1
|
Oryani MA, Mohammad Al-Mosawi AK, Javid H, Tajaldini M, Karimi-Shahri M. A Bioligical Perspective on the role of miR-206 in Colorectal cancer. Gene 2025:149552. [PMID: 40339768 DOI: 10.1016/j.gene.2025.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
MicroRNAs (miRs) have emerged as pivotal regulators in the development and progression of colorectal cancer (CRC), and MicroRNA-206 (miR-206) has garnered attention as a potentially influential factor. However, the specific biological functions and complete mechanistic understanding of miR-206 in CRC remain largely uncharacterized. This study aims to bridge this research gap by providing a comprehensive analysis of miR-206's role in CRC. An exploration of the molecular mechanisms regulated by miR-206, its intricate interplay with target genes, and its significant impact on cellular processes highlights its potential utility as both a diagnostic marker and a therapeutic target. The significance of this research lies in potentially enabling the development of innovative therapeutic approaches, ultimately aiming to improve prognosis and survival rates in CRC patients by elucidating the functions of miR-206. Critical pathways, such as c-Met and PTEN/AKT, play crucial roles within the regulatory network of miR-206 in CRC and impact various cellular processes involved in CRC pathogenesis, metastasis, and treatment response. Understanding the complex interactions between miR-206 and key signaling pathways like c-Met and PTEN/AKT is crucial for understanding the underlying mechanisms driving CRC initiation and progression. This knowledge can inform the development of targeted therapeutic interventions, potentially leading to improved patient outcomes and advances in CRC management.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences. Gorgan, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
2
|
Wang Y, Tan H, Wen C, Chen S, Zheng G, Qi H, Xie L, Shen L, Cao F, Fan W. The Impact of Microwave Ablation on Recurrence and Metastasis of Hepatocellular Carcinoma: Insights From Animal Studies and Cytokine Profiling. J Hepatocell Carcinoma 2025; 12:825-835. [PMID: 40308383 PMCID: PMC12042830 DOI: 10.2147/jhc.s515779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Background Microwave ablation (MWA) is commonly used to treat hepatocellular carcinoma (HCC), but its effects on normal liver tissue and tumors remain unclear. While MWA causes direct tumor destruction, it also induces inflammatory responses in the surrounding liver tissue, which may influence tumor progression, metastasis, and recurrence. The role of cytokine alterations in this post-ablation inflammatory microenvironment is crucial for understanding how MWA impacts tumor behavior. Purpose This study aims to investigate the impact of post-ablation inflammatory responses on HCC recurrence and metastasis through animal experiments and cytokine profiling, with the goal of identifying potential biomarkers or therapeutic targets. Materials and Methods This study involved 35 male C57BL/6 mice (6-8 weeks old) to establish metastatic and orthotopic cancer models. The effects of normal liver tissue ablation and HCC ablation on tumor metastasis and recurrence were investigated. Cytokine expression changes were assessed using the Proteome Profiler Mouse XL Cytokine Array, and prognostic implications were analyzed using the TCGA database. Multiple group comparisons assessed using the Mann-Whitney U-test. Statistical significance was defined as a two-tailed p-value less than 0.05. Results Microwave ablation of normal liver tissue promotes intrahepatic metastasis of HCC. Incomplete ablation of liver tumors accelerates intrahepatic or pulmonary metastasis. Post-ablation, increased expression of MMP-9, OPN, VEGF, CHI3L1, AREG, CXCL2, and IL-1α in the peritumoral region suggests a shift toward a pro-inflammatory and pro-metastatic microenvironment, potentially facilitating tumor cell invasion, angiogenesis, and immune evasion. Conclusion HCC recurrence and metastasis following ablation may be driven by cytokine-mediated changes in the tumor microenvironment. Targeting key cytokines such as MMP-9, OPN, and CHI3L1 could provide new strategies for improving post-ablation outcomes and reducing recurrence rates in clinical settings.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Hongtong Tan
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Chunyong Wen
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Shuanggang Chen
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Guanglei Zheng
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Han Qi
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Lin Xie
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Lujun Shen
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Fei Cao
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Weijun Fan
- Department of Minimally Invasive & Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| |
Collapse
|
3
|
