1
|
Castelein J, Duus AS, Bække PS, Sack I, Anders MS, Kettless K, Hansen AE, Dierckx RAJO, De Backer O, Vejlstrup NG, Lund MAV, Borra RJH. Reproducibility of Cardiac Multifrequency MR Elastography in Assessing Left Ventricular Stiffness and Viscosity. J Magn Reson Imaging 2025; 61:2146-2154. [PMID: 39449547 PMCID: PMC11987795 DOI: 10.1002/jmri.29640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Cardiac magnetic resonance elastography (MRE) shows promise in assessing the mechanofunctional properties of the heart but faces clinical challenges, mainly synchronization with cardiac cycle, breathing, and external harmonic stimulation. PURPOSE To determine the reproducibility of in vivo cardiac multifrequency MRE (MMRE) for assessing diastolic left ventricular (LV) stiffness and viscosity. STUDY TYPE Prospective. SUBJECTS This single-center study included a total of 28 participants (mean age, 56.6 ± 23.0 years; 16 male) consisting of randomly selected healthy participants (mean age, 44.6 ± 20.1 years; 9 male) and patients with aortic stenosis (mean age, 78.3 ± 3.8 years; 7 male). FIELD STRENGTH/SEQUENCE 3 T, 3D multifrequency MRE with a single-shot spin-echo planar imaging sequence. ASSESSMENT Each participant underwent two cardiac MMRE examinations on the same day. Full 3D wave fields were acquired in diastole at frequencies of 80, 90, and 100 Hz during a total of three breath-holds. Shear wave speed (SWS) and penetration rate (PR) were reconstructed as a surrogate for tissue stiffness and inverse viscous loss. Epicardial and endocardial ROIs were manually drawn by two independent readers to segment the LV myocardium. STATISTICAL TESTS Shapiro-Wilk test, Bland-Altman analysis and intraclass correlation coefficient (ICC). P-value <0.05 were considered statistically significant. RESULTS Bland-Altman analyses and intraclass correlation coefficients (ICC = 0.96 for myocardial stiffness and ICC = 0.93 for viscosity) indicated near-perfect test-retest repeatability among examinations on the same day. The mean SWS for scan and re-scan diastolic LV myocardium were 2.42 ± 0.24 m/s and 2.39 ± 0.23 m/s; the mean PR were 1.24 ± 0.17 m/s and 1.22 ± 0.14 m/s. Inter-reader variability showed good to excellent agreement for myocardial stiffness (ICC = 0.92) and viscosity (ICC = 0.85). DATA CONCLUSION Cardiac MMRE is a promising and reproducible method for noninvasive assessment of diastolic LV stiffness and viscosity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Johannes Castelein
- Department of RadiologyUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Amanda S. Duus
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Pernille S. Bække
- The Heart CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Ingolf Sack
- Department of RadiologyCharite—Universitätsmedizin BerlinBerlinGermany
| | | | - Karen Kettless
- Deparment of Research and CollaborationSiemens Healthcare A/SBallerupDenmark
| | - Adam E. Hansen
- Department of RadiologyCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ole De Backer
- The Heart CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Niels G. Vejlstrup
- The Heart CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Morten A. V. Lund
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- The Heart CentreCopenhagen University Hospital, RigshospitaletCopenhagenDenmark
| | - Ronald J. H. Borra
- Department of RadiologyUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
2
|
Smith L, Skulberg VM, Zhang L, Sjaastad I, Espe EKS. Feasibility of magnetic resonance elastography in the healthy rat heart. Magn Reson Med 2025. [PMID: 40106797 DOI: 10.1002/mrm.30504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE Develop a MR elastography (MRE) protocol to detect in vivo cardiac stiffness in rats. METHODS This study was approved by the National Animal Research Authority. A healthy, adult, male Sprague-Dawley rat underwent cardiac MRE. A specialized direct shaking cardiac MRE setup and MRI protocol were designed. Stiffness was measured at 15 cardiac phases. A single midventricular slice was acquired, and intrasession variability was measured. A direct inversion of the Helmholtz equation was used to calculate the stiffness from MRE images. RESULTS In the healthy rat, the early systolic stiffness was 2.90 kPa. The stiffness increased to the end systole (3.81 kPa), followed by a reduction during diastole to 2.61 kPa. The intrasession correlation was ρ = 0.88 (p < 0.001). CONCLUSION This study demonstrates the feasibility of cardiac MRE in rats. Our results confirm that cardiac stiffness increases from early systole to end systole, followed by a decrease in diastole.
