1
|
Maul JE, Lydon J, Lakshman D, Willard C, Kong H, Roberts DP. Genomic and mutational analysis of Pseudomonas syringae pv. tagetis EB037 pathogenicity on sunflower. BMC Microbiol 2025; 25:43. [PMID: 39856564 PMCID: PMC11760712 DOI: 10.1186/s12866-024-03685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen. RESULTS A tripartite pathogenicity island (TPI) for a Type III secretion system (T3SS) with the complete hrp-hrc gene cluster and conserved effector locus was detected in the Pstag genome. The exchange effector region of the TPI contained genes potentially functioning in detoxification of the environment as well as two integrases, but no previously described T3SS effector homologues. In all, the Pstag EB037 genome contained homologues for at least 44 T3SS effectors with 30 having known functions. Plasmids similar with pTagA and pTagB of P. syringae pv. tagetis ICMP 4091 were also identified in the Pstag genome. The pTagA-like plasmid contained a complete Type IV secretion system (T4SS) with associated putative killer protein. Mutational analysis using transposon insertions within genes functioning in the T3SS and T4SS confirmed the role of both secretion systems and these plasmids in apical chlorosis. Transposon mutagenesis identified an additional 22 genes in loci, including two more plasmid-bound loci, involved in apical chlorosis on sunflower; some with known importance in other plant or animal pathosystems. CONCLUSIONS Apical chlorosis disease caused by Pstag EB037 is the result of a complex set of mechanisms. This study identified a TPI and homologues for at least 44 T3SS effectors, 30 of which with known functions in disease, and another 20 genes in loci correlated with apical chlorosis on sunflower. Two plasmids were detected that were correlated with apical chlorosis disease, one of which contained a complete T4SS that was correlated with disease. To our knowledge, we provide the first direct evidence for a T4SS functioning in disease by a pathogenic P. syringae strain.
Collapse
Affiliation(s)
- Jude E Maul
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - John Lydon
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Dilip Lakshman
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Colin Willard
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Hyesuk Kong
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
- Present Address: Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Beltsville, MD, 20993, USA
| | - Daniel P Roberts
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
- USDA-ARS, Office of National Programs, George Washington Carver Center, Beltsville, MD, 20705, USA.
| |
Collapse
|
2
|
Tripathi A, Jaiswal A, Kumar D, Chavda P, Pandit R, Joshi M, Blake DP, Tomley FM, Joshi CG, Dubey SK. Antimicrobial resistance in plant endophytes associated with poultry-manure application revealed by selective culture and whole genome sequencing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136166. [PMID: 39423640 DOI: 10.1016/j.jhazmat.2024.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Poultry manure is widely used as organic fertilizer in agriculture during the cultivation of crops, but the persistent high-level use of antibiotics in poultry production has raised concerns about the selection for reservoirs of antimicrobial resistance genes (ARGs). Previous studies have shown that the addition of poultry manure can increase the abundance of genes associated with resistance to tetracyclines, aminoglycosides, fluoroquinolones, sulfonamides, bacitracin, chloramphenicol, and macrolide-lincosamide-streptogramin in soil and plants. Understanding the microbial populations that harbor these ARGs is important to identify microorganisms that could enter the human food chain. Here, we test the hypothesis that environmental exposure to poultry manure increases the occurrence of antimicrobial resistance (AMR) in plant endophytes using selective culture, phenotypic Antibiotic Susceptibility Testing (AST), phylogenetic analysis, and whole genome sequencing (WGS). Endophytes from poultry manure treated Sorghum bicolor (L.) Moench plant root and stem samples showed increased phenotypic and genotypic resistance against multiple antibiotics compared to untreated controls. Comparison of AMR phenotype-to-genotype relationships highlighted the detection of multi-drug resistant (MDR) plant endophytes, demonstrating the value of genomic surveillance for emerging drug-resistant pathogens. The increased occurrence of ARGs in poultry manure-exposed endophytes highlights the need for responsible antibiotic use in poultry and animal farming to reduce contamination of ecological niches and transgression into endophytic plant microbiome compartments. It also emphasizes the requirement for proper manure management practices and vigilance in monitoring and surveillance efforts to tackle the growing problem of antibiotic resistance and preserve the efficacy of antibiotics for human and veterinary medicine.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Anjali Jaiswal
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Damer P Blake
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Fiona M Tomley
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Ham H, Park DS. New Insights and Approach Toward the Genetic Diversity and Strain Typing of Erwinia pyrifoliae Based on rsxC, an Electron Transport Gene. PLANT DISEASE 2024; 108:296-301. [PMID: 37669173 DOI: 10.1094/pdis-03-23-0475-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Erwinia pyrifoliae, a causal agent of black shoot blight in apple and pear trees, is a plant pathogenic bacterium first reported in South Korea. The symptoms of black shoot blight are very similar to those of the fire blight disease in apple and pear trees caused by E. amylovora, as E. pyrifoliae has a genetically very close relationship with E. amylovora. Recently, there have been reports that E. pyrifoliae causes disease in European strawberries, resulting in severe fruit loss that aroused great concern about its spread, distribution, and host range. Therefore, it is essential to establish a trustworthy approach to understanding the distribution patterns of E. pyrifoliae based on the genetic background to strengthen the barrier of potential spreading risks, although advanced methods have been provided to accurately detect E. pyrifoliae and E. amylovora. Consequently, this study discovered a noble and noteworthy gene, rsxC, capable of providing the pathogen genotype by comparing E. pyrifoliae genomic sequences in the international representative genome archive. Different numbers of 40-unit amino acid repeats in this gene among the strains induced intraspecific traits in RsxC. By comparing their repeat pattern, E. pyrifoliae isolates were divided into two main groups, branching into several clades via sequence alignment of 35 E. pyrifoliae isolates from various apple orchards from 2020 to 2021 in South Korea. The newly discovered quadraginta amino acid repeat within this gene would be a valuable genetic touchstone for determining the genotype and distribution pattern of E. pyrifoliae strains, ultimately leading to exploring their evolution. The function of amino acid repeats and the biological significance of strains need to be elucidated further.
Collapse
Affiliation(s)
- Hyeonheui Ham
- Crop Protection Division, National Institute of Agricultural Sciences, Wanju-gun 55365, Republic of Korea
| | - Dong Suk Park
- Crop Protection Division, National Institute of Agricultural Sciences, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
4
|
Sciallano C, Auguy F, Boulard G, Szurek B, Cunnac S. The Complete Genome Resource of Xanthomonas oryzae pv. oryzae CIX2779 Includes the First Sequence of a Plasmid for an African Representative of This Rice Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:73-77. [PMID: 36537805 DOI: 10.1094/mpmi-09-22-0191-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The bacterial plant pathogen Xanthomonas oryzae pv. oryzae is responsible for the foliar rice bacterial blight disease. Genetically contrasted, continent-specific, sublineages of this species can cause important damages to rice production both in Asia and Africa. We report on the genome of the CIX2779 strain of this pathogen, previously named NAI1 and originating from Niger. Oxford Nanopore long reads assembly and Illumina short reads polishing produced a genome sequence composed of a 4,725,792-bp circular chromosome and a 39,798-bp-long circular plasmid designated pCIX2779_1. The chromosome structure and base-level sequence are highly related to reference strains of African X. oryzae pv. oryzae and encode identical transcription activator-like effectors for virulence. Importantly, our in silico analysis strongly indicates that pCIX2779_1 is a genuine conjugative plasmid, the first indigenous one sequenced from an African strain of the X. oryzae species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Coline Sciallano
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Auguy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gabriel Boulard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sébastien Cunnac
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Albanese D, Cainelli C, Gualandri V, Larger S, Pindo M, Donati C. Genome sequencing provides new insights on the distribution of Erwinia amylovora lineages in northern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:584-590. [PMID: 35484918 PMCID: PMC9544390 DOI: 10.1111/1758-2229.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Erwinia amylovora is a Gram-negative bacterium that colonizes a wide variety of plant species causing recurrent local outbreaks of fire blight in crops of the Rosaceae family. Recent genomic surveys have documented the limited genomic diversity of this species, possibly related to a recent evolutionary bottleneck and a strong correlation between geography and phylogenetic structure of the species. Despite its economic importance, little is known about the genetic variability of co-circulating strains during local outbreaks. Here, we report the genome sequences of 82 isolates of E. amylovora, collected from different host plants in a period of 16 years in Trentino, a small region in the Northeastern Italian Alps that has been characterized by recurrent outbreaks of fire blight in apple orchards. While the genome isolated before 2018 are closely related to other strains already present in Europe, we found a novel subclade composed only by isolates that were sampled starting from 2018 and demonstrate that the endemic population of this pathogen can be composed by mixture of strains.