Lu H, Xie X, Zeng Y, Xia X, Dong X, Bu F, Fan H, Xu S. Prognostic Comparison of Complete vs. Incomplete Radiofrequency Ablation for Colorectal Liver Metastases: A Multicenter Prospective Study. Cancer Med 2025; 14:e70735. [PMID: 40231586 PMCID: PMC11997704 DOI: 10.1002/cam4.70735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Radiofrequency ablation (RFA) is a curative treatment for colorectal liver metastases (CLMs) in selected patients. NCCN guidelines recommend RFA for both unresectable and select resectable CLMs when complete ablation with adequate margins is feasible. While RFA can achieve oncologic outcomes comparable to surgery in well-selected patients, residual tumors are associated with a poorer prognosis. OBJECTIVES To identify predictors of residual tumor after percutaneous RFA for CLMs and evaluate their impact on overall survival (OS) and new intrahepatic metastases (NIHM). METHODS We prospectively included patients with CLMs who underwent percutaneous RFA from November 2019 to November 2022. Dynamic contrast-enhanced computed tomography assessed CLMs before and after RFA. Residual tumor was defined as active tumor visible immediately post-ablation or within 4-8 weeks, within 1 cm of the ablation zone. Data from three centers formed a developmental cohort, validated with patients from a fourth center. Cox regression and Kaplan-Meier analysis assessed local tumor progression-free survival (LTPFS), NIHM, and OS. RESULTS Among 200 patients (mean age 61 years, 126 men) with 410 tumors, independent predictors of residual tumors included perivascular tumor location (odds ratio [OR] = 6.673), tumor size ≥ 20 mm (OR = 3.925), and minimal ablative margin (OR = 0.599). These factors also predicted LTPFS. NIHM was more frequent in the residual tumor group than in the complete RFA (cRFA) group (p = 0.002). Median OS was 45 months, shorter in the residual tumor group (30 vs. 48 months, p = 0.009). Patients with NIHM who received transarterial chemoembolization combined with hepatic arterial infusion chemotherapy had a median OS of 43 months, compared to 34 months with RFA alone (p = 0.039). CONCLUSIONS A non-perivascular tumor location, tumor size < 20 mm, and a sufficient ablation margin are essential for achieving complete RFA. Residual tumors are associated with increased NIHM and shorter OS.
Collapse
Affiliation(s)
- Huilin Lu
- Department of Interventional TherapyXinxiang Central Hospital/the Fourth Clinical College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Xuancheng Xie
- Department of RadiologyThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional MedicineWuhanChina
- Hubei Provincial Key Laboratory of Molecular ImagingWuhanChina
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional MedicineWuhanChina
- Hubei Provincial Key Laboratory of Molecular ImagingWuhanChina
| | - Futang Bu
- Department of Radiation Oncology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hongjie Fan
- Department of Radiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional MedicineWuhanChina
- Hubei Provincial Key Laboratory of Molecular ImagingWuhanChina
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhouChina
| |
Collapse
|
4
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Hong C, Liu Y, Shi D, Liu C, Zou S, Guo M, Chen X, Zheng C, Zhao Y, Yang X. Radiofrequency-responsive black phosphorus nanogel crosslinked with cisplatin for precise synergy in multi-modal tumor therapies. J Control Release 2024; 373:853-866. [PMID: 39094632 DOI: 10.1016/j.jconrel.2024.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Radiofrequency-responsive nanoparticles (RFNPs) have drawn increasingly attentions as RF energy absorbing antenna to enhance antitumor efficacy of radiofrequency ablation (RFA). However, it remains a huge challenge for inorganic RFNPs to precisely synergize RFA with other antitumor modes in a clinically acceptable way on bio-safety and bio-compatibility. In this work, RF-responsive black phosphorus (BP) nanogel (BP-Pt@PNA) was successfully fabricated by crosslinking coordination of cisplatin with BP and temperature sensitive polymer PNA. BP-Pt@PNA exhibited strong RF-heating effect and RF-induced pulsatile release of cisplatin. Under RF irradiation, BP-Pt@PNA exhibited cytotoxic enhancement on 4T1 cells. By the synergistic effect of BP and cisplatin, BP-Pt@PNA achieved RF-stimulated systemic immune effect, thus induced enhance suppression on tumor growth and metastasis. Moreover, BP-Pt@PNA realized long-term drug retention in tumor and favorable embolization to tumor-feeding arteries. With high drug loading capacity and favorable bio-safety and bio-degradability, BP-Pt@PNA is expected as an ideal RFNP for precisely synergizing RFA with other antitumor modes in clinical application.
Collapse
Affiliation(s)
- Can Hong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Yiming Liu
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Chao Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Shidong Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Chuansheng Zheng
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China..
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; School of Biomedical Engineering, Hubei University of Science and Technology, Xianning 437100, PR China.; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074 Wuhan, PR China..