Collapse
Affiliation(s)
- Lisa Smith
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute for Energy Technology, Kjeller, Norway
| | - Vidar Magne Skulberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Rajiah PS, Moore A, Broncano J, Anand V, Kolluri N, Shah DJ, Flamm SD, François CJ. Diastology with Cardiac MRI: A Practical Guide. Radiographics 2023; 43:e220144. [PMID: 37535462 DOI: 10.1148/rg.220144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Diastolic filling of the ventricle is a complex interplay of volume and pressure, contingent on active energy-dependent myocardial relaxation and myocardial stiffness. Abnormal diastolic function is the hallmark of the clinical entity of heart failure with preserved ejection fraction (HFpEF), which is now the dominant type of heart failure and is associated with significant morbidity and mortality. Although echocardiography is the current first-line imaging modality used in evaluation of diastolic function, cardiac MRI (CMR) is emerging as an important technique. The principal role of CMR is to categorize the cause of diastolic dysfunction (DD) and distinguish other entities that manifest similarly to HFpEF, particularly infiltrative and pericardial disorders. CMR also provides prognostic information and risk stratification based on late gadolinium enhancement and parametric mapping techniques. Advances in hardware, sequences, and postprocessing software now enable CMR to diagnose and grade DD accurately, a role traditionally assigned to echocardiography. Two-dimensional or four-dimensional velocity-encoded phase-contrast sequences can measure flow and velocities at the mitral inflow, mitral annulus, and pulmonary veins to provide diastolic functional metrics analogous to those at echocardiography. The commonly used cine steady-state free-precession sequence can provide clues to DD including left ventricular mass, left ventricular filling curves, and left atrial size and function. MR strain imaging provides information on myocardial mechanics that further aids in diagnosis and prognosis of diastolic function. Research sequences such as MR elastography and MR spectroscopy can help evaluate myocardial stiffness and metabolism, respectively, providing additional insights on diastolic function. The authors review the physiology of diastolic function, mechanics of diastolic heart failure, and CMR techniques in the evaluation of diastolic function. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Prabhakar Shantha Rajiah
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Alastair Moore
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Jordi Broncano
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Vidhu Anand
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Nikhil Kolluri
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Dipan J Shah
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Scott D Flamm
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| | - Christopher J François
- From the Departments of Radiology (P.S.R., C.J.F.) and Cardiology (V.A., N.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905; Department of Radiology, Baylor Health System, Dallas, Tex (A.M.); Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain (J.B.); Department of Cardiology, Houston Methodist Hospital, Houston, Tex (D.J.S.); and Cardiovascular Imaging Laboratory, Cleveland Clinic Foundation, Cleveland, Ohio (S.D.F.)
| |
Collapse
|
5
|
Zhang TY, An DA, Zhou H, Ni Z, Wang Q, Chen B, Lu R, Huang J, Zhou Y, Kim DH, Wilson M, Wu LM, Mou S. Texture analysis of native T1 images as a novel method for non-invasive assessment of heart failure with preserved ejection fraction in end-stage renal disease patients. Eur Radiol 2023; 33:2027-2038. [PMID: 36260118 DOI: 10.1007/s00330-022-09177-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To explore the diagnostic potential of texture analysis applied to native T1 maps obtained from cardiac magnetic resonance (CMR) images for the assessment of heart failure with preserved ejection fraction (HFpEF) among patients with end-stage renal disease (ESRD). METHODS This study, conducted from June 2018 to November 2020, included 119 patients (35 on hemodialysis, 55 on peritoneal dialysis, and 29 with kidney transplants) in Renji Hospital. Native T1 maps were assessed with texture analysis, using a freely available software package, in participants who underwent cardiac MRI at 3.0 T. Four texture features, selected by dimension reduction specific to the diagnosis of HFpEF, were analyzed. Multivariate logistic regression was performed to examine the independent association between the selected features and HFpEF in ESRD patients. RESULTS Seventy-six of 119 patients were diagnosed with HFpEF. Demographic, laboratory, cardiac MRI, and echocardiogram characteristics were compared between HFpEF and non-HFpEF groups. The four texture features that were analyzed showed statistically significant differences between groups. In multivariate analysis, age, left atrial volume index (LAVI), and sum average 4 (SA4) turned out to be independent predictors for HFpEF in ESRD patients. Combining the texture feature, SA4, with typical predictive factors resulted in higher C-index (0.923 vs. 0.898, p = 0.045) and a sensitivity and specificity of 79.2% and 95.2%, respectively. CONCLUSIONS Texture analysis of T1 maps adds diagnostic value to typical clinical parameters for the assessment of heart failure with preserved ejection fraction in patients with end-stage renal disease. KEY POINTS • Non-invasive assessment of HFpEF can help predict prognosis in ESRD patients and help them take timely preventative measures. • Texture analysis of native T1 maps adds diagnostic value to the typical clinical parameters for the assessment of HFpEF in patients with ESRD.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Hang Zhou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Qin Wang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Binghua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Renhua Lu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Jiaying Huang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Yin Zhou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China
| | - Doo Hee Kim
- Department of Radiology, Wayne State University, Detroit, MI, 48201, USA
| | - Molly Wilson
- Department of Radiology, Wayne State University, Detroit, MI, 48201, USA
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China.
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
6
|
Seliverstova E, Caenen A, Bézy S, Nooijens S, Voigt JU, D'hooge J. Comparing Myocardial Shear Wave Propagation Velocity Estimation Methods Based on Tissue Displacement, Velocity and Acceleration Data. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2207-2216. [PMID: 35963827 DOI: 10.1016/j.ultrasmedbio.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Shear wave elastography (SWE) is a promising technique used to assess cardiac function through the evaluation of cardiac stiffness non-invasively. However, in the literature, SWE varies in terms of tissue motion data (displacement, velocity or acceleration); method used to characterize mechanical wave propagation (time domain [TD] vs. frequency domain [FD]); and the metric reported (wave speed [WS], shear or Young's modulus). This variety of reported methodologies complicates comparison of reported findings and sheds doubt on which methodology better approximates the true myocardial properties. We therefore conducted a simulation study to investigate the accuracy of various SWE data analysis approaches while varying cardiac geometry and stiffness. Lower WS values were obtained by the TD method compared with the FD method. Acceleration-based WS estimates in the TD were systematically larger than those based on velocity (∼10% difference). These observations were confirmed by TD analysis of 32 in vivo SWE mechanical wave measurements. In vivo data quality is typically too low for accurate FD analysis. Therefore, our study suggests using acceleration-based TD analysis for in vivo SWE to minimize underestimation of the true WS and, thus, to maximize the sensitivity of SWE to detect stiffness changes resulting from pathology.
