jena
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Paul A. Covert
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Sandra Roy
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Travis G. Trudeau
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| | - Dennis K. Hore
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada
| |
Collapse
|
36
|
Tong Y, Vila Verde A, Campen RK. The free OD at the air/D2O interface is structurally and dynamically heterogeneous. J Phys Chem B 2013; 117:11753-64. [PMID: 24001361 DOI: 10.1021/jp406577v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Air/water interfaces are both ubiquitous in the environment and technology and a useful model for hydrophobic solvation more generally. Previous experimental and computational studies have highlighted that molecular level markers of such an extended hydrophobic surface are broken hydrogen bonds and, as a result, OH groups that are not hydrogen bond donors: free OH. Understanding both the time-averaged structure and structural dynamics of these free OH thus plays a critical role in developing a quantitative, molecular level understanding of hydrophobic solvation. Here we show, by combining polarization-dependent vibrational sum frequency (VSF) spectroscopy and molecular dynamics simulation, that the free OD of D2O at the air/D2O interface is structurally and dynamically heterogeneous: that longer lived free OD groups tend to point closer to the surface normal, have a narrower orientational distribution, and are closer to the vapor phase. Knowledge of this structural heterogeneity should help link existing descriptions of hydrophobic solvation that focus either on the termination of the bulk hydrogen bond network or local density fluctuations. In addition the results of this study clarify that schemes to increase signal-to-noise ratios in VSF measurements by delaying the visible pulse relative to the infrared should be used only with independent constraints on the system's structural dynamics.
Collapse
Affiliation(s)
- Yujin Tong
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | | | | |
Collapse
|
37
|
Tian K, Li H, Ye S. Methanol Perturbing Modeling Cell Membranes Investigated using Linear and Nonlinear Vibrational Spectroscopy. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/01/27-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Jena KC, Scheu R, Roke S. Surface impurities are not responsible for the charge on the oil/water interface: a comment. Angew Chem Int Ed Engl 2012. [PMID: 23180555 DOI: 10.1002/anie.201204662] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The origin of the charge on oil/water interfaces that can be found from electrokinetic mobility measurements is a long-standing issue that has invoked different explanations. Sum frequency scattering (SFS) shows that impurities are likely not a general cause for the charge.
Collapse
|
39
|
Jena KC, Scheu R, Roke S. Surface Impurities Are Not Responsible For the Charge on the Oil/Water Interface: A Comment. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Vácha R, Roke S. Sodium Dodecyl Sulfate at Water–Hydrophobic Interfaces: A Simulation Study. J Phys Chem B 2012; 116:11936-42. [DOI: 10.1021/jp304900z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Robert Vácha
- National Centre for Biomolecular
Research, Faculty of Science and CEITEC—Central European Institute
of Technology, Masaryk University, Kamenice
5, 625 00 Brno-Bohunice, Czech Republic
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Ebben CJ, Shrestha M, Martinez IS, Corrigan AL, Frossard AA, Song WW, Worton DR, Petäjä T, Williams J, Russell LM, Kulmala M, Goldstein AH, Artaxo P, Martin ST, Thomson RJ, Geiger FM. Organic constituents on the surfaces of aerosol particles from Southern Finland, Amazonia, and California studied by vibrational sum frequency generation. J Phys Chem A 2012; 116:8271-90. [PMID: 22734593 DOI: 10.1021/jp302631z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article summarizes and compares the analysis of the surfaces of natural aerosol particles from three different forest environments by vibrational sum frequency generation. The experiments were carried out directly on filter and impactor substrates, without the need for sample preconcentration, manipulation, or destruction. We discuss the important first steps leading to secondary organic aerosol (SOA) particle nucleation and growth from terpene oxidation by showing that, as viewed by coherent vibrational spectroscopy, the chemical composition of the surface region of aerosol particles having sizes of 1 μm and lower appears to be close to size-invariant. We also discuss the concept of molecular chirality as a chemical marker that could be useful for quantifying how chemical constituents in the SOA gas phase and the SOA particle phase are related in time. Finally, we describe how the combination of multiple disciplines, such as aerosol science, advanced vibrational spectroscopy, meteorology, and chemistry can be highly informative when studying particles collected during atmospheric chemistry field campaigns, such as those carried out during HUMPPA-COPEC-2010, AMAZE-08, or BEARPEX-2009, and when they are compared to results from synthetic model systems such as particles from the Harvard Environmental Chamber (HEC). Discussions regarding the future of SOA chemical analysis approaches are given in the context of providing a path toward detailed spectroscopic assignments of SOA particle precursors and constituents and to fast-forward, in terms of mechanistic studies, through the SOA particle formation process.
Collapse
Affiliation(s)
- Carlena J Ebben
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ∼10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.