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074 Wuhan, PR China..
| |
Collapse
|
6
|
Salvermoser L, Goldberg SN, Alunni-Fabbroni M, Kazmierczak PM, Gröper MN, Schäfer JN, Öcal E, Burkard T, Corradini S, Ben Khaled N, Petrera A, Wildgruber M, Ricke J, Stechele M. CT-guided high dose rate brachytherapy can induce multiple systemic proteins of proliferation and angiogenesis predicting outcome in HCC. Transl Oncol 2024; 43:101919. [PMID: 38401507 PMCID: PMC10906383 DOI: 10.1016/j.tranon.2024.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND AND PURPOSE To determine the potential prognostic value of proliferation and angiogenesis plasma proteins following CT-guided high dose rate brachytherapy (HDR-BT) of hepatocellular carcinoma (HCC). MATERIALS AND METHODS For this prospective study, HDR-BT (1 × 15 Gy) was administered to 24 HCC patients. Plasma was obtained and analyzed using an Olink proteomics Target-96 immuno-oncology-panel that included multiple markers of angiogenesis and proliferation. Fold-change (FC) ratios were calculated by comparing baseline and 48 h post HDR-BT paired samples. Patients were classified as responders (n = 12) if they had no local progression within 6 months or systemic progression within 2 years. Non-responders (n = 12) had recurrence within 6 months and/or tumor progression or extrahepatic disease within 2 years. RESULTS Proliferation marker EGF was significantly elevated in non-responders compared to responders (p = 0.0410) while FGF-2, HGF, and PlGF showed no significant differences. Angiogenesis markers Angiopoietin-1 and PDGF-B were likewise significantly elevated in non-responders compared to responders (p = 0.0171, p = 0.0462, respectively) while Angiopoietin-2, VEGF-A, and VEGFR-2 did not differ significantly. Kaplan-Meier analyses demonstrated significantly shorter time to systemic progression in patients with increased EGF and Angiopoietin-1 (p = 0.0185, both), but not in patients with one of the remaining proteins elevated (all p > 0.1). Pooled analysis for these 9 proteins showed significantly shorter time to systemic progression for FC ≥1.3 and ≥1.5 for at least 3 proteins elevated (p = 0.0415, p = 0.0193, respectively). CONCLUSION Increased plasma levels of EGF and Angiopoietin-1 after HDR-BT for HCC are associated with poor response and may therefore function as predictive biomarkers of outcome.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Shraga Nahum Goldberg
- Department of Radiology, Goldyne Savad Institute of Gene Therapy and Division of Image-guided Therapy and Interventional Oncology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | | | - Moritz Nikolaus Gröper
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Jan Niklas Schäfer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Tanja Burkard
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich Marchioninistr. 15, Munich 81377, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany.
| |
Collapse
|
7
|
Frenkel N, Poghosyan S, van Wijnbergen JW, Rinkes IB, Kranenburg O, Hagendoorn J. Differential cytokine and chemokine expression after ablation vs. resection in colorectal cancer liver metastasis. Surg Open Sci 2024; 18:29-34. [PMID: 38318321 PMCID: PMC10838949 DOI: 10.1016/j.sopen.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Background Surgical resection remains the main curative treatment for colorectal liver metastases (CRLM). Radiofrequency ablation (RFA) is increasingly employed for small, deep lying or otherwise inoperable lesions. However, RFA can induce pro-tumorigenic effects on residual tumor cells, hereby possibly promoting tumor recurrence. Contrastingly, post-RFA tumor debris as an antigen source can also generate anti-cancer immune responses. Utilizing this, current studies on combining RFA with immune therapy appear promising. Here, in an attempt to shed light on this controversy, cytokines involved in inflammation, (lymph)angiogenesis, immune cell recruitment and tumor cell invasion were investigated post-RFA versus post-resection in CRLM patients. Methods Cytokine and chemokine serum levels pre-operation, 4 h and 24 h post-operation were analyzed in CRLM patients undergoing RFA (n = 8) or partial hepatectomy (n = 9) using Multiplex immunoassays. Statistical analyses were performed between as well as within individual intervention groups. Results Post-RFA, significantly increased levels of acute phase proteins SAA1 and S100A8, IL-6, IL-1Ra, MIP3b (CCL19) and MMP9 were observed along with decreases in Fibronectin, MCP-1 (CCL2), and Tie-2. Post-resection, increased levels of PDGFbb, I309 (CCL1), Apelin, MIF, IL-1b and TNFα were seen. All p-values <0.05. Conclusion Pro-inflammatory responses mediated by different cytokines were seen after both RFA and resection, possibly influencing residual tumor cells and tumor recurrence. As both ablation and resection trigger inflammation and immune cell recruitment (albeit via distinct mechanisms), these data suggest that further research may explore combining immune therapy with not only RFA but also resection. Key message Analysis of patients' serum after radiofrequency ablation versus resection of colorectal liver metastases (CRLM) showed that these interventions trigger inflammation and immune cell recruitment, via different cyto- and chemokine pathways. This suggests a possible future strategy of combining immune therapy with not only ablative techniques but also with resection of CRLM.