Collapse
Affiliation(s)
| | - Annette Caenen
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium; Ghent University, Ghent, Belgium
| | - Stephanie Bézy
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| | - Sjoerd Nooijens
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| | - Jens-Uwe Voigt
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| | - Jan D'hooge
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| |
Collapse
|
7
|
Villalobos Lizardi JC, Baranger J, Nguyen MB, Asnacios A, Malik A, Lumens J, Mertens L, Friedberg MK, Simmons CA, Pernot M, Villemain O. A guide for assessment of myocardial stiffness in health and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:8-22. [PMID: 39196108 DOI: 10.1038/s44161-021-00007-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 08/29/2024]
Abstract
Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.
Collapse
Affiliation(s)
- José Carlos Villalobos Lizardi
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Minh B Nguyen
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Aimen Malik
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Caenen A, Pernot M, Nightingale KR, Voigt JU, Vos HJ, Segers P, D'hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2021; 67. [PMID: 34874312 DOI: 10.1088/1361-6560/ac404d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, BELGIUM
| | - Mathieu Pernot
- INSERM U979 "Physics for medicine", ESPCI Paris, PSL Research University, CNRS UMR 7587, Institut Langevin, Paris, FRANCE
| | - Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, UNITED STATES
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Zuid-Holland, NETHERLANDS
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Universiteit Gent, Gent, BELGIUM
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
9
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
10
|
Redaelli A, Votta E. Cardiovascular patient-specific modeling: Where are we now and what does the future look like? APL Bioeng 2020; 4:040401. [PMID: 33195957 DOI: 10.1063/5.0031452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
11
|
Schrank F, Warmuth C, Görner S, Meyer T, Tzschätzsch H, Guo J, Uca YO, Elgeti T, Braun J, Sack I. Real‐time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn Reson Med 2019; 84:103-114. [DOI: 10.1002/mrm.28095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Felix Schrank
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Carsten Warmuth
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Steffen Görner
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Tom Meyer
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Heiko Tzschätzsch
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jing Guo
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Yavuz Oguz Uca
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Thomas Elgeti
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics Charité–Universitätsmedizin Berlin Berlin Germany
| | - Ingolf Sack
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
12
|
Nenadic IZ, Urban MW, Pislaru C, Escobar D, Vasconcelos L, Greenleaf JF. In Vivo Open- and Closed-chest Measurements of Left-Ventricular Myocardial Viscoelasticity using Lamb wave Dispersion Ultrasound Vibrometry (LDUV): A Feasibility Study. Biomed Phys Eng Express 2018; 4. [PMID: 30455983 DOI: 10.1088/2057-1976/aabe41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diastolic dysfunction causes close to half of congestive heart failures and is associated with increased stiffness in left-ventricular myocardium. A clinical tool capable of measuring viscoelasticity of the myocardium could be beneficial in clinical settings. We used Lamb wave Dispersion Ultrasound Vibrometry (LDUV) for assessing the feasibility of making in vivo non-invasive measurements of myocardial elasticity and viscosity in pigs. In vivo open-chest measurements of myocardial elasticity and viscosity obtained using a Fourier space based analysis of Lamb wave dispersion are reported. The approach was used to perform ECG-gated transthoracic in vivo measurements of group velocity, elasticity and viscosity throughout a single heart cycle. Group velocity, elasticity and viscosity in the frequency range 50-500 Hz increased from diastole to systole, consistent with contraction and relaxation of the myocardium. Systolic group velocity, elasticity and viscosity were 5.0 m/s, 19.1 kPa, 6.8 Pa·s, respectively. In diastole, the measured group velocity, elasticity and viscosity were 1.5 m/s, 5.1 kPa and 3.2 Pa·s, respectively.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA.,Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Cristina Pislaru
- Division of Cardiovascular Diseases, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Daniel Escobar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Luiz Vasconcelos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Miller R, Kolipaka A, Nash MP, Young AA. Relative identifiability of anisotropic properties from magnetic resonance elastography. NMR IN BIOMEDICINE 2018; 31:e3848. [PMID: 29106765 PMCID: PMC5936684 DOI: 10.1002/nbm.3848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/31/2017] [Accepted: 09/20/2017] [Indexed: 05/24/2023]
Abstract
Although magnetic resonance elastography (MRE) has been used to estimate isotropic stiffness in the heart, myocardium is known to have anisotropic properties. This study investigated the determinability of global transversely isotropic material parameters using MRE and finite-element modeling (FEM). A FEM-based material parameter identification method, using a displacement-matching objective function, was evaluated in a gel phantom and simulations of a left ventricular (LV) geometry with a histology-derived fiber field. Material parameter estimation was performed in the presence of Gaussian noise. Parameter sweeps were analyzed and characteristics of the Hessian matrix at the optimal solution were used to evaluate the determinability of each constitutive parameter. Four out of five material stiffness parameters (Young's modulii E1 and E3 , shear modulus G13 and damping coefficient s), which describe a transversely isotropic linear elastic material, were well determined from the MRE displacement field using an iterative FEM inversion method. However, the remaining parameter, Poisson's ratio, was less identifiable. In conclusion, Young's modulii, shear modulii and damping can theoretically be well determined from MRE data, but Poisson's ratio is not as well determined and could be set to a reasonable value for biological tissue (close to 0.5).