Collapse
Affiliation(s)
- Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Christian Cainelli
- Center for Technology Transfer, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Valeria Gualandri
- Center for Technology Transfer, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
- Center of Agriculture, Food and Environment (C3A)University of TrentoTrentoItaly
| | - Simone Larger
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Massimo Pindo
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1San Michele all'Adige38010Italy
| |
Collapse
|
6
|
Velasco-Amo MP, Arias-Giraldo LF, Olivares-García C, Denancé N, Jacques MA, Landa BB. Use of traC Gene to Type the Incidence and Distribution of pXFAS_5235 Plasmid-Bearing Strains of Xylella fastidiosa subsp. fastidiosa ST1 in Spain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1562. [PMID: 35736713 PMCID: PMC9228473 DOI: 10.3390/plants11121562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Xylella fastidiosa (Xf) is a phytopathogenic bacterium with a repertoire of self-replicating genetic elements, including plasmids, pathogenicity islands, and prophages. These elements provide potential avenues for horizontal gene transfer both within and between species and have the ability to confer new virulence traits, including the ability to colonize new host plants. However, they can also serve as a 'footprint' to type plasmid-bearing strains. Genome sequencing of several strains of Xf subsp. fastidiosa sequence type (ST) 1 from Mallorca Island, Spain, revealed the presence of a 38 kb plasmid (pXFAS_5235). In this study, we developed a PCR-based typing approach using primers targeting the traC gene to determine the presence of pXFAS_5235 plasmid or other plasmids carrying this gene in a world-wide collection of 65 strains X. fastidiosa from different subspecies and STs or in 226 plant samples naturally infected by the bacterium obtained from the different outbreaks of Xf in Spain. The traC gene was amplified only in the plant samples obtained from Mallorca Island infected by Xf subsp. fastidiosa ST1 and from all Spanish strains belonging to this ST. Maximum-likelihood phylogenetic tree of traC revealed a close relatedness among Spanish and Californian strains carrying similar plasmids. Our results confirm previous studies, which suggested that a single introduction event of Xf subsp. fastidiosa ST1 occurred in the Balearic Islands. Further studies on the presence and role of plasmids in Xf strains belonging to the same or different subspecies and STs can provide important information in studies of epidemiology, ecology, and evolution of this plant pathogen.
Collapse
Affiliation(s)
- María Pilar Velasco-Amo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Luis F. Arias-Giraldo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Concepción Olivares-García
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Nicolás Denancé
- Groupe d’Étude et de controle des Variétes Et des Semences GEVES, CEDEX, F-49071 Beaucouzé, France;
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Marie-Agnès Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Blanca B. Landa
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| |
Collapse
|
7
|
Batstone RT. Genomes within genomes: nested symbiosis and its implications for plant evolution. THE NEW PHYTOLOGIST 2022; 234:28-34. [PMID: 34761378 DOI: 10.1111/nph.17847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Many important plant traits are products of nested symbiosis: mobile genetic elements (MGEs) are nested within microbes, which in turn, are nested within plants. Plant trait variation is therefore not only determined by the plant's genome, but also by loci within microbes and MGEs. Yet it remains unclear how interactions and coevolution within nested symbiosis impacts the evolution of plant traits. Despite the complexities of nested symbiosis, including nonadditive interactions, understanding the evolution of plant traits is facilitated by combining quantitative genetic and functional genomic approaches that explicitly consider sources of nested genetic variation (from loci in MGEs to microbiomes). Additionally, understanding coevolution within nested symbiosis enables us to design or select for MGEs that promote plant health.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
8
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Shneider M, Ignatov A, Miroshnikov K. Curtobacterium spp. and Curtobacterium flaccumfaciens: Phylogeny, Genomics-Based Taxonomy, Pathogenicity, and Diagnostics. Curr Issues Mol Biol 2022; 44:889-927. [PMID: 35723345 PMCID: PMC8929003 DOI: 10.3390/cimb44020060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
The genus of Curtobacterium, belonging to the Microbacteriaceae family of the Actinomycetales order, includes economically significant pathogenic bacteria of soybeans and other agricultural crops. Thorough phylogenetic and full-genome analysis using the latest genomic data has demonstrated a complex and contradictory taxonomic picture within the group of organisms classified as the Curtobacterium species. Based on these data, it is possible to delineate about 50 new species and to reclassify a substantial part of the Curtobacterium strains. It is suggested that 53 strains, including most of the Curtobacterium flaccumfaciens pathovars, can compose a monophyletic group classified as C. flaccumfaciens. A genomic analysis using the most recent inventory of bacterial chromosomal and plasmid genomes deposited to GenBank confirmed the possible role of Microbacteriaceae plasmids in pathogenicity and demonstrated the existence of a group of related plasmids carrying virulence factors and possessing a gene distantly related to DNA polymerase found in bacteriophages and archaeal and eukaryotic viruses. A PCR diagnostic assay specific to the genus Curtobacterium was developed and tested. The presented results assist in the understanding of the evolutionary relations within the genus and can lay the foundation for further taxonomic updates.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia; (A.L.); (A.T.); (M.S.)
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, Ulan-Batorskaya Str., 3, 664033 Irkutsk, Russia
- Correspondence: (P.E.); (K.M.)
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia; (A.L.); (A.T.); (M.S.)
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127434 Moscow, Russia;
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia; (A.L.); (A.T.); (M.S.)
- Moscow Institute of Physics and Technology, Federal University, Institutskiy per., 9, 141701 Dolgoprudny, Moscow Oblast, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia; (A.L.); (A.T.); (M.S.)
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia;
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia; (A.L.); (A.T.); (M.S.)
- Correspondence: (P.E.); (K.M.)
| |
Collapse
|
9
|
Chou L, Lin YC, Haryono M, Santos MNM, Cho ST, Weisberg AJ, Wu CF, Chang JH, Lai EM, Kuo CH. Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 2022; 20:16. [PMID: 35022048 PMCID: PMC8756689 DOI: 10.1186/s12915-021-01221-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.
Collapse
Affiliation(s)
- Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mary Nia M Santos
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Chih-Feng Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Yuan X, McGhee GC, Slack SM, Sundin GW. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1193-1208. [PMID: 34081536 DOI: 10.1094/mpmi-04-21-0095-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Gayle C McGhee
- United States Department of Agriculture, Agriculture Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, U.S.A
| | - Suzanne M Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
11
|
A Large Tn7-like Transposon Confers Hyper-Resistance to Copper in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2021; 87:AEM.02528-20. [PMID: 33361370 PMCID: PMC8090865 DOI: 10.1128/aem.02528-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Copper resistance mechanisms provide an important adaptive advantage to plant pathogenic bacteria under exposure to copper treatments. Copper resistance determinants have been described in Pseudomonas syringae pv. syringae (Pss) strains isolated from mango intimately associated with 62 kb plasmids belonging to the pPT23A family (PFP). It has been previously described that the indiscriminate use of copper-based compounds promotes the selection of copper resistant bacterial strains and constitutes a selective pressure in the evolution of copper resistance determinants. Hence, we have explored in this study the copper resistance evolution and the distribution of specific genetic determinants in two different Pss mango populations isolated from the same geographical regions, mainly from southern Spain with an average of 20 years of difference. The total content of plasmids, in particular the 62 kb plasmids, and the number of copper resistant Pss strains were maintained at similar levels over the time. Interestingly, the phylogenetic analysis indicated the presence of a phylogenetic subgroup (PSG) in the Pss mango phylotype, mostly composed of the recent Pss population analyzed in this study that was strongly associated with a hyper-resistant phenotype to copper. Genome sequencing of two selected Pss strains from this PSG revealed the presence of a large Tn7-like transposon of chromosomal location, which harbored putative copper and arsenic resistance genes (COARS Tn7-like). Transformation of the copper sensitive Pss UMAF0158 strain with some putative copper resistance genes and RT-qPCR experiments brought into light the role of COARS Tn7-like transposon in the hyper-resistant phenotype to copper in Pss.IMPORTANCECopper compounds have traditionally been used as standard bactericides in agriculture in the past few decades. However, the extensive use of copper has fostered the evolution of bacterial copper resistance mechanisms. Pseudomonas syringae is a plant pathogenic bacterium used worldwide as a model to study plant-pathogen interactions. The adaption of P. syringae to plant surface environment is the most important step prior to an infection. In this scenario, copper resistance mechanisms could play a key role in improving its epiphytic survival. In this work, a novel Tn7-like transposon of chromosomal location was detected in P. syringae pv. syringae strains isolated from mango. This transposon conferred the highest resistance to copper sulfate described to date for this bacterial phytopathogen. Understanding in depth the copper resistance mechanisms and their evolution are important steps to the agricultural industry to get a better improvement of disease management strategies.