Collapse
Affiliation(s)
| | | | - Jan Willem van Wijnbergen
- Laboratory for Translational Oncology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Inne Borel Rinkes
- Laboratory for Translational Oncology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Onno Kranenburg
- Laboratory for Translational Oncology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| | - Jeroen Hagendoorn
- Laboratory for Translational Oncology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX Utrecht, the Netherlands
| |
Collapse
|
8
|
Mueller LE, Issa PP, Hussein MH, Elshazli RM, Haidari M, Errami Y, Shama M, Fawzy MS, Kandil E, Toraih E. Clinical outcomes and tumor microenvironment response to radiofrequency ablation therapy: a systematic review and meta-analysis. Gland Surg 2024; 13:4-18. [PMID: 38323236 PMCID: PMC10839696 DOI: 10.21037/gs-22-555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/15/2023] [Indexed: 02/08/2024]
Abstract
Background Radiofrequency ablation (RFA) utilizes minimally invasive high-energy current to precisely ablate tumor cells. It has been utilized in many cancer types including thyroid, lung, and liver cancer. It has been shown to provide adequate ablative margins with minimal complications; however, incomplete RFA may lead to recurrence of tumor. The underlying cellular mechanism and behavior of ablated cancer tissue is poorly understood. Methods A systematic review was performed, searching EMBASE, Web of Science, PubMed, and Scopus for studies published up to March 2022 and reported following PRISMA guidelines. Collection was performed by two groups of investigators to avoid risk of bias. The Cochrane Collaboration's tool was used for assessing risk of bias. We identified human, in vivo, and in vitro research studies utilizing RFA for tumor tissues. We required that the studies included at least one of the following: complications, recurrence, or survival, and took interest to studies identifying cellular signaling pathway patterns after RFA. Descriptive statistical analysis was performed in 'R' software including mean and confidence interval. Results The most frequent cancers studied were liver and lung cancers accounting for 57.4% (N=995) and 15.4% (N=267), followed by esophageal (N=190) and breast cancer (N=134). The most common reported complications were bleeding (19%) and post-operative pain (14%). In our literature search, four independent studies showed upregulation and activation of the VEGF pathway following RFA, four showed upregulation and activation of the AKT pathway following RFA, three studies demonstrated involvement of matrix metalloproteinases, and four showed upregulation of c-Met protein following RFA. Conclusions In our review and meta-analysis, we identify several proteins and pathways of interest of which are important in wound healing, angiogenesis, and cellular growth and survival. These proteins and pathways of interest may implicate areas of research towards RFA resistance and cancer recurrence.
Collapse
Affiliation(s)
| | - Peter P. Issa
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Rami M. Elshazli
- Department of Biochemistry and Molecular Genetics, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, Egypt
| | - Muhib Haidari
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Youssef Errami
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Mohamed Shama
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Emad Kandil
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Eman Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Wang Z, You T, Su Q, Deng W, Li J, Hu S, Shi S, Zou Z, Xiao J, Duan X. Laser-Activatable In Situ Vaccine Enhances Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307193. [PMID: 37951210 DOI: 10.1002/adma.202307193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/05/2023] [Indexed: 11/13/2023]
Abstract
The immune response in cancer reflects a series of carefully regulated events; however, current tumor immunotherapies typically address a single key aspect to enhance anti-tumor immunity. In the present study, a nanoplatform (Fe3 O4 @IR820@CpG)-based immunotherapy strategy that targets the multiple key steps in cancer-immunity cycle is developed: 1) promotes the release of tumor-derived proteins (TDPs), including tumor-associated antigens and pro-immunostimulatory factors), in addition to the direct killing effect, by photothermal (PTT) and photodynamic therapy (PDT); 2) captures the released TDPs and delivers them, together with CpG (a Toll-like receptor 9 agonist) to antigen-presenting cells (APCs) to promote antigen presentation and T cell activation; 3) enhances the tumor-killing ability of T cells by combining with anti-programmed death ligand 1 antibody (α-PD-L1), which collectively advances the outstanding of the anti-tumor effects on colorectal, liver and breast cancers. The broad-spectrum anti-tumor activity of Fe3 O4 @IR820@CpG with α-PD-L1 demonstrates that optimally manipulating anti-cancer immunity not singly but as a group provides promising clinical strategies.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tingting You