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Engineering Science, University of Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
14
|
Khan S, Fakhouri F, Majeed W, Kolipaka A. Cardiovascular magnetic resonance elastography: A review. NMR IN BIOMEDICINE 2018; 31:e3853. [PMID: 29193358 PMCID: PMC5975119 DOI: 10.1002/nbm.3853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 05/19/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. These cardiovascular diseases are associated with mechanical changes in the myocardium and aorta. It is known that stiffness is altered in many diseases, including the spectrum of ischemia, diastolic dysfunction, hypertension and hypertrophic cardiomyopathy. In addition, the stiffness of the aortic wall is altered in multiple diseases, including hypertension, coronary artery disease and aortic aneurysm formation. For example, in diastolic dysfunction in which the ejection fraction is preserved, stiffness can potentially be an important biomarker. Similarly, in aortic aneurysms, stiffness can provide valuable information with regard to rupture potential. A number of studies have addressed invasive and non-invasive approaches to test and measure the mechanical properties of the myocardium and aorta. One of the non-invasive approaches is magnetic resonance elastography (MRE). MRE is a phase-contrast magnetic resonance imaging technique that measures tissue stiffness non-invasively. This review article highlights the technical details and application of MRE in the quantification of myocardial and aortic stiffness in different disease states.
Collapse
Affiliation(s)
- Saad Khan
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Faisal Fakhouri
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Waqas Majeed
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Abstract
The mechanical properties of soft tissues are closely associated with a variety of diseases. This motivates the development of elastography techniques in which tissue mechanical properties are quantitatively estimated through imaging. Magnetic resonance elastography (MRE) is a noninvasive phase-contrast MR technique wherein shear modulus of soft tissue can be spatially and temporally estimated. MRE has recently received significant attention due to its capability in noninvasively estimating tissue mechanical properties, which can offer considerable diagnostic potential. In this work, recent technology advances of MRE, its future clinical applications, and the related limitations will be discussed.
Collapse
Affiliation(s)
- Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard D. White
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Internal Medicine-Division of Cardiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|
16
|
Manduca A, Rossman TL, Lake DS, Glaser KJ, Arani A, Arunachalam SP, Rossman PJ, Trzasko JD, Ehman RL, Dragomir-Daescu D, Araoz PA. Waveguide effects and implications for cardiac magnetic resonance elastography: A finite element study. NMR IN BIOMEDICINE 2018; 31:e3996. [PMID: 30101999 PMCID: PMC6783328 DOI: 10.1002/nbm.3996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance elastography (MRE) is increasingly being applied to thin or small structures in which wave propagation is dominated by waveguide effects, which can substantially bias stiffness results with common processing approaches. The purpose of this work was to investigate the importance of such biases and artifacts on MRE inversion results in: (i) various idealized 2D and 3D geometries with one or more dimensions that are small relative to the shear wavelength; and (ii) a realistic cardiac geometry. Finite element models were created using simple 2D geometries as well as a simplified and a realistic 3D cardiac geometry, and simulated displacements acquired by MRE from harmonic excitations from 60 to 220 Hz across a range of frequencies. The displacement wave fields were inverted with direct inversion of the Helmholtz equation with and without the application of bandpass filtering and/or the curl operator to the displacement field. In all geometries considered, and at all frequencies considered, strong biases and artifacts were present in inversion results when the curl operator was not applied. Bandpass filtering without the curl was not sufficient to yield accurate recovery. In the 3D geometries, strong biases and artifacts were present in 2D inversions even when the curl was applied, while only 3D inversions with application of the curl yielded accurate recovery of the complex shear modulus. These results establish that taking the curl of the wave field and performing a full 3D inversion are both necessary steps for accurate estimation of the shear modulus both in simple thin-walled or small structures and in a realistic cardiac geometry when using simple inversions that neglect the hydrostatic pressure term. In practice, sufficient wave amplitude, signal-to-noise ratio, and resolution will be required to achieve accurate results.
Collapse
Affiliation(s)
- A Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - T L Rossman
- Division of Engineering, Mayo Clinic, Rochester, MN, USA
| | - D S Lake
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - K J Glaser
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - A Arani
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - P J Rossman
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - J D Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - R L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - P A Araoz
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Miller R, Kolipaka A, Nash MP, Young AA. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34. [PMID: 29528568 PMCID: PMC5993646 DOI: 10.1002/cnm.2979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry.