Collapse
|
12
|
Añorga M, Pintado A, Ramos C, De Diego N, Ugena L, Novák O, Murillo J. Genes ptz and idi, Coding for Cytokinin Biosynthesis Enzymes, Are Essential for Tumorigenesis and In Planta Growth by P. syringae pv. savastanoi NCPPB 3335. FRONTIERS IN PLANT SCIENCE 2020; 11:1294. [PMID: 32973852 PMCID: PMC7472798 DOI: 10.3389/fpls.2020.01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. savastanoi elicits aerial tumors on olive plants and is also able to synthesize large amounts of auxins and cytokinins. The auxin indoleacetic acid was shown to be required for tumorigenesis, but there is only correlational evidence suggesting a role for cytokinins. The model strain NCPPB 3335 contains two plasmid-borne genes coding for cytokinin biosynthesis enzymes: ptz, for an isopentenyl transferase and idi, for an isopentenyl-diphosphate delta-isomerase. Phylogenetic analyses showed that carriage of ptz and idi is not strictly associated with tumorigenic bacteria, that both genes were linked when first acquired by P. syringae, and that a different allele of ptz has been independently acquired by P. syringae pv. savastanoi and closely related bacteria. We generated mutant derivatives of NCPPB 3335 cured of virulence plasmids or with site-specific deletions of genes ptz and/or idi and evaluated their virulence in lignified and micropropagated olive plants. Strains lacking ptz, idi, or both produced tumors with average volumes up to 29 times smaller and reached populations up to two orders of magnitude lower than those induced by strain NCPPB 3335; these phenotypes reverted by complementation with the cloned genes. Trans-zeatin was the most abundant cytokinin in culture filtrates of NCPPB 3335. Deletion of gene ptz abolished biosynthesis of trans-zeatin and dihydrozeatin, whereas a reduced but significant amount of isopentenyladenine was still detected in the medium, suggesting the existence of other genes contributing to cytokinin biosynthesis in P. syringae. Conversely, extracts from strains lacking gene idi contained significantly higher amounts of trans-zeatin than extracts from the wild-type strain but similar amounts of the other cytokinins. This suggests that Idi might promote tumorigenesis by ensuring the biosynthesis of the most active cytokinin forms, their correct balance in planta, or by regulating the expression of other virulence genes. Therefore, gene ptz, but not gene idi, is essential for the biosynthesis of high amounts of cytokinins in culture; however, both ptz and idi are individually essential for the adequate development of tumors on olive plants by Psv NCPPB 3335.
Collapse
Affiliation(s)
- Maite Añorga
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
| |
Collapse
|
13
|
Singh J, Khan A. Distinct patterns of natural selection determine sub-population structure in the fire blight pathogen, Erwinia amylovora. Sci Rep 2019; 9:14017. [PMID: 31570749 PMCID: PMC6768868 DOI: 10.1038/s41598-019-50589-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
The fire blight pathogen, Erwinia amylovora (EA), causes significant economic losses in rosaceae fruit crops. Recent genome sequencing efforts have explored genetic variation, population structure, and virulence levels in EA strains. However, the genomic aspects of population bottlenecks and selection pressure from geographical isolation, host range, and management practices are yet unexplored. We conducted a comprehensive analysis of whole genome sequences of 41 strains to study genetic diversity, population structure, and the nature of selection affecting sub-population differentiation in EA. We detected 72,741 SNPs and 2,500 Indels, representing about six-fold more diversity than previous reports. Moreover, nonsynonymous substitutions were identified across the effector regions, suggesting a role in defining virulence of specific strains. EA plasmids had more diversity than the chromosome sequence. Population structure analysis identified three distinct sub-groups in EA strains, with North American strains displaying highest genetic diversity. A five kilobase genomic window scan showed differences in genomic diversity and selection pressure between these three sub-groups. This analysis also highlighted the role of purifying and balancing selection in shaping EA genome structure. Our analysis provides novel insights into the genomic diversity and selection forces accompanying EA population differentiation.
Collapse
Affiliation(s)
- Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
14
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. FRONTIERS IN PLANT SCIENCE 2019; 10:570. [PMID: 31139201 PMCID: PMC6518948 DOI: 10.3389/fpls.2019.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 05/29/2023]
Abstract
The Pseudomonas syringae complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of P. syringae have been described based on distinct host ranges and disease symptoms they cause. These pathovars cause disease relying on an array of virulence mechanisms. However, P. syringae pv. syringae (Pss) is the most polyphagous bacterium in the P. syringae complex, based on its wide host range, that primarily affects woody and herbaceous host plants. In early 1990s, bacterial apical necrosis (BAN) of mango trees, a critical disease elicited by Pss in Southern Spain was described for the first time. Pss exhibits important epiphytic traits and virulence factors, which may promote its survival and pathogenicity in mango trees and in other plant hosts. Over more than two decades, Pss strains isolated from mango trees have been comprehensively investigated to elucidate the mechanisms that governs their epiphytic and pathogenic lifestyles. In particular, the vast majority of Pss strains isolated from mango trees produce an antimetabolite toxin, called mangotoxin, whose leading role in virulence has been clearly demonstrated. Moreover, phenotypic, genetic and phylogenetic approaches support that Pss strains producers of BAN symptoms on mango trees all belong to a single phylotype within phylogroup 2, are adapted to the mango host, and produce mangotoxin. Remarkably, a genome sequencing project of the Pss model strain UMAF0158 revealed the presence of other factors that may play major roles in its different lifestyles, such as the presence of two different type III secretion systems, two type VI secretion systems and an operon for cellulose biosynthesis. The role of cellulose in increasing mango leaf colonization and biofilm formation, and impairing virulence of Pss, suggests that cellulose may play a pivotal role with regards to the balance of its different lifestyles. In addition, 62-kb plasmids belonging to the pPT23A-family of plasmids (PFPs) have been strongly associated with Pss strains that inhabit mango trees. Further, complete sequence and comparative genomic analyses revealed major roles of PFPs in detoxification of copper compounds and ultraviolet radiation resistance, both improving the epiphytic lifestyle of Pss on mango surfaces. Hence, in this review we summarize the research that has been conducted on Pss by our research group to elucidate the molecular mechanisms that underpin the epiphytic and pathogenic lifestyle on mango trees. Finally, future directions in this particular plant-pathogen story are discussed.
Collapse
|
15
|
Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RDLR, Souza EB, Jacques MA. Xanthomonas citri pv. viticola Affecting Grapevine in Brazil: Emergence of a Successful Monomorphic Pathogen. FRONTIERS IN PLANT SCIENCE 2019; 10:489. [PMID: 31057588 PMCID: PMC6482255 DOI: 10.3389/fpls.2019.00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The pathovar viticola of Xanthomonas citri causes bacterial canker of grapevine. This disease was first recorded in India in 1972, and later in Brazil in 1998, where its distribution is currently restricted to the northeastern region. A multilocus sequence analysis (MLSA) based on seven housekeeping genes and a multilocus variable number of tandem repeat analysis (MLVA) with eight loci were performed in order to assess the genetic relatedness among strains from India and Brazil. Strains isolated in India from three related pathovars affecting Vitaceae species and pathogenic strains isolated from Amaranthus sp. found in bacterial canker-infected vineyards in Brazil were also included. MLSA revealed lack of diversity in all seven genes and grouped grapevine and Amaranthus strains in a monophyletic group in X. citri. The VNTR (variable number of tandem repeat) typing scheme conducted on 107 strains detected 101 haplotypes. The total number of alleles per locus ranged from 5 to 12. A minimum spanning tree (MST) showed that Brazilian strains were clearly separated from Indian strains, which showed unique alleles at three loci. The two strains isolated from symptomatic Amaranthus sp. presented unique alleles at two loci. STRUCTURE analyses revealed three groups congruent with MST and a fourth group with strains from India and Brazil. Admixture among populations were observed in all groups. MST, STRUCTURE and e-BURST analyses showed that the strains collected in 1998 belong to two distinct groups, with predicted founder genotypes from two different vineyards in the same region. This suggest that one introduction of grape planting materials contaminated with genetically distinct strains took place, which was followed by pathogen adaptation. Genome sequencing of one Brazilian strain confirmed typical attributes of pathogenic xanthomonads and allowed the design of a complementary VNTR typing scheme dedicated to X. citri pv. viticola that will allow further epidemiological survey of this genetically monomorphic pathovar.