Collapse
Affiliation(s)
| | - Douglas R. Worsnop
- Center for Aerosol and Cloud Chemistry, Aerodyne Research, Inc., Billerica, Massachusetts 01821-3976
| |
Collapse
|
43
|
Sulpizi M, Gaigeot MP, Sprik M. The Silica–Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties. J Chem Theory Comput 2012; 8:1037-47. [DOI: 10.1021/ct2007154] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marialore Sulpizi
- Johannes Gutenberg University, Staudinger Weg.7, D 55099, Mainz, Germany
| | - Marie-Pierre Gaigeot
- LAMBE UMR8587, Université d’Evry val d’Essonne, Blvd F. Mitterrand, Bat Maupertuis, 91025 Evry, France
- Institut Universitaire de France (IUF), 103 Blvd St Michel, 75005 Paris, France
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
44
|
Chakraborty D, Chandra A. A first principles simulation study of fluctuations of hydrogen bonds and vibrational frequencies of water at liquid–vapor interface. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
de Aguiar HB, Scheu R, Jena KC, de Beer AGF, Roke S. Comparison of scattering and reflection SFG: a question of phase-matching. Phys Chem Chem Phys 2012; 14:6826-32. [DOI: 10.1039/c2cp40324b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
de Beer AGF, Samson JS, Hua W, Huang Z, Chen X, Allen HC, Roke S. Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: Case study of water. J Chem Phys 2011; 135:224701. [DOI: 10.1063/1.3662469] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A 2011; 108:17889-94. [PMID: 22011572 DOI: 10.1073/pnas.1114107108] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic effect--a rationalization of the insolubility of nonpolar molecules in water--is centrally important to biomolecular recognition. Despite extensive research devoted to the hydrophobic effect, its molecular mechanisms remain controversial, and there are still no reliably predictive models for its role in protein-ligand binding. Here we describe a particularly well-defined system of protein and ligands--carbonic anhydrase and a series of structurally homologous heterocyclic aromatic sulfonamides--that we use to characterize hydrophobic interactions thermodynamically and structurally. In binding to this structurally rigid protein, a set of ligands (also defined to be structurally rigid) shows the expected gain in binding free energy as hydrophobic surface area is added. Isothermal titration calorimetry demonstrates that enthalpy determines these increases in binding affinity, and that changes in the heat capacity of binding are negative. X-ray crystallography and molecular dynamics simulations are compatible with the proposal that the differences in binding between the homologous ligands stem from changes in the number and organization of water molecules localized in the active site in the bound complexes, rather than (or perhaps in addition to) release of structured water from the apposed hydrophobic surfaces. These results support the hypothesis that structured water molecules--including both the molecules of water displaced by the ligands and those reorganized upon ligand binding--determine the thermodynamics of binding of these ligands at the active site of the protein. Hydrophobic effects in various contexts have different structural and thermodynamic origins, although all may be manifestations of the differences in characteristics of bulk water and water close to hydrophobic surfaces.
Collapse
|
48
|
Hsieh CS, Campen RK, Vila Verde AC, Bolhuis P, Nienhuys HK, Bonn M. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. PHYSICAL REVIEW LETTERS 2011; 107:116102. [PMID: 22026687 DOI: 10.1103/physrevlett.107.116102] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Indexed: 05/31/2023]
Abstract
We report the real-time measurement of the ultrafast reorientational motion of water molecules at the water-air interface, using femtosecond time- and polarization-resolved vibrational sum-frequency spectroscopy. Vibrational excitation of dangling OH bonds along a specific polarization axis induces a transient anisotropy that decays due to the reorientation of vibrationally excited OH groups. The reorientation of interfacial water is shown to occur on subpicosecond time scales, several times faster than in the bulk, which can be attributed to the lower degree of hydrogen bond coordination at the interface. Molecular dynamics simulations of interfacial water dynamics are in quantitative agreement with experimental observations and show that, unlike in bulk, the interfacial reorientation occurs in a largely diffusive manner.
Collapse
Affiliation(s)
- Cho-Shuen Hsieh
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Laß K, Friedrichs G. Revealing structural properties of the marine nanolayer from vibrational sum frequency generation spectra. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jc006609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Andrews AB, McClelland A, Korkeila O, Demidov A, Krummel A, Mullins OC, Chen Z. Molecular orientation of asphaltenes and PAH model compounds in Langmuir-Blodgett films using sum frequency generation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6049-6058. [PMID: 21491945 DOI: 10.1021/la200466b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Asphaltenes are an important class of compounds in crude oil whose surface activity is important for establishing reservoir rock wettability which impacts reservoir drainage. While many phenomenological interfacial studies with crude oils and asphaltenes have been reported, there is very little known about the molecular level interactions between asphaltenes and mineral surfaces. In this study, we analyze Langmuir-Blodgett films of asphaltenes and related model compounds with sum frequency generation (SFG) vibrational spectroscopy. In SFG, the polarization of the input (vis, IR) and output (SFG) beams can be varied, which allows the orientation of different functional groups at the interface to be determined. SFG clearly indicates that asphaltene polycyclic aromatic hydrocarbons (PAHs) are highly oriented in the plane of the interface and that the peripheral alkanes are transverse to the interface. In contrast, model compounds with oxygen functionality have PAHs oriented transverse to the interface. Computational quantum chemistry is used to support corresponding band assignments, enabling robust determination of functional group orientations.
Collapse
Affiliation(s)
- A Ballard Andrews
- Schlumberger-Doll Research, Cambridge, Massachusetts, United States.
| | | | | | | | | | | | | |
Collapse
|