Collapse
Affiliation(s)
- Renee Miller
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martyn P. Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Schaafs LA, Tzschätzsch H, van der Giet M, Reshetnik A, Steffen IG, Hamm B, Braun J, Sack I, Elgeti T. Time-Harmonic Ultrasound elastography of the Descending Abdominal Aorta: Initial Results. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2550-2557. [PMID: 28818306 DOI: 10.1016/j.ultrasmedbio.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Stiffening of central large vessels is considered a key pathophysiologic factor within the cardiovascular system. Current diagnostic parameters such as pulse wave velocity (PWV) indirectly measure aortic stiffness, a hallmark of coronary diseases. The aim of the present study was to perform elastography of the proximal abdominal aorta based on externally induced time-harmonic shear waves. Experiments were performed in 30 healthy volunteers (25 young, 5 old, >50 y) and 5 patients with longstanding hypertension (PWV >10 m/s). B-Mode-guided sonographic time-harmonic elastography was used for measurement of externally induced shear waves at 30-Hz vibration frequency. Thirty-hertz shear wave amplitudes (SWAs) within the abdominal aorta were measured and displayed in real time and processed offline for differences in SWA between systole and diastole (ΔSWA). Data were analyzed using the Kruskal-Wallis test and receiver operating characteristic curve analysis. The change in SWA over the cardiac cycle was reduced significantly in all patients as assessed with ΔSWA (volunteers: mean = 10 ± 5 μm, patients: mean = 4 ± 1 μm; p < 0.001). The best separation of healthy volunteers from patients was obtained with a ΔSWA threshold of 4.7 μm, resulting in a sensitivity of 0.9 and a specificity of 1.0, with an overall area under the curve of 0.96. Time harmonic elastography of the abdominal aorta is feasible and shows promise for the exploitation of time-varying shear wave amplitudes as a diagnostic marker for aortic wall stiffening. Patients with elevated PWVs suggesting increased aortic wall stiffness were best identified by ΔSWA-a parameter that could be related to the ability of the vessel walls to distend on passages of the pulse wave.
Collapse
Affiliation(s)
- Lars-Arne Schaafs
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus van der Giet
- Medizinische Klinik mit Schwerpunkt Nephrologie, Transplantationszentrum-Hypertoniezentrum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Reshetnik
- Medizinische Klinik mit Schwerpunkt Nephrologie, Transplantationszentrum-Hypertoniezentrum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingo G Steffen
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institut für Medizinische Informatik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Elgeti
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Arunachalam SP, Arani A, Baffour F, Rysavy JA, Rossman PJ, Glaser KJ, Lake DS, Trzasko JD, Manduca A, McGee KP, Ehman RL, Araoz PA. Regional assessment of in vivo myocardial stiffness using 3D magnetic resonance elastography in a porcine model of myocardial infarction. Magn Reson Med 2017; 79:361-369. [PMID: 28382658 DOI: 10.1002/mrm.26695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE The stiffness of a myocardial infarct affects the left ventricular pump function and remodeling. Magnetic resonance elastography (MRE) is a noninvasive imaging technique for measuring soft-tissue stiffness in vivo. The purpose of this study was to investigate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE in a porcine model of myocardial infarction, and compare the results with ex vivo uniaxial tensile testing. METHODS Myocardial infarct was induced in a porcine model by embolizing the left circumflex artery. Fourteen days postinfarction, MRE imaging was performed in diastole using an echocardiogram-gated spin-echo echo-planar-imaging sequence with 140-Hz vibrations and 3D MRE processing. The MRE stiffness and tensile modulus from uniaxial testing were compared between the remote and infarcted myocardium. RESULTS Myocardial infarcts showed increased in vivo MRE stiffness compared with remote myocardium (4.6 ± 0.7 kPa versus 3.0 ± 0.6 kPa, P = 0.02) within the same pig. Ex vivo uniaxial mechanical testing confirmed the in vivo MRE results, showing that myocardial infarcts were stiffer than remote myocardium (650 ± 80 kPa versus 110 ± 20 kPa, P = 0.01). CONCLUSIONS These results demonstrate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE. Magn Reson Med 79:361-369, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph A Rysavy
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Lake
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Arani A, Arunachalam SP, Chang ICY, Baffour F, Rossman PJ, Glaser KJ, Trzasko JD, McGee KP, Manduca A, Grogan M, Dispenzieri A, Ehman RL, Araoz PA. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging 2017; 46:1361-1367. [PMID: 28236336 PMCID: PMC5572539 DOI: 10.1002/jmri.25678] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose To evaluate if cardiac magnetic resonance elastography (MRE) can measure increased stiffness in patients with cardiac amyloidosis. Myocardial tissue stiffness plays an important role in cardiac function. A noninvasive quantitative imaging technique capable of measuring myocardial stiffness could aid in disease diagnosis, therapy monitoring, and disease prognostic strategies. We recently developed a high‐frequency cardiac MRE technique capable of making noninvasive stiffness measurements. Materials and Methods In all, 16 volunteers and 22 patients with cardiac amyloidosis were enrolled in this study after Institutional Review Board approval and obtaining formal written consent. All subjects were imaged head‐first in the supine position in a 1.5T closed‐bore MR imager. 3D MRE was performed using 5 mm isotropic resolution oblique short‐axis slices and a vibration frequency of 140 Hz to obtain global quantitative in vivo left ventricular stiffness measurements. The median stiffness was compared between the two cohorts. An octahedral shear strain signal‐to‐noise ratio (OSS‐SNR) threshold of 1.17 was used to exclude exams with insufficient motion amplitude. Results Five volunteers and six patients had to be excluded from the study because they fell below the 1.17 OSS‐SNR threshold. The myocardial stiffness of cardiac amyloid patients (median: 11.4 kPa, min: 9.2, max: 15.7) was significantly higher (P = 0.0008) than normal controls (median: 8.2 kPa, min: 7.2, max: 11.8). Conclusion This study demonstrates the feasibility of 3D high‐frequency cardiac MRE as a contrast‐agent‐free diagnostic imaging technique for cardiac amyloidosis. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1361–1367.