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - JiaBao Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Saixiang Hu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Salvermoser L, Goldberg SN, Laville F, Markezana A, Stechele M, Ahmed M, Wildgruber M, Kazmierczak PM, Alunni-Fabbroni M, Galun E, Ricke J, Paldor M. Radiofrequency Ablation-Induced Tumor Growth Is Suppressed by MicroRNA-21 Inhibition in Murine Models of Intrahepatic Colorectal Carcinoma. J Vasc Interv Radiol 2023; 34:1785-1793.e2. [PMID: 37348786 DOI: 10.1016/j.jvir.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
PURPOSE To investigate the role of microRNA-21 (miR21) in radiofrequency (RF) ablation-induced tumor growth and whether miR21 inhibition suppresses tumorigenesis. MATERIAL AND METHODS Standardized liver RF ablation was applied to 35 C57/BL6 mice. miR21 and target proteins pSTAT3, PDCD4, and PTEN were assayed 3 hours, 24 hours, and 3 days after ablation. Next, 53 Balb/c and 44 C57BL/6 mice received Antago-miR21 or scrambled Antago-nc control, followed by intrasplenic injection of 10,000 CT26 or MC38 colorectal tumor cells, respectively. Hepatic RF ablation or sham ablation was performed 24 hours later. Metastases were quantified and tumor microvascular density (MVD) and cellular proliferation were assessed at 14 or 21 days after the procedures, respectively. RESULTS RF ablation significantly increased miR21 levels in plasma and hepatic tissue at 3 and 24 hours as well as target proteins at 3 days after ablation (P < .05, all comparisons). RF ablation nearly doubled tumor growth (CT26, 2.0 SD ± 1.0 fold change [fc]; MC38, 1.9 SD ± 0.9 fc) and increased MVD (CT26, 1.9 SD ± 1.0 fc; MC38, 1.5 ± 0.5 fc) and cellular proliferation (CT26, 1.7 SD ± 0.7 fc; MC38, 1.4 SD ± 0.5 fc) compared with sham ablation (P < .05, all comparisons). RF ablation-induced tumor growth was suppressed when Antago-miR21 was administered (CT26, 1.0 SD ± 0.7 fc; MC38, 0.9 SD ± 0.4 fc) (P < .01, both comparisons). Likewise, Antago-miR21 decreased MVD (CT26, 1.0 SD ± 0.3 fc; MC38, 1.0 SD ± 0.2 fc) and cellular proliferation (CT26, 0.9 SD ± 0.3 fc; MC38, 0.8 SD ± 0.3 fc) compared with baseline (P < .05, all comparisons). CONCLUSIONS RF ablation upregulates protumorigenic miR21, which subsequently influences downstream tumor-promoting protein pathways. This effect can potentially be suppressed by specific inhibition of miR21, rendering this microRNA a pivotal and targetable driver of tumorigenesis after hepatic thermal ablation.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, the Laboratory for Minimally Invasive Tumor Therapies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts; Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Flinn Laville
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Aurelia Markezana
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Radiology, the Laboratory for Minimally Invasive Tumor Therapies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Muneeb Ahmed
- Department of Radiology, the Laboratory for Minimally Invasive Tumor Therapies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Mor Paldor
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Markezana A, Paldor M, Liao H, Ahmed M, Zorde-Khvalevsky E, Rozenblum N, Stechele M, Salvermoser L, Laville F, Goldmann S, Rosenberg N, Andrasina T, Ricke J, Galun E, Goldberg SN. Fibroblast growth factors induce hepatic tumorigenesis post radiofrequency ablation. Sci Rep 2023; 13:16341. [PMID: 37770545 PMCID: PMC10539492 DOI: 10.1038/s41598-023-42819-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development.
Collapse
Affiliation(s)
- Aurelia Markezana
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
| | - Mor Paldor
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Haixing Liao
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Elina Zorde-Khvalevsky
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nir Rozenblum
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Matthias Stechele
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Salvermoser
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Flinn Laville
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Salome Goldmann
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nofar Rosenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Tomas Andrasina
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Shraga Nahum Goldberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA.
- Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
12
|
Myofibroblasts: A key promoter of tumorigenesis following radiofrequency tumor ablation. PLoS One 2022; 17:e0266522. [PMID: 35857766 PMCID: PMC9299299 DOI: 10.1371/journal.pone.0266522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Radiofrequency ablation (RFA) of intrahepatic tumors induces distant tumor growth through activation of interleukin 6/signal transducer and activator of transcription 3 (STAT3)/hepatocyte growth factor (HGF)/tyrosine-protein kinase Met (c-MET) pathway. Yet, the predominant cellular source still needs to be identified as specific roles of the many types of periablational infiltrating immune cells requires further clarification. Here we report the key role of activated myofibroblasts in RFA-induced tumorigenesis and successful pharmacologic blockade. Murine models simulating RF tumorigenic effects on a macrometastatic tumor and intrahepatic micrometastatic deposits after liver ablation and a macrometastatic tumor after kidney ablation were used. Immune assays of ablated normal parenchyma demonstrated significantly increased numbers of activated myofibroblasts in the periablational rim, as well as increased HGF levels, recruitment other cellular infiltrates; macrophages, dendritic cells and natural killer cells, HGF dependent growth factors; fibroblast growth factor-19 (FGF-19) and receptor of Vascular Endothelial Growth Factor-1 (VEGFR-1), and proliferative indices; Ki-67 and CD34 for microvascular density. Furthermore, macrometastatic models demonstrated accelerated distant tumor growth at 7d post-RFA while micrometastatic models demonstrated increased intrahepatic deposit size and number at 14 and 21 days post-RFA. Multi-day atorvastatin, a selective fibroblast inhibitor, inhibited RFA-induced HGF and downstream growth factors, cellular markers and proliferative indices. Specifically, atorvastatin treatment reduced cellular and proliferative indices to baseline levels in the micrometastatic models, however only partially in macrometastatic models. Furthermore, adjuvant atorvastatin completely inhibited accelerated growth of macrometastasis and negated increased micrometastatic intrahepatic burden. Thus, activated myofibroblasts drive RF-induced tumorigenesis at a cellular level via induction of the HGF/c-MET/STAT3 axis, and can be successfully pharmacologically suppressed.
Collapse
|
13
|
Jiang AN, Wang B, Wang S, Zhao K, Wu H, Yan K, Wu W, Yang W. The study of direct and indirect effects of radiofrequency ablation on tumor microenvironment in liver tumor animal model. BMC Cancer 2022; 22:663. [PMID: 35710408 PMCID: PMC9205114 DOI: 10.1186/s12885-022-09730-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Direct and indirect effects of radiofrequency ablation (RFA) on tumor microenvironment of the liver tumor have been noted, which was reported to be related to a variety of tyrosine protein kinase or cytokinetic pathway, but have not been thoroughly investigated and conclusive. PURPOSE To elucidate direct and indirect effects of RFA on tumor microenvironment in the liver tumor model, and to explore the role of the specific inhibitor in tumor growth by targeting the key pathway of RFA. MATERIALS AND METHODS One hundred and ten mice with H22 liver tumor were used in animal experiments. Eighty-four mice were randomized into three groups: control, direct RFA and indirect RFA (a block slide was inside the middle of the tumor). The growth rate of the residual tumor after RFA was calculated (n = 8 each group) and the pathologic changes at different time points (6 h, 24 h, 72 h and 7d after RFA) were evaluated (n = 5 in each subgroup). After semi-quantitative analysis of the pathological staining, the most significant marker after RFA was selected. Then, the specific inhibitor (PHA) was applied with RFA and the tumor growth and pathological changes were evaluated and compared with RFA alone. The Kruskal-Wallis test was used for evaluating the significance of different treatments in the pathological positive rate of specific markers in tumor. The two-way analysis of variance was used to determine the significance of treatment in tumor growth or body weight. RESULTS The growth rate of the residual tumor in the direct RFA group was faster than the indirect RFA group (P = 0.026). The pathological analysis showed the expression of HSP70 (73 ± 13% vs 27 ± 9% at 24 h, P < 0.001), SMA (70 ± 18% vs 18 ± 7% at 6 h, P < 0.001) and Ki-67 (51 ± 11% vs 33 ± 14% at 7d, P < 0.001) in the direct RFA group was higher than those in the indirect RFA group after RFA. On the other hand, the expression of c-Met (38 ± 11% vs 28 ± 9% at 24 h, P = 0.01), IL-6 (41 ± 10% vs 25 ± 9% at 24 h, P < 0.001) and HIF-α (48 ± 10% vs 28 ± 8% at 24 h, P < 0.001) in the indirect RFA group was higher than those in the direct RFA group. And the expression of c-Met increased mostly in both direct and indirect RFA group compared to the baseline (53 and 65% at 72 h). Then the specific inhibitor of c-Met-PHA was applied with RFA. The growth rate of the tumor was significantly slower in the RFA + PHA group than the RFA alone group (1112.9 ± 465.6 mm3 vs 2162.7 ± 911.1 mm3 at day 16, P = 0.02). CONCLUSION Direct and indirect effects of RFA on tumor microenvironment changed at different time points and resulted in increased residual tumor growth in the animal model. It can be potentially neutralized with specific inhibitor of related pathways, such as tyrosine-protein kinase c-Met.