Collapse
Affiliation(s)
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Sophie Cesbron
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Perrine Portier
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Armelle Darrasse
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Marco A. S. Gama
- Laboratório de Fitobacteriologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Rosa de L. R. Mariano
- Laboratório de Fitobacteriologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Elineide B. Souza
- Laboratório de Fitobacteriologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| |
Collapse
|
16
|
Bardaji L, Añorga M, Echeverría M, Ramos C, Murillo J. The toxic guardians - multiple toxin-antitoxin systems provide stability, avoid deletions and maintain virulence genes of Pseudomonas syringae virulence plasmids. Mob DNA 2019; 10:7. [PMID: 30728866 PMCID: PMC6354349 DOI: 10.1186/s13100-019-0149-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae is a γ-proteobacterium causing economically relevant diseases in practically all cultivated plants. Most isolates of this pathogen contain native plasmids collectively carrying many pathogenicity and virulence genes. However, P. syringae is generally an opportunistic pathogen primarily inhabiting environmental reservoirs, which could exert a low selective pressure for virulence plasmids. Additionally, these plasmids usually contain a large proportion of repeated sequences, which could compromise plasmid integrity. Therefore, the identification of plasmid stability determinants and mechanisms to preserve virulence genes is essential to understand the evolution of this pathogen and its adaptability to agroecosystems. Results The three virulence plasmids of P. syringae pv. savastanoi NCPPB 3335 contain from one to seven functional stability determinants, including three highly active toxin-antitoxin systems (TA) in both pPsv48A and pPsv48C. The TA systems reduced loss frequency of pPsv48A by two orders of magnitude, whereas one of the two replicons of pPsv48C likely confers stable inheritance by itself. Notably, inactivation of the TA systems from pPsv48C exposed the plasmid to high-frequency deletions promoted by mobile genetic elements. Thus, recombination between two copies of MITEPsy2 caused the deletion of an 8.3 kb fragment, with a frequency of 3.8 ± 0.3 × 10− 3. Likewise, one-ended transposition of IS801 generated plasmids containing deletions of variable size, with a frequency of 5.5 ± 2.1 × 10− 4, of which 80% had lost virulence gene idi. These deletion derivatives were stably maintained in the population by replication mediated by repJ, which is adjacent to IS801. IS801 also promoted deletions in plasmid pPsv48A, either by recombination or one-ended transposition. In all cases, functional TA systems contributed significantly to reduce the occurrence of plasmid deletions in vivo. Conclusions Virulence plasmids from P. syringae harbour a diverse array of stability determinants with a variable contribution to plasmid persistence. Importantly, we showed that multiple plasmid-borne TA systems have a prominent role in preserving plasmid integrity and ensuring the maintenance of virulence genes in free-living conditions. This strategy is likely widespread amongst native plasmids of P. syringae and other bacteria. Electronic supplementary material The online version of this article (10.1186/s13100-019-0149-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leire Bardaji
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Maite Añorga
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Myriam Echeverría
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Cayo Ramos
- 2Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Universidad de Málaga-CSIC, Área de Genética, Universidad de Málaga, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - Jesús Murillo
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| |
Collapse
|
17
|
Abstract
Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| |
Collapse
|
18
|
Bignell DRD, Cheng Z, Bown L. The coronafacoyl phytotoxins: structure, biosynthesis, regulation and biological activities. Antonie van Leeuwenhoek 2018; 111:649-666. [PMID: 29307013 DOI: 10.1007/s10482-017-1009-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Phytotoxins are secondary metabolites that contribute to the development and/or severity of diseases caused by various plant pathogenic microorganisms. The coronafacoyl phytotoxins are an important family of plant toxins that are known or suspected to be produced by several phylogenetically distinct plant pathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabies. At least seven different family members have been identified, of which coronatine was the first to be described and is the best-characterized. Though nonessential for disease development, coronafacoyl phytotoxins appear to enhance the severity of disease symptoms induced by pathogenic microbes during host infection. In addition, the identification of coronafacoyl phytotoxin biosynthetic genes in organisms not known to be plant pathogens suggests that these metabolites may have additional roles other than as virulence factors. This review focuses on our current understanding of the structures, biosynthesis, regulation, biological activities and evolution of coronafacoyl phytotoxins as well as the different methods that are used to detect these metabolites and the organisms that produce them.
Collapse
Affiliation(s)
- Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
19
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 2017; 18:365. [PMID: 28486968 PMCID: PMC5424326 DOI: 10.1186/s12864-017-3763-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
20
|
Bardaji L, Añorga M, Ruiz-Masó JA, Del Solar G, Murillo J. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules. Front Microbiol 2017; 8:190. [PMID: 28243228 PMCID: PMC5304414 DOI: 10.3389/fmicb.2017.00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 01/05/2023] Open
Abstract
Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities.
Collapse
Affiliation(s)
- Leire Bardaji
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain
| | - Maite Añorga
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain
| | - José A Ruiz-Masó
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Gloria Del Solar
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Jesús Murillo
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain
| |
Collapse
|
21
|
Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol Ecol 2017; 26:2131-2149. [PMID: 28101896 DOI: 10.1111/mec.14007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.
Collapse
Affiliation(s)
- D Richard
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France.,Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France.,Université de la Réunion, UMR PVBMT, F-97490, St Denis, Réunion, France
| | - V Ravigné
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - A Rieux
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B Facon
- INRA, UMR PVBMT, F-97410, St Pierre, Réunion, France.,INRA, UMR CBGP, F-34090, Montpellier, France
| | - C Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - K Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Grygiel
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - S Javegny
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - M Terville
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B I Canteros
- INTA, Estación Experimental Agropecuaria Bella Vista, Bella Vista, Argentina
| | - I Robène
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - C Vernière
- CIRAD, UMR BGPI, F-34398, Montpellier, France
| | - A Chabirand
- Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France
| | - O Pruvost
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Lefeuvre
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| |
Collapse
|
22
|
Niu XN, Wei ZQ, Zou HF, Xie GG, Wu F, Li KJ, Jiang W, Tang JL, He YQ. Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiol 2015; 15:233. [PMID: 26498126 PMCID: PMC4619425 DOI: 10.1186/s12866-015-0562-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Bacterial plasmids have a major impact on metabolic function and adaptation of their hosts. An indigenous plasmid was identified in a Chinese isolate (GX01) of the invasive phytopathogen Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS). To elucidate the biological functions of the plasmid, we have sequenced and comprehensively annotated the plasmid. METHODS The plasmid DNA was extracted from Xoc strain GX01 by alkaline lysis and digested with restriction enzymes. The cloned and subcloned DNA fragments in pUC19 were sequenced by Sanger sequencing. Sequences were assembled by using Sequencher software. Gaps were closed by primer walking and sequencing, and multi-PCRs were conducted through the whole plasmid sequence for verification. BLAST, phylogenetic analysis and dinucleotide calculation were performed for gene annotation and DNA structure analysis. Transformation, transconjugation and stress tolerance tests were carried out for plasmid function assays. RESULTS The indigenous plasmid from Xoc strain GX01, designated pXOCgx01, is 53,206-bp long and has been annotated to possess 64 open reading frames (ORFs), including genes encoding type IV secretion system, heavy metal exporter, plasmid stability factors, and DNA mobile factors, i.e., the Tn3-like transposon. Bioinformatics analysis showed that pXOCgx01 has a mosaic structure containing different genome contexts with distinct genomic heterogeneities. Phylogenetic analysis indicated that the closest relative of pXOCgx01 is pXAC64 from Xanthomonas axonopodis pv. citri str. 306. It was estimated that there are four copies of pXOCgx01 per cell of Xoc GX01 by PCR assay and the calculation of whole genome shotgun sequencing data. We demonstrate that pXOCgx01 is a self-transmissible plasmid and can replicate in some Xanthomonas spp. strains, but not in Escherichia coli DH5α. It could significantly enhance the tolerance of Xanthomonas oryzae pv. oryzae PXO99A to the stresses of heavy metal ions. The plasmid survey indicated that nine out of 257 Xoc Chinese isolates contain plasmids. CONCLUSIONS pXOCgx01 is the first report of indigenous plasmid from Xanthomonas oryzae pv. oryzicola, and the first completely sequenced plasmid from Xanthomonas oryzae species. It is a self-transmissible plasmid and has a mosaic structure, containing genes for macromolecule secretion, heavy metal exportation, and DNA mobile factors, especially the Tn3-like transposon which may provide transposition function for mobile insertion cassette and play a major role in the spread of pathogenicity determinants. The results will be helpful to elucidate the biological significance of this cryptic plasmid and the adaptive evolution of Xoc.
Collapse
Affiliation(s)
- Xiang-Na Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Zhi-Qiong Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Hai-Fan Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Gui-Gang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Feng Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Kang-Jia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| |
Collapse
|
23
|
Llop P. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids. Front Microbiol 2015; 6:874. [PMID: 26379649 PMCID: PMC4551865 DOI: 10.3389/fmicb.2015.00874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 08/10/2015] [Indexed: 12/23/2022] Open
Abstract
New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them.
Collapse
Affiliation(s)
- Pablo Llop
- Department of Evolutionary Genetics, Cavanilles Institute, University of Valencia , Paterna, Valencia, Spain
| |
Collapse
|
24
|
Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J. The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elements 2014; 1:55-65. [PMID: 22016845 DOI: 10.4161/mge.1.1.16432] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/15/2023] Open
Abstract
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens' frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorize the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution.