Collapse
Affiliation(s)
- Arvin Arani
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ian C Y Chang
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - Martha Grogan
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Medicine: Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
21
|
Mazumder R, Schroeder S, Mo X, Clymer BD, White RD, Kolipaka A. In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastography. J Magn Reson Imaging 2016; 45:813-820. [PMID: 27564862 DOI: 10.1002/jmri.25423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/29/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To determine alteration in left ventricular (LV) myocardial stiffness (MS) with hypertension (HTN). Cardiac MR elastography (MRE) was used to estimate MS in HTN induced pigs and MRE-derived MS measurements were compared against LV pressure, thickness and circumferential strain. MATERIALS AND METHODS Renal-wrapping surgery was performed to induce HTN in eight pigs. LV catheterization (to measure pressure) and cardiac MRI (1.5 Tesla; gradient echo-MRE and tagging) was performed pre-surgery at baseline (Bx), and post-surgery at month 1 (M1) and month 2 (M2). Images were analyzed to estimate LV-MS, thickness, and circumferential strain across the cardiac cycle. The associations between end-diastolic (ED) and end-systolic (ES) MS and (i) mean LV pressure; (ii) ED and ES thickness, respectively; and (iii) circumferential strain were evaluated using Spearman's correlation method. RESULTS From Bx to M2, mean pressure, MRE-derived stiffness, and thickness increased while circumferential strain decreased significantly (slope test, P ≤ 0.05). Both ED and ES MS had significant positive correlation with (i) mean pressure (ED MS: ρ = 0.56; P = 0.005 and ES MS: ρ = 0.45; P = 0.03); (ii) ED thickness ( ρ = 0.73; P < 0.0001) and ES thickness ( ρ = 0.84; P < 0.0001), respectively; but demonstrated a negative trend with circumferential strain (ED MS: ρ = 0.31 and ES MS: ρ = 0.37). CONCLUSION This study demonstrated that, in a HTN porcine model, MRE-derived MS increased with increase in pressure and thickness. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:813-820.
Collapse
Affiliation(s)
- Ria Mazumder
- Department of Electrical and Computer Engineering, 205 Dreese Laboratories, The Ohio State University, Columbus, Ohio, USA.,Department of Radiology, Room 460, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Engineering, 265 Kirkbride Hall, Walnut Street, Widener University, Chester, PA
| | - Samuel Schroeder
- Department of Radiology, Room 460, The Ohio State University, Columbus, Ohio, USA.,Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, Room 320D, Lincoln Tower, Columbus, Ohio, USA
| | - Bradley D Clymer
- Department of Electrical and Computer Engineering, 205 Dreese Laboratories, The Ohio State University, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, Room 460, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, 244 Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, Room 460, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, 244 Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Mazumder R, Schroeder S, Mo X, Litsky AS, Clymer BD, White RD, Kolipaka A. In vivo magnetic resonance elastography to estimate left ventricular stiffness in a myocardial infarction induced porcine model. J Magn Reson Imaging 2016; 45:1024-1033. [PMID: 27533317 DOI: 10.1002/jmri.25432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/04/2016] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To estimate change in left ventricular (LV) end-systolic and end-diastolic myocardial stiffness (MS) in pigs induced with myocardial infarction (MI) with disease progression using cardiac magnetic resonance elastography (MRE) and to compare it against ex vivo mechanical testing, LV circumferential strain, and magnetic resonance imaging (MRI) relaxometry parameters (T1 , T2 , and extracellular volume fraction [ECV]). MATERIALS AND METHODS MRI (1.5T) was performed on seven pigs, before surgery (Bx), and 10 (D10), and 21 (D21) days after creating MI. Cardiac MRE-derived MS was measured in infarcted region (MIR) and remote region (RR), and validated against mechanical testing-derived MS obtained postsacrifice on D21. Circumferential strain and MRI relaxometry parameters (T2 , T1 , and ECV) were also obtained. Multiparametric analysis was performed to determine correlation between cardiac MRE-derived MS and 1) strain, 2) relaxometry parameters, and 3) mechanical testing. RESULTS Mean diastolic (D10: 5.09 ± 0.6 kPa; D21: 5.45 ± 0.7 kPa) and systolic (D10: 5.72 ± 0.8 kPa; D21: 6.34 ± 1.0 kPa) MS in MIR were significantly higher (P < 0.01) compared to mean diastolic (D10: 3.97 ± 0.4 kPa; D21: 4.12 ± 0.2 kPa) and systolic (D10: 5.08 ± 0.6 kPa; and D21: 5.16 ± 0.6 kPa) MS in RR. The increase in cardiac MRE-derived MS at D21 (MIR) was consistent and correlated strongly with mechanical testing-derived MS (r(diastolic) = 0.86; r(systolic) = 0.89). Diastolic MS in MIR demonstrated a negative correlation with strain (r = 0.58). Additionally, cardiac MRE-derived MS demonstrated good correlations with post-contrast T1 (r(diastolic) = -0.549; r(systolic) = -0.741) and ECV (r(diastolic) = 0.548; r(systolic) = 0.703), and no correlation with T2 . CONCLUSION As MI progressed, cardiac MRE-derived MS increased in MIR compared to RR, which significantly correlated with mechanical testing-derived MS, T1 and ECV. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:1024-1033.