Collapse
Affiliation(s)
- An-Na Jiang
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Bing Wang
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Song Wang
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Kun Zhao
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Hao Wu
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Kun Yan
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Wei Wu
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China
| | - Wei Yang
- Department of Ultrasound, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, 100142, China.
| |
Collapse
|
14
|
Zhao K, Wu H, Yang W, Cheng Y, Wang S, Jiang AN, Yan K, Goldberg SN. Can two-step ablation combined with chemotherapeutic liposomes achieve better outcome than traditional RF ablation? A solid tumor animal study. NANOSCALE 2022; 14:6312-6322. [PMID: 35393985 DOI: 10.1039/d1nr08125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objectives: To determine whether two-step ablation using sequential low and high temperature heating can achieve improved outcomes in animal tumor models when combined with chemotherapeutic liposomes (LP). Materials and methods: Balb/c mice bearing 4T1 tumor received paclitaxel-loaded liposomes followed 24 h later by either traditional RFA (70 °C, 5 min) or a low temperature RFA (45 °C, 5 min), or two-step RFA (45 °C 2 min + 70 °C 3 min). Intratumoral drug accumulation and bio-distribution in major organs were evaluated. Periablational drug penetration was evaluated by pathologic staining and the intratumoral interstitial fluid pressure (IFP) was measured directly. For long-term outcomes, mice bearing 4T1 or H22 tumors were randomized into five groups (n = 8 per group): control (no treatment), RFA alone, LP + RFA (45 °C), LP + RFA (70 °C) and LP + RFA (45 + 70 °C). End-point survivals were compared among the different groups. Results: The greater intratumoral drug accumulation (3.35 ± 0.32 vs. 3.79 ± 0.29 × 108 phot/cm2/s at 24 h, p = 0.09), deeper periablational drug penetration (45.7 ± 5.0 vs. 1.6 ± 0.5, p < 0.001), and reduced off-target drug deposition in major organs (liver 96.1 ± 31.6 vs. 47.4 ± 1.5 × 106 phot/cm2/s, p < 0.001) were found when combined with RFA (45 °C) compared to drug alone. For long-term outcomes, 4T1 tumor growth rates for LP + two-step RFA (45 + 70 °C) were significantly slower than those of LP + RFA (70 °C), LP + RFA (45 °C), and RFA alone (P < 0.01 for all comparisons). End point survival for LP + RFA (45 + 70 °C) was also longer than that for LP + RFA (70 °C) (median 16 vs. 10 days, p = 0.003) or LP + RFA 45 °C (11 days, p = 0.009) and RFA alone (8.3 days, p < 0.001) in 4T1 tumor models. The intratumoral IFP after RFA (45 °C) was significantly lower than baseline RFA (3.3 ± 0.8 vs. 19.2 ± 3.1 mmHg, p < 0.001), but was not measurable after RFA (70 °C). Conclusions: A two-step ablation combined with chemotherapeutic liposomes can achieve better survival benefit compared to traditional RFA in animal models.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Yuxi Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Song Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - An-Na Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Kun Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - S Nahum Goldberg
- Division of Image-guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
16
|
HCC: role of pre- and post-treatment tumor biology in driving adverse outcomes and rare responses to therapy. Abdom Radiol (NY) 2021; 46:3686-3697. [PMID: 34195886 DOI: 10.1007/s00261-021-03192-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fastest-growing cause of cancer deaths in the United States and is a complex disease. The response of hepatocellular carcinoma (HCC) to treatment can be variable. Predicting response to determine the most effective therapy is an active area of research. Our understanding of underlying factors which drive response to therapy is continually increasing. As more therapies for the treatment of this disease evolve, it is crucial to identify and match the ideal therapy for a particular tumor and patient. The potential predicative imaging features of tumor behavior, while of research interest, have not been validated for clinical use and do not currently inform treatment planning. If further validated though, prognostic features may be used in the future to personalize treatment plans according to individual patients and tumors. Unexpected post-treatment responses such as potential tumor biology changes and abscopal effect which are important to be aware of. This review is intended for radiologists who routinely interpret post treatment HCC imaging and is designed to increase their cognizance about how HCC tumor biology drives response to therapy and explore rare responses to therapy.