Collapse
Affiliation(s)
- Robert W Jackson
- School of Biological Sciences; University of Reading; Whiteknights; Reading, UK
| | | | | | | | | |
Collapse
|
25
|
Chopra N, Saumitra, Pathak A, Bhatnagar R, Bhatnagar S. Linkage, mobility, and selfishness in the MazF family of bacterial toxins: a snapshot of bacterial evolution. Genome Biol Evol 2014; 5:2268-84. [PMID: 24265503 PMCID: PMC3879964 DOI: 10.1093/gbe/evt175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prokaryotic MazF family toxins cooccur with cognate antitoxins having divergent
DNA-binding folds and can be of chromosomal or plasmid origin. Sequence similarity search
was carried out to identify the Toxin–Antitoxin (TA) operons of MazF family followed
by sequence analysis and phylogenetic studies. The genomic DNA upstream of the TA operons
was searched for the presence of regulatory motifs. The MazF family toxins showed a
conserved hydrophobic pocket in a multibinding site and are present in pathogenic
bacteria. The toxins of the MazF family are associated with four main types of cognate
antitoxin partners and cluster as a subfamily on the branches of the phylogenetic tree.
This indicates that transmission of the entire operon is the dominant mode of inheritance.
The plasmid borne TA modules were interspersed between the chromosomal TA modules of the
same subfamily, compatible with a frequent interchange of TA genes between the chromosome
and the plasmid akin to that observed for antibiotic resistance gens. The split network of
the MazF family toxins showed the AbrB-linked toxins as a hub of horizontal gene transfer.
Distinct motifs are present in the upstream region of each subfamily. The presence of MazF
family TA modules in pathogenic bacteria and identification of a conserved binding pocket
are significant for the development of novel antibacterials to disrupt the TA interaction.
However, the role of TAs in stress resistance needs to be established. Phylogenetic
studies provide insight into the evolution of MazF family TAs and effect on the bacterial
genome.
Collapse
Affiliation(s)
- Nikita Chopra
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | | | | | | | | |
Collapse
|
26
|
Jutkina J, Hansen LH, Li L, Heinaru E, Vedler E, Jõesaar M, Heinaru A. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Plasmid 2013; 70:393-405. [PMID: 24095800 DOI: 10.1016/j.plasmid.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/27/2013] [Accepted: 09/20/2013] [Indexed: 01/21/2023]
Abstract
In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+C content of 53.75%. A total of 135 open reading frames (ORFs) were predicted to encode proteins, among them genes for catabolism of toluene, plasmid replication, maintenance and conjugative transfer. ORFs encoding proteins with putative functions in stress response, transposition and site-specific recombination were also predicted. Analysis of the organization and nucleotide sequence of pD2RT backbone region revealed high degree of similarity to the draft genome sequence data of the plant-pathogenic pseudomonad Pseudomonas syringae pv. glycinea strain B076, exhibiting relatedness to pPT23A plasmid family. The pD2RT backbone is also closely related to that of pGRT1 of Pseudomonas putida strain DOT-T1E and pBVIE04 of Burkholderia vietnamiensis strain G4, both plasmids are associated with resistance to toluene. The ability of pD2RT to self-transfer by conjugation to P. putida recipient strain PaW340 was experimentally determined. Genetic organization of toluene-degrading (xyl) genes and flanking DNA segments resembles the structure of Tn1721-related class II transposon Tn4656 of TOL plasmid pWW53 of P. putida strain MT53. The complete sequence of the plasmid pD2RT extends the known range of xyl genes carriers, being the first completely sequenced TOL plasmid, which is not related to well-studied IncP plasmid groups. We also verified the functionality of the catabolic route encoded by pD2RT by monitoring the expression of the xylE gene in pD2RT bearing hosts along with bacterial strains containing TOL plasmid of IncP-9 group. The growth kinetics of plasmid-bearing strains was found to be affected by particular TOL plasmid.
Collapse
Affiliation(s)
- Jekaterina Jutkina
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23a, 51010 Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Stockwell VO, Davis EW, Carey A, Shaffer BT, Mavrodi DV, Hassan KA, Hockett K, Thomashow LS, Paulsen IT, Loper JE. pA506, a conjugative plasmid of the plant epiphyte Pseudomonas fluorescens A506. Appl Environ Microbiol 2013; 79:5272-82. [PMID: 23811504 PMCID: PMC3753976 DOI: 10.1128/aem.01354-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/21/2013] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.
Collapse
Affiliation(s)
- Virginia O. Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Alyssa Carey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Brenda T. Shaffer
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Dmitri V. Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Kevin Hockett
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Linda S. Thomashow
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
- Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, USA
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| |
Collapse
|
28
|
Gutiérrez-Barranquero JA, de Vicente A, Carrión VJ, Sundin GW, Cazorla FM. Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Appl Environ Microbiol 2013; 79:1028-33. [PMID: 23183969 PMCID: PMC3568574 DOI: 10.1128/aem.02644-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/15/2012] [Indexed: 11/20/2022] Open
Abstract
We describe the genetic organization of a copper-resistant plasmid containing copG and cusCBA genes in the plant pathogen Pseudomonas syringae. Chromosomal variants of czcCBA and a plasmid variant of cusCBA were present in different P. syringae pathovar strains. Transformation of the copper-sensitive Pseudomonas syringae pv. syringae FF5 strain with copG or cusCBA conferred copper resistance, and quantitative real-time PCR (qRT-PCR) experiments confirmed their induction by copper.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
29
|
Ramos C, Matas IM, Bardaji L, Aragón IM, Murillo J. Pseudomonas savastanoi pv. savastanoi: some like it knot. MOLECULAR PLANT PATHOLOGY 2012; 13:998-1009. [PMID: 22805238 PMCID: PMC6638699 DOI: 10.1111/j.1364-3703.2012.00816.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UNLABELLED Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot. SYNONYMS Pseudomonas syringae pv. savastanoi. TAXONOMY Kingdom Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Family Pseudomonadaceae; Genus Pseudomonas; included in genomospecies 2 together with at least P. amygdali, P. ficuserectae, P. meliae and 16 other pathovars from the P. syringae complex (aesculi, ciccaronei, dendropanacis, eriobotryae, glycinea, hibisci, mellea, mori, myricae, phaseolicola, photiniae, sesami, tabaci, ulmi and certain strains of lachrymans and morsprunorum); when a formal proposal is made for the unification of these bacteria, the species name P. amygdali would take priority over P. savastanoi. MICROBIOLOGICAL PROPERTIES Gram-negative rods, 0.4-0.8 × 1.0-3.0 μm, aerobic. Motile by one to four polar flagella, rather slow growing, optimal temperatures for growth of 25-30 °C; oxidase negative, arginine dihydrolase negative; elicits the hypersensitive response on tobacco; most isolates are fluorescent and levan negative, although some isolates are nonfluorescent and levan positive. HOST RANGE P. savastanoi pv. savastanoi causes tumours in cultivated and wild olive and ash (Fraxinus excelsior). Although strains from olive have been reported to infect oleander (Nerium oleander), this is generally not the case; however, strains of P. savastanoi pv. nerii can infect olive. Pathovars fraxini and nerii are differentiated from pathovar savastanoi mostly in their host range, and were not formally recognized until 1996. Literature before about 1996 generally names strains of the three pathovars as P. syringae ssp. savastanoi or P. savastanoi ssp. savastanoi, contributing to confusion on the host range and biological properties. DISEASE SYMPTOMS Symptoms of infected trees include hyperplastic growths (tumorous galls or knots) on the stems and branches of the host plant and, occasionally, on leaves and fruits. EPIDEMIOLOGY The pathogen can survive and multiply on aerial plant surfaces, as well as in knots, from where it can be dispersed by rain, wind, insects and human activities, entering the plant through wounds. Populations are very unevenly distributed in the plant, and suffer drastic fluctuations throughout the year, with maximum numbers of bacteria occurring during rainy and warm months. Populations of P. savastanoi pv. savastanoi are normally associated with nonpathogenic bacteria, both epiphytically and endophytically, and have been demonstrated to form mutualistic consortia with Erwinia toletana and Pantoea agglomerans, which could result in increased bacterial populations and disease symptoms. DISEASE CONTROL Based on preventive measures, mostly sanitary and cultural practices. Integrated control programmes benefit from regular applications of copper formulations, which should be maintained for at least a few years for maximum benefit. Olive cultivars vary in their susceptibility to olive knot, but there are no known cultivars with full resistance to the pathogen. USEFUL WEBSITES http://www.pseudomonas-syringae.org/; http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; ASAP access to the P. savastanoi pv. savastanoi NCPPB 3335 genome sequence https://asap.ahabs.wisc.edu/asap/logon.php.