Collapse
Affiliation(s)
- Ria Mazumder
- Department of Electrical and Computer Engineering, 205 Dreese Laboratories, Ohio State University, Columbus, Ohio, USA.,Department of Radiology, Ohio State University, Columbus, Ohio, USA
| | - Samuel Schroeder
- Department of Radiology, Ohio State University, Columbus, Ohio, USA.,Department of Mechanical Engineering, Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, Columbus, Ohio, USA
| | - Alan S Litsky
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA.,Department of Orthopaedics, Columbus, Ohio, USA
| | - Bradley D Clymer
- Department of Electrical and Computer Engineering, 205 Dreese Laboratories, Ohio State University, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, 244 Davis Heart & Lung Research Institute, Ohio State University, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, 244 Davis Heart & Lung Research Institute, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Arani A, Glaser KL, Arunachalam SP, Rossman PJ, Lake DS, Trzasko JD, Manduca A, McGee KP, Ehman RL, Araoz PA. In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers. Magn Reson Med 2016; 77:351-360. [PMID: 26778442 DOI: 10.1002/mrm.26101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. METHODS The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). RESULTS The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. CONCLUSION This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin L Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - David S Lake
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Mileto A, Heye TJ, Makar RA, Hurwitz LM, Marin D, Boll DT. Regional Mapping of Aortic Wall Stress by Using Deformable, Motion-coherent Modeling based on Electrocardiography-gated Multidetector CT Angiography: Feasibility Study. Radiology 2016; 280:230-6. [PMID: 26780540 DOI: 10.1148/radiol.2015151078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the feasibility of deformable, motion-coherent modeling based on electrocardiography-gated multidetector computed tomographic (CT) angiography of the thoracic aorta and to evaluate whether quantifiable information on aortic wall stress as a function of patient-specific cardiovascular parameters can be gained. Materials and Methods For this institutional review board-approved, HIPAA-compliant study, thoracic electrocardiography-gated dual-source multidetector CT angiographic images were used from 250 prospectively enrolled patients (150 men, 100 women; mean age, 79 years). On reconstructed 50-phase CT angiographic images, aortic strain and deformation were determined at seven cardiac and aortic locations. One-way analysis of variance was used by assessing the magnitude for longitudinal and axial strain and axial deformation, as well as time-resolved peak and maxima count for longitudinal strain and axial deformation. Interdependencies between aortic strain and deformation with extracted hemodynamic parameters were evaluated. Results With increasing heart rates, there was a significant decrease in longitudinal strain (P = .009, R(2) = 0.95) and a decrease in the number of longitudinal strain peaks (P < .001, R(2) = 0.79); however, a significant increase in axial deformation (P < .001, R(2) = 0.31) and axial strain (P = .009, R(2) = 0.61) was observed. Increasing aortic blood velocity led to increased longitudinal strain (P = .018, R(2) = 0.42) and longitudinal strain peak counts (P = .011, R(2) = 0.48). Pronounced motion in the longitudinal direction limited motion in the axial plane (P < .019, R(2) = 0.29-0.31). Conclusion The results of this study render a clinical basis and provide proof of principle for the use of deformable, motion-coherent modeling to provide quantitative information on physiological motion of the aorta under various hemodynamic circumstances. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Achille Mileto
- From the Department of Radiology, Duke University Medical Center, Durham, NC (A.M., R.A.M., L.M.H., D.M., D.T.B.); and Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (T.J.H., D.T.B.)
| | - Tobias J Heye
- From the Department of Radiology, Duke University Medical Center, Durham, NC (A.M., R.A.M., L.M.H., D.M., D.T.B.); and Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (T.J.H., D.T.B.)
| | - Ryan A Makar
- From the Department of Radiology, Duke University Medical Center, Durham, NC (A.M., R.A.M., L.M.H., D.M., D.T.B.); and Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (T.J.H., D.T.B.)
| | - Lynne M Hurwitz
- From the Department of Radiology, Duke University Medical Center, Durham, NC (A.M., R.A.M., L.M.H., D.M., D.T.B.); and Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (T.J.H., D.T.B.)
| | - Daniele Marin
- From the Department of Radiology, Duke University Medical Center, Durham, NC (A.M., R.A.M., L.M.H., D.M., D.T.B.); and Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (T.J.H., D.T.B.)
| | - Daniel T Boll
- From the Department of Radiology, Duke University Medical Center, Durham, NC (A.M., R.A.M., L.M.H., D.M., D.T.B.); and Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (T.J.H., D.T.B.)