Collapse
|
17
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
18
|
The two facets of gp130 signalling in liver tumorigenesis. Semin Immunopathol 2021; 43:609-624. [PMID: 34047814 PMCID: PMC8443519 DOI: 10.1007/s00281-021-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
The liver is a vital organ with multiple functions and a large regenerative capacity. Tumours of the liver are the second most frequently cause of cancer-related death and develop in chronically inflamed livers. IL-6-type cytokines are mediators of inflammation and almost all members signal via the receptor subunit gp130 and the downstream signalling molecule STAT3. We here summarize current knowledge on how gp130 signalling and STAT3 in tumour cells and cells of the tumour micro-environment drives hepatic tumorigenesis. We furthermore discuss very recent findings describing also anti-tumorigenic roles of gp130/STAT3 and important considerations for therapeutic interventions.
Collapse
|
19
|
Zhu X, Wei C, Zhang Y, Meng Z, Hu B, Zhang F, Wei X, Ying T. Monitoring radiofrequency therapy-induced tumor cell dissemination by in vivo flow cytometry. Cytometry A 2021; 99:593-600. [PMID: 33619834 DOI: 10.1002/cyto.a.24329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022]
Abstract
Clinical and experimental findings have disclosed a high recurrence rate after radiofrequency ablation (RFA), which might be due to the dissemination of malignant cells into the vasculature during ablation. Here, we apply in vivo flow cytometry (IVFC) to monitor circulating tumor cells (CTCs) while performing ablation in a real-time and noninvasive way in an orthotopic model of prostate cancer. We report that CTCs are dramatically increased during RFA. The CTCs induced by ablation eventually translate into enhanced distant metastasis and reduced survival as compared to resection. Immunofluorescence analysis reveals that RFA significantly increases the infiltration of tumor-associated macrophages (TAMs) in the lung. Our study thus suggests that the ablative procedure of prostate tumors causes immediate tumor cell dissemination and increases distant metastasis.
Collapse
Affiliation(s)
- Xi Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Wei
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Bing Hu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Fuli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Biomedical Engineering Department, Peking University, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tao Ying
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Lyu J, Sun Y, Li X, Ma H. MicroRNA-206 inhibits the proliferation, migration and invasion of colorectal cancer cells by regulating the c-Met/AKT/GSK-3β pathway. Oncol Lett 2020; 21:147. [PMID: 33633805 PMCID: PMC7877959 DOI: 10.3892/ol.2020.12408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
An imbalance in microRNA (miRNA/miR) expression is closely associated with tumorigenesis and progression. miR-206 is downregulated in different types of tumors, including colorectal cancer (CRC). However, the effects of miR-206 on the progression of CRC, and its underlying molecular mechanisms are yet to be elucidated. The present study aimed to investigate the effects of miR-206 on the proliferation, migration and invasion of colorectal cancer cells, and determine its potential molecular mechanism. The results of the present study demonstrated that the expression levels of miR-206 and c-Met were affected in HCT116 and SW480 cells by transfected with miR-206 mimic, inhibitor or small interfering RNA-c-Met. A Dual-luciferase reporter assay was performed to identify the miRNA targets. Cell proliferation, migration and invasion assays were also performed. The results demonstrated that overexpression of miR-206 significantly decreased the viability of HCT116 and SW480 cells. The results of the Transwell assay indicated that the cell migratory and invasive abilities were inhibited following transfection with miR-206 mimic. As a target of miR-206, knockdown of c-Met significantly suppressed cell viability, migration and invasion. In addition, c-Met knockdown or overexpression of miR-206 inhibited activation of the AKT/GSK-3β pathway. Collectively, these results suggest that miR-206 suppresses the proliferation, migration and invasion of CRC cells by targeting the c-Met/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Jiayu Lyu
- Department of First General Surgery, The Fifth Hospital of Harbin, Harbin, Heilongjiang 150040, P.R. China
| | - Yao Sun
- Department of Neurology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang 150088, P.R. China
| | - Xizhi Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Huili Ma
- Department of Emergency Surgical Trauma Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
21
|
Nikolic B. Preventing Colorectal Metastatic Tumor Growth Caused by Radiofrequency Ablation. Radiology 2019; 294:473-474. [PMID: 31846403 DOI: 10.1148/radiol.2020192504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Boris Nikolic
- From the Department of Interventional Radiology, Cooley Dickinson Hospital, Massachusetts General Hospital Affiliate, 30 Locust St, Northampton, MA 01060
| |
Collapse
|