Collapse
Affiliation(s)
- Cayo Ramos
- Área de Genética, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | | | | | | | | |
Collapse
|
30
|
Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. MOLECULAR PLANT PATHOLOGY 2012; 13:631-40. [PMID: 22353258 PMCID: PMC6638780 DOI: 10.1111/j.1364-3703.2012.00788.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year. TAXONOMY Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae. MICROBIOLOGICAL PROPERTIES Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves. HOST RANGE Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta. DISEASE SYMPTOMS In green-fleshed and yellow-fleshed kiwifruits, the symptoms include brown-black leaf spots often surrounded by a chlorotic margin, blossom necrosis, extensive twig die-back, reddening of the lenticels, extensive cankers along the main trunk and leader, and bleeding cankers on the trunk and the leader with a whitish to orange ooze. EPIDEMIOLOGY Pseudomonas syringae pv. actinidiae can effectively colonize its host plants throughout the year. Bacterial exudates can disperse a large amount of inoculum within and between orchards. In the spring, temperatures ranging from 12 to 18 °C, together with humid conditions, can greatly favour the multiplication of the bacterium, allowing it to systemically move from the leaf to the young shoots. During the summer, very high temperatures can reduce the multiplication and dispersal of the bacterium. Some agronomical techniques, as well as frost, wind, rain and hail storms, can contribute to further spreading. DISEASE CONTROL An integrated approach that takes into consideration precise scheduled spray treatments with effective and environmentally friendly bactericides and equilibrated plant nutrition, coupled with preventive measures aimed at drastically reducing the bacterial inoculum, currently seems to be the possible best solution for coexistence with the disease. The development of resistant cultivars and pollinators, effective biocontrol agents, including bacteriophages, and compounds that induce the systemic activation of plant defence mechanisms is in progress. USEFUL WEBSITES Up-to-date information on bacterial canker research progress and on the spread of the disease in New Zealand can be found at: http://www.kvh.org.nz. Daily information on the spread of the disease and on the research being performed worldwide can be found at: http://www.freshplaza.it.
Collapse
Affiliation(s)
- Marco Scortichini
- CRA- Research Centre for Fruit Trees, Via di Fioranello, 52, 00134 Rome, Italy.
| | | | | | | | | |
Collapse
|
31
|
McGhee GC, Sundin GW. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One 2012; 7:e41706. [PMID: 22860008 PMCID: PMC3409226 DOI: 10.1371/journal.pone.0041706] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/25/2012] [Indexed: 12/02/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population.
Collapse
Affiliation(s)
- Gayle C. McGhee
- Department of Plant Pathology and Centers for Microbial Ecology and Pathogenesis, Michigan State University, East Lansing, Michigan, United States of America
| | - George W. Sundin
- Department of Plant Pathology and Centers for Microbial Ecology and Pathogenesis, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
32
|
Singh PK, Ramachandran G, Durán-Alcalde L, Alonso C, Wu LJ, Meijer WJJ. Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein. Environ Microbiol 2012; 14:2812-25. [PMID: 22779408 DOI: 10.1111/j.1462-2920.2012.02819.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Under certain growth conditions, Bacillus subtilis can develop natural competence, the state in which it is able to bind, adsorb and incorporate exogenous DNA. Development of competence is a bistable process and is subject to complex regulation. Rok is a repressor of the key transcriptional activator of competence genes, comK, and limits the size of the subpopulation that develops competence. Here we report the finding that the large conjugative B. subtilis plasmid pLS20 harbours a rok homologue rok(LS20). Although the deduced product of rok(LS20) is considerably shorter than the chromosomally encoded Rok protein, we show that ectopic expression of the plasmid-encoded Rok(LS20) leads to inhibition of competence by repressing comK, and that the effects of the plasmid and chromosomally encoded Rok proteins are additive. We also show that pLS20 inhibits competence in a rok(LS20) -dependent manner and that purified Rok(LS20) preferentially binds to the comK promoter. By analysing the available databases we identified several additional rok-like genes. These putative rok genes can be divided into two groups and we propose that rok(LS20) is the prototype of a newly identified subgroup of nine rok genes. Finally, we discuss the possible role of the plasmid-located rok and its relatedness with other rok genes.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular Severo Ochoa, Instituto de Biología Molecular Eladio Viñuela, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A. The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. PLoS One 2012; 7:e36709. [PMID: 22615797 PMCID: PMC3355146 DOI: 10.1371/journal.pone.0036709] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/05/2012] [Indexed: 12/31/2022] Open
Abstract
Mangotoxin is an antimetabolite toxin produced by certain Pseudomonas syringae pv. syringae strains. This toxin is an oligopeptide that inhibits ornithine N-acetyl transferase, a key enzyme in the biosynthesis of ornithine and arginine. Previous studies have reported the involvement of the putative nonribosomal peptide synthetase MgoA in virulence and mangotoxin production. In this study, we analyse a new chromosomal region of P. syringae pv. syringae UMAF0158, which contains six coding sequences arranged as an operon (mbo operon). The mbo operon was detected in only mangotoxin-producing strains, and it was shown to be essential for the biosynthesis of this toxin. Mutants in each of the six ORFs of the mbo operon were partially or completely impaired in the production of the toxin. In addition, Pseudomonas spp. mangotoxin non-producer strains transformed with the mbo operon gained the ability to produce mangotoxin, indicating that this operon contains all the genetic information necessary for mangotoxin biosynthesis. The generation of a single transcript for the mbo operon was confirmed and supported by the allocation of a unique promoter and Rho-independent terminator. The phylogenetic analysis of the P. syringae strains harbouring the mbo operon revealed that these strains clustered together.
Collapse
Affiliation(s)
- Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Estación Experimental La Mayora, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús Murillo
- Laboratorio de Patología Vegetal, ETS de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
34
|
Llop P, Cabrefiga J, Smits THM, Dreo T, Barbé S, Pulawska J, Bultreys A, Blom J, Duffy B, Montesinos E, López MM. Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen. PLoS One 2011; 6:e28651. [PMID: 22174857 PMCID: PMC3235134 DOI: 10.1371/journal.pone.0028651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 11/12/2011] [Indexed: 11/19/2022] Open
Abstract
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.
Collapse
Affiliation(s)
- Pablo Llop
- Instituto Valenciano de Investigaciones Agrarias, IVIA, Moncada, Valencia, Spain
| | - Jordi Cabrefiga
- Institute of Food and Agricultural Technology, INTEA, CIDSAV-CeRTA, University of Girona, Girona, Spain
| | - Theo H. M. Smits
- Agroscope Changins-Wädenswil, ACW, Swiss National Competence Center for Fire Blight, Wädenswil, Switzerland
| | - Tanja Dreo
- National Institute of Biology, NIB, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Silvia Barbé
- Instituto Valenciano de Investigaciones Agrarias, IVIA, Moncada, Valencia, Spain
| | | | - Alain Bultreys
- Département Sciences du Vivant, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Jochen Blom
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Brion Duffy
- Agroscope Changins-Wädenswil, ACW, Swiss National Competence Center for Fire Blight, Wädenswil, Switzerland
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology, INTEA, CIDSAV-CeRTA, University of Girona, Girona, Spain
| | - María M. López
- Instituto Valenciano de Investigaciones Agrarias, IVIA, Moncada, Valencia, Spain
- * E-mail:
| |
Collapse
|
35
|
Llop P, Barbé S, López MM. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. TREES (BERLIN, GERMANY : WEST) 2011; 26:31-46. [PMID: 25983394 PMCID: PMC4425259 DOI: 10.1007/s00468-011-0630-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 05/29/2023]
Abstract
The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees (E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae, which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.
Collapse
Affiliation(s)
- Pablo Llop
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - Silvia Barbé
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - María M. López
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| |
Collapse
|
36
|
Bardaji L, Pérez-Martínez I, Rodríguez-Moreno L, Rodríguez-Palenzuela P, Sundin GW, Ramos C, Murillo J. Sequence and role in virulence of the three plasmid complement of the model tumor-inducing bacterium Pseudomonas savastanoi pv. savastanoi NCPPB 3335. PLoS One 2011; 6:e25705. [PMID: 22022435 PMCID: PMC3191145 DOI: 10.1371/journal.pone.0025705] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/08/2011] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas savastanoi pv. savastanoi NCPPB 3335 is a model for the study of the molecular basis of disease production and tumor formation in woody hosts, and its draft genome sequence has been recently obtained. Here we closed the sequence of the plasmid complement of this strain, composed of three circular molecules of 78,357 nt (pPsv48A), 45,220 nt (pPsv48B), and 42,103 nt (pPsv48C), all belonging to the pPT23A-like family of plasmids widely distributed in the P. syringae complex. A total of 152 coding sequences were predicted in the plasmid complement, of which 38 are hypothetical proteins and seven correspond to putative virulence genes. Plasmid pPsv48A contains an incomplete Type IVB secretion system, the type III secretion system (T3SS) effector gene hopAF1, gene ptz, involved in cytokinin biosynthesis, and three copies of a gene highly conserved in plant-associated proteobacteria, which is preceded by a hrp box motif. A complete Type IVA secretion system, a well conserved origin of transfer (oriT), and a homolog of the T3SS effector gene hopAO1 are present in pPsv48B, while pPsv48C contains a gene with significant homology to isopentenyl-diphosphate delta-isomerase, type 1. Several potential mobile elements were found on the three plasmids, including three types of MITE, a derivative of IS801, and a new transposon effector, ISPsy30. Although the replication regions of these three plasmids are phylogenetically closely related, their structure is diverse, suggesting that the plasmid architecture results from an active exchange of sequences. Artificial inoculations of olive plants with mutants cured of plasmids pPsv48A and pPsv48B showed that pPsv48A is necessary for full virulence and for the development of mature xylem vessels within the knots; we were unable to obtain mutants cured of pPsv48C, which contains five putative toxin-antitoxin genes.