| |
Collapse
|
25
|
Liu Y, Royston TJ, Klatt D, Lewandowski ED. Cardiac MR elastography of the mouse: Initial results. Magn Reson Med 2016; 76:1879-1886. [PMID: 26749052 DOI: 10.1002/mrm.26030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Many cardiovascular diseases are associated with abnormal function of myocardial contractility or dilatability, which is related to elasticity changes of the myocardium over the cardiac cycle. The mouse is a common animal model in studies of the progression of various cardiomyopathies. We introduce a novel noninvasive approach using microscopic scale MR elastography (MRE) to measure the myocardium stiffness change during the cardiac cycle on a mouse model. METHODS A harmonic mechanical wave of 400 Hz was introduced into the mouse body. An electrocardiograph-gated and respiratory-gated fractional encoding cine-MRE pulse sequence was applied to encode the resulting oscillatory motion on a short-axis slice of the heart. Five healthy mice (age range, 3-13.5 mo) were examined. The weighted summation effective stiffness of the left ventricle wall during the cardiac cycle was estimated. RESULTS The ratio of stiffness at end diastole and end systole was 0.5-0.67. Additionally, variation in shear wave amplitude in the left ventricle wall throughout the cardiac cycle was measured and found to correlate with estimates of stiffness variation. CONCLUSION This study demonstrates the feasibility of implementing cardiac MRE on a mouse model. Magn Reson Med 76:1879-1886, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Thomas J Royston
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dieter Klatt
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - E Douglas Lewandowski
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Urban MW, Qiang B, Song P, Nenadic IZ, Chen S, Greenleaf JF. Investigation of the effects of myocardial anisotropy for shear wave elastography using impulsive force and harmonic vibration. Phys Med Biol 2016; 61:365-82. [PMID: 26674613 PMCID: PMC4816222 DOI: 10.1088/0031-9155/61/1/365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myocardium is known to be an anisotropic medium where the muscle fiber orientation changes through the thickness of the wall. Shear wave elastography methods use propagating waves which are measured by ultrasound or magnetic resonance imaging (MRI) techniques to characterize the mechanical properties of various tissues. Ultrasound- or MR-based methods have been used and the excitation frequency ranges for these various methods cover a large range from 24-500 Hz. Some of the ultrasound-based methods have been shown to be able to estimate the fiber direction. We constructed a model with layers of elastic, transversely isotropic materials that were oriented at different angles to simulate the heart wall in systole and diastole. We investigated the effect of frequency on the wave propagation and the estimation of fiber direction and wave speeds in the different layers of the assembled models. We found that waves propagating at low frequencies such as 30 or 50 Hz showed low sensitivity to the fiber direction but also had substantial bias in estimating the wave speeds in the layers. Using waves with higher frequency content (>200 Hz) allowed for more accurate fiber direction and wave speed estimation. These results have particular relevance for MR- and ultrasound-based elastography applications in the heart.
Collapse
Affiliation(s)
- Matthew W. Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Bo Qiang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Pengfei Song
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Ivan Z. Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Shigao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - James F. Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
27
|
Time-Resolved Analysis of Left Ventricular Shear Wave Amplitudes in Cardiac Elastography for the Diagnosis of Diastolic Dysfunction. Invest Radiol 2016; 51:1-6. [DOI: 10.1097/rli.0000000000000198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Huber A, Ebner L, Heverhagen JT, Christe A. State-of-the-art imaging of liver fibrosis and cirrhosis: A comprehensive review of current applications and future perspectives. Eur J Radiol Open 2015; 2:90-100. [PMID: 26937441 PMCID: PMC4750581 DOI: 10.1016/j.ejro.2015.05.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023] Open
Abstract
MR elastography (MRE) appears to be the most reliable method for grading liver fibrosis. CT fibrosis score correlates with the stage of fibrosis. Caudate-to-right-lobe ratio and diameters of the liver veins contribute to the CT fibrosis score.
Objective The purpose of this article is to provide a comprehensive overview of imaging findings in patients with hepatic fibrosis and cirrhosis; and to describe which radiological/clinical modality is best for staging hepatic fibrosis. Conclusion MR elastography (MRE) appears to be the most reliable method for grading liver fibrosis, although the CT fibrosis score derived from the combination of caudate-to-right-lobe ratio and the diameters of the liver veins significantly correlates with the stage of fibrosis.
Collapse
Affiliation(s)
- Adrian Huber
- Department of Radiology, University Hospital of Bern, Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland
| | - Lukas Ebner
- Department of Radiology, University Hospital of Bern, Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland
| | - Johannes T Heverhagen
- Department of Radiology, University Hospital of Bern, Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland
| | - Andreas Christe
- Department of Radiology, University Hospital of Bern, Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland
| |
Collapse
|
29
|
Wassenaar PA, Eleswarpu CN, Schroeder SA, Mo X, Raterman BD, White RD, Kolipaka A. Measuring age-dependent myocardial stiffness across the cardiac cycle using MR elastography: A reproducibility study. Magn Reson Med 2015; 75:1586-93. [PMID: 26010456 DOI: 10.1002/mrm.25760] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using MR elastography (MRE) and to determine its correlation with age. METHODS Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. RESULTS Concordance correlation coefficient revealed good interscan agreement with rc of 0.77, with P-value < 0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared with end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. CONCLUSION CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared with ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two.
Collapse
Affiliation(s)
- Peter A Wassenaar
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chethanya N Eleswarpu
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Samuel A Schroeder
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Brian D Raterman
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard D White
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine-Division of Cardiovascular Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
30
|
Pislaru C, Pellikka PA, Pislaru SV. Wave propagation of myocardial stretch: correlation with myocardial stiffness. Basic Res Cardiol 2014; 109:438. [PMID: 25193091 DOI: 10.1007/s00395-014-0438-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023]
Abstract
The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart walls. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in 16 pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (E VP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end-diastolic stress-strain relation (E SS). Myocardial distensibility and α- and β-coefficients of stress-strain relations were calculated. Vp was higher at reperfusion compared to baseline (2.6 ± 1.3 vs. 1.3 ± 0.4 m/s; p = 0.005) and best correlated with E SS (r2 = 0.80, p < 0.0001), β-coefficient (r2 = 0.78, p < 0.0001), distensibility (r2 = 0.47, p = 0.005), and wall thickness/diameter ratio (r2 = 0.42, p = 0.009). Elastic moduli (E VP and E SS) were strongly correlated (r2 = 0.83, p < 0.0001). Increasing preload increased Vp and E VP and decreased distensibility. At multivariate analysis, E SS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2 model = 0.83, p < 0.0001). In conclusion, the main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography.
Collapse
Affiliation(s)
- Cristina Pislaru
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| | | | | |
Collapse
|
31
|
|
32
|
|