Collapse
Affiliation(s)
- Leire Bardaji
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Isabel Pérez-Martínez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Luis Rodríguez-Moreno
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - George W. Sundin
- Department of Plant Pathology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Málaga, Spain
| | - Jesús Murillo
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
37
|
Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. PLoS One 2011; 6:e25773. [PMID: 22016774 PMCID: PMC3189936 DOI: 10.1371/journal.pone.0025773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.
Collapse
|
38
|
Abstract
The distribution, dynamics, and evolution of insertion sequences (IS), the most frequent class of prokaryotic transposable elements, are conditioned by their ability to horizontally transfer between cells. IS horizontal transfer (HT) requires shuttling by other mobile genetic elements. It is widely assumed in the literature that these vectors are phages and plasmids. By examining the relative abundance of IS in 454 plasmid and 446 phage genomes, we found that IS are very frequent in plasmids but, surprisingly, very rare in phages. Our results indicate that IS rarity in phages reflects very strong and efficient postinsertional purifying selection, mainly caused by a higher density of deleterious insertion sites in phages compared to plasmids. As they do not tolerate IS insertions, we conclude that phages may be rather poor vectors of IS HT in prokaryotes, in sharp contrast with the conventional view.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, UMR CNRS 6556 Ecologie Evolution Symbiose, 40 Avenue du Recteur Pineau, Poitiers, France
| | | |
Collapse
|
39
|
Pothier JF, Vorhölter FJ, Blom J, Goesmann A, Pühler A, Smits THM, Duffy B. The ubiquitous plasmid pXap41 in the invasive phytopathogen Xanthomonas arboricola pv. pruni: complete sequence and comparative genomic analysis. FEMS Microbiol Lett 2011; 323:52-60. [PMID: 21732961 DOI: 10.1111/j.1574-6968.2011.02352.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The complete DNA sequence of the 41 102-bp plasmid pXap41 from the invasive plant pathogen Xanthomonas arboricola pv. pruni CFBP 5530 was determined and its 44 coding regions were annotated. Comparative analysis with 15 Xanthomonas plasmids and 19 complete genomes revealed that nearly one-fourth of this plasmid has high sequence identity to plasmid pXAC64 and an 8.8-kb chromosomal region of Xanthomonas axonopodis pv. citri strain 306 carrying genes that encode type III effectors and helper proteins. The presence of pXap41 in all X. arboricola pv. pruni genotypes was confirmed for eight strains by plasmid profiling and for 35 X. arboricola pv. pruni isolates with a new plasmid multiplex PCR assay. This plasmid was not detected in any other X. arboricola pathovars (n=12), indicating the potential for the application of the pXap41 PCR method as a pathovar-level detection and identification tool.
Collapse
Affiliation(s)
- Joël F Pothier
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, Wädenswil, SwitzerlandCeBiTec, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
McGhee GC, Guasco J, Bellomo LM, Blumer-Schuette SE, Shane WW, Irish-Brown A, Sundin GW. Genetic analysis of streptomycin-resistant (Sm(R)) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of Sm(R) E. amylovora in Michigan. PHYTOPATHOLOGY 2011; 101:182-191. [PMID: 20923367 DOI: 10.1094/phyto-04-10-0127] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Streptomycin-resistant (Sm(R)) strains of the fire blight pathogen Erwinia amylovora were first isolated in southwest Michigan in 1991. Since that time, resistant strains have progressed northward to other apple-producing regions in the state. A total of 98.7% of Sm(R) strains isolated between 2003 and 2009 in Michigan harbored the strA-strB genes on transposon Tn5393. strA and strB encode phosphotransferase enzymes that modify streptomycin to a nonbactericidal form. Mutational resistance to streptomycin, caused by a point mutation-mediated target-site alteration of the ribosomal S12 protein, occurred in 1.3% of E. amylovora strains from Michigan. Tn5393 was originally introduced to E. amylovora on the plasmid pEa34; thus, the first Sm(R) strains isolated contained both pEa34 and the ubiquitous nonconjugative plasmid pEA29. More recently, we have observed Sm(R) strains in which Tn5393 is present on pEA29, suggesting that the transposon has moved via transposition from pEa34 to pEA29. Almost all of the strains containing Tn5393 on pEA29 had lost pEa34. Of 210 pEA29::Tn5393 plasmids examined, the transposon was inserted at either nucleotide position 1,515 or 17,527. Both of these positions were in noncoding regions of pEA29. Comparative sequencing of the housekeeping genes groEL and potentially variable sequences on pEA29 was done in an attempt to genetically distinguish Sm(R) strains from streptomycin-sensitive (Sm(S)) strains isolated in Michigan. Only 1 nucleotide difference within the total 2,660 bp sequenced from each strain was observed in 2 of 29 strains; multiple sequence differences were observed between the Michigan strains and E. amylovora control strains isolated in the western United States or from Rubus spp. Alterations in virulence observable using an immature pear fruit assay were detected in three of eight Sm(R) strains examined. Our current genetic data indicate that only two Sm(R) strain genotypes (strains containing pEA29::Tn5393 with Tn5393 inserted at either nucleotide position 1,515 or 17,527 on the plasmid) are responsible for the dissemination of Tn5393-encoded streptomycin resistance in Michigan, and that the Sm(R) and Sm(S) strains in Michigan compose a homogenous group.
Collapse
Affiliation(s)
- Gayle C McGhee
- Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Qi M, Wang D, Bradley CA, Zhao Y. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011; 6:e16451. [PMID: 21304594 PMCID: PMC3029378 DOI: 10.1371/journal.pone.0016451] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dongping Wang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Carl A. Bradley
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
42
|
Breton M, Duret S, Béven L, Dubrana MP, Renaudin J. I-SceI-mediated plasmid deletion and intra-molecular recombination in Spiroplasma citri. J Microbiol Methods 2010; 84:216-22. [PMID: 21129414 DOI: 10.1016/j.mimet.2010.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/27/2022]
Abstract
S. citri wild-type strain GII3 carries six plasmids (pSci1 to -6) that are thought to encode determinants involved in the transmission of the spiroplasma by its leafhopper vector. In this study we report the use of meganuclease I-SceI for plasmid deletion in S. citri. Plasmids pSci1NT-I and pSci6PT-I, pSci1 and pSci6 derivatives that contain the tetM selection marker and a unique I-SceI recognition site were first introduced into S. citri strains 44 (having no plasmid) and GII3 (carrying pSci1-6), respectively. Due to incompatibility of homologous replication regions, propagation of the S. citri GII3 transformant in selective medium resulted in the replacement of the natural pSci6 by pSci6PT-I. The spiroplasmal transformants were further transformed by an oriC plasmid carrying the I-SceI gene under the control of the spiralin gene promoter. In the S. citri 44 transformant, expression of I-SceI resulted in rapid loss of pSciNT-I showing that expression of I-SceI can be used as a counter-selection tool in spiroplasmas. In the case of the S. citri GII3 transformant carrying pSci6PT-I, expression of I-SceI resulted in the deletion of plasmid fragments comprising the I-SceI site and the tetM marker. Delineating the I-SceI generated deletions proved they had occurred though recombination between homologous sequences. To our knowledge this is the first report of I-SceI mediated intra-molecular recombination in mollicutes.
Collapse
Affiliation(s)
- Marc Breton
- INRA, Génomique Diversité et Pouvoir Pathogéne, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
43
|
Jackson RW, Johnson LJ, Clarke SR, Arnold DL. Bacterial pathogen evolution: breaking news. Trends Genet 2010; 27:32-40. [PMID: 21047697 DOI: 10.1016/j.tig.2010.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 02/04/2023]
Abstract
The immense social and economic impact of bacterial pathogens, from drug-resistant infections in hospitals to the devastation of agricultural resources, has resulted in major investment to understand the causes and consequences of pathogen evolution. Recent genome sequencing projects have provided insight into the evolution of bacterial genome structures; revealing the impact of mobile DNA on genome restructuring and pathogenicity. Sequencing of multiple genomes of related strains has enabled the delineation of pathogen evolution and facilitated the tracking of bacterial pathogens globally. Other recent theoretical and empirical studies have shown that pathogen evolution is significantly influenced by ecological factors, such as the distribution of hosts within the environment and the effects of co-infection. We suggest that the time is ripe for experimentalists to use genomics in conjunction with evolutionary ecology experiments to further understanding of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Robert W Jackson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK.
| | | | | | | |
Collapse
|
44
|
Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S. Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 2010; 5:e10224. [PMID: 20419105 PMCID: PMC2856684 DOI: 10.1371/journal.pone.0010224] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Collapse
Affiliation(s)
- Sarah Green
- Centre for Forestry and Climate Change, Forest Research, Roslin, Midlothian, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Heuer H, Ebers J, Weinert N, Smalla K. Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiol Ecol 2010; 73:190-6. [PMID: 20455941 DOI: 10.1111/j.1574-6941.2010.00880.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phytopathogenic populations need genetic flexibility to adapt to continually improving plant defences. The gene pool transferred by broad-host-range plasmids provides genetic variation for the population. However, a population has to balance this benefit with the risk of acquiring deleterious foreign DNA. This could be achieved by modulating the ratio of individuals with high or low permissiveness to broad-host-range plasmids. We investigated whether plasmid uptake varied among genetically indistinguishable isolates of Dickeya sp. from a 400 m(2) field plot. The transfer frequencies of broad-host-range IncP-1 plasmids from Escherichia coli to Dickeya differed significantly among isolates. The transfer frequencies for plasmids pTH10 and pB10 of the divergent alpha- and beta-subgroups of IncP-1, respectively, correlated well. Strains that differed in permissiveness for these plasmids by orders of magnitude were not distinguishable by other phenotypic traits analysed, by genomic fingerprints or hrpN gene sequences. Such strains were isolated in close vicinity and from different plots of the field, indicating a reasonably fast genetic mechanism of switching between low and high permissiveness.
Collapse
Affiliation(s)
- Holger Heuer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, Braunschweig, Germany.
| | | | | | | |
Collapse
|
46
|
Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 2010; 76:3198-205. [PMID: 20305023 DOI: 10.1128/aem.00181-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.
Collapse
|
47
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
48
|
Studholme DJ, Ibanez SG, MacLean D, Dangl JL, Chang JH, Rathjen JP. A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics 2009; 10:395. [PMID: 19703286 PMCID: PMC2745422 DOI: 10.1186/1471-2164-10-395] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
Background Pseudomonas syringae is a widespread bacterial pathogen that causes disease on a broad range of economically important plant species. Pathogenicity of P. syringae strains is dependent on the type III secretion system, which secretes a suite of up to about thirty virulence 'effector' proteins into the host cytoplasm where they subvert the eukaryotic cell physiology and disrupt host defences. P. syringae pathovar tabaci naturally causes disease on wild tobacco, the model member of the Solanaceae, a family that includes many crop species as well as on soybean. Results We used the 'next-generation' Illumina sequencing platform and the Velvet short-read assembly program to generate a 145X deep 6,077,921 nucleotide draft genome sequence for P. syringae pathovar tabaci strain 11528. From our draft assembly, we predicted 5,300 potential genes encoding proteins of at least 100 amino acids long, of which 303 (5.72%) had no significant sequence similarity to those encoded by the three previously fully sequenced P. syringae genomes. Of the core set of Hrp Outer Proteins that are conserved in three previously fully sequenced P. syringae strains, most were also conserved in strain 11528, including AvrE1, HopAH2, HopAJ2, HopAK1, HopAN1, HopI, HopJ1, HopX1, HrpK1 and HrpW1. However, the hrpZ1 gene is partially deleted and hopAF1 is completely absent in 11528. The draft genome of strain 11528 also encodes close homologues of HopO1, HopT1, HopAH1, HopR1, HopV1, HopAG1, HopAS1, HopAE1, HopAR1, HopF1, and HopW1 and a degenerate HopM1'. Using a functional screen, we confirmed that hopO1, hopT1, hopAH1, hopM1', hopAE1, hopAR1, and hopAI1' are part of the virulence-associated HrpL regulon, though the hopAI1' and hopM1' sequences were degenerate with premature stop codons. We also discovered two additional HrpL-regulated effector candidates and an HrpL-regulated distant homologue of avrPto1. Conclusion The draft genome sequence facilitates the continued development of P. syringae pathovar tabaci on wild tobacco as an attractive model system for studying bacterial disease on plants. The catalogue of effectors sheds further light on the evolution of pathogenicity and host-specificity as well as providing a set of molecular tools for the study of plant defence mechanisms. We also discovered several large genomic regions in Pta 11528 that do not share detectable nucleotide sequence similarity with previously sequenced Pseudomonas genomes. These regions may include horizontally acquired islands that possibly contribute to pathogenicity or epiphytic fitness of Pta 11528.
Collapse
|
49
|
Hajri A, Brin C, Hunault G, Lardeux F, Lemaire C, Manceau C, Boureau T, Poussier S. A "repertoire for repertoire" hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLoS One 2009; 4:e6632. [PMID: 19680562 PMCID: PMC2722093 DOI: 10.1371/journal.pone.0006632] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/09/2009] [Indexed: 11/21/2022] Open
Abstract
Background The genetic basis of host specificity for animal and plant pathogenic bacteria remains poorly understood. For plant pathogenic bacteria, host range is restricted to one or a few host plant species reflecting a tight adaptation to specific hosts. Methodology/Principal Findings Two hypotheses can be formulated to explain host specificity: either it can be explained by the phylogenetic position of the strains, or by the association of virulence genes enabling a pathological convergence of phylogenically distant strains. In this latter hypothesis, host specificity would result from the interaction between repertoires of bacterial virulence genes and repertoires of genes involved in host defences. To challenge these two hypotheses, we selected 132 Xanthomonas axonopodis strains representative of 18 different pathovars which display different host range. First, the phylogenetic position of each strain was determined by sequencing the housekeeping gene rpoD. This study showed that many pathovars of Xanthomonas axonopodis are polyphyletic. Second, we investigated the distribution of 35 type III effector genes (T3Es) in these strains by both PCR and hybridization methods. Indeed, for pathogenic bacteria T3Es were shown to trigger and to subvert host defences. Our study revealed that T3E repertoires comprise core and variable gene suites that likely have distinct roles in pathogenicity and different evolutionary histories. Our results showed a correspondence between composition of T3E repertoires and pathovars of Xanthomonas axonopodis. For polyphyletic pathovars, this suggests that T3E genes might explain a pathological convergence of phylogenetically distant strains. We also identified several DNA rearrangements within T3E genes, some of which correlate with host specificity of strains. Conclusions/Significance These data provide insight into the potential role played by T3E genes for pathogenic bacteria and support a “repertoire for repertoire” hypothesis that may explain host specificity. Our work provides resources for functional and evolutionary studies aiming at understanding host specificity of pathogenic bacteria, functional redundancy between T3Es and the driving forces shaping T3E repertoires.
Collapse
Affiliation(s)
- Ahmed Hajri
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique (INRA), Beaucouzé, France
| | - Chrystelle Brin
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique (INRA), Beaucouzé, France
| | - Gilles Hunault
- Département d'Informatique, Université d'Angers, Angers, France
| | | | | | - Charles Manceau
- Département Santé des Plantes et Environnement, Institut National de la Recherche Agronomique (INRA), Beaucouzé, France
| | - Tristan Boureau
- Département de Biologie, Université d'Angers, Angers, Beaucouzé, France
- * E-mail: (TB); (SP)
| | - Stéphane Poussier
- Département de Sciences Biologiques, Agrocampus Ouest centre d'Angers, Institut National d'Horticulture et de Paysage (INHP), Beaucouzé, France
- * E-mail: (TB); (SP)
| |
Collapse
|
50
|
Ishii Y, Oshima K, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Namba S. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 2009; 446:51-7. [PMID: 19631261 DOI: 10.1016/j.gene.2009.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/01/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022]
Abstract
A non-insect-transmissible phytoplasma strain (OY-NIM) was obtained from insect-transmissible strain OY-M by plant grafting using no insect vectors. In this study, we analyzed for the gene structure of plasmids during its maintenance in plant tissue culture for 10 years. OY-M strain has one plasmid encoding orf3 gene which is thought to be involved in insect transmissibility. The gradual loss of OY-NIM plasmid sequence was observed in subsequent steps: first, the promoter region of orf3 was lost, followed by the loss of then a large region including orf3, and finally the entire plasmid was disappeared. In contrast, no mutation was found in a pseudogene on OY-NIM chromosome in the same period, indicating that OY-NIM plasmid evolved more rapidly than the chromosome-encoded gene tested. Results revealed an actual evolutionary process of OY plasmid, and provide a model for the stepwise process in reductive evolution of plasmids by environmental adaptation. Furthermore, this study indicates the great plasticity of plasmids throughout the evolution of phytoplasma.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|