1
|
Durongbhan P, Davey CE, Stok KS. Empirical Modelling Workflow for Resolution Invariant Assessment of Osteophytes. IEEE Trans Biomed Eng 2024; 71:3523-3530. [PMID: 39037882 DOI: 10.1109/tbme.2024.3431634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Traditional quantitative analysis of bone microstructure in micro-computed tomography (microCT) is dependent on animal scale and requires parametric tuning in new implementations. This study aims to develop an automated and resolution-invariant 3D image processing workflow for quantitative assessment of osteophytes. METHODS In this workflow, cortical bone was segmented from microCT scans, and a 3D sphere-fitting transform was performed to obtain a thickness map, for which each voxel is assigned a thickness value corresponding to the size of the largest sphere containing the voxel that fits entirely within the cortical bone. From the thickness map, a 1-voxel thick outer surface was extracted to model surface roughness. The thickness values of the outer surface were empirically estimated by a series of known statistical distributions. Resulting parameters describing best-fit distributions, along with other cortical bone metrics, were analysed to determine sensitivity to osteoarthritis and the presence of osteophytes. RESULTS The workflow was validated using microCT scans and histological gradings of rabbit and rat tibiofemoral joints. Visual inspection shows that samples with osteoarthritis and the presence of osteophytes have more surface voxels assigned small thickness values. The distribution of surface thickness values for each animal is best described by Gamma distributions, whose shape parameter is consistently sensitive to osteoarthritis and the presence of osteophytes. CONCLUSION Combining traditional image processing with empirical distribution fitting provides an automated, objective, and resolution-invariant workflow for osteophyte assessment. SIGNIFICANCE The proposed method is simple, yet elegant in its implementation, and can be readily used in new implementations.
Collapse
|
2
|
Shu J, Zheng N, Dai H, Wang Q, Tsai TY, Liu Z. Altered dynamic joint space in the lateral condyle compartment following medial unicompartmental knee arthroplasty. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108330. [PMID: 39121602 DOI: 10.1016/j.cmpb.2024.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE The progression of osteoarthritis in lateral compartment has been identified as a primary complication in medial unicompartmental knee arthroplasty (UKA) revisions, irrespective of whether employing fixed bearing (FB) or mobile bearing (MB) designs. Compared to the previous contact point analyses, the tibiofemoral contacts during knee movements are comprehended by a more comprehensive understanding of joint spaces. This study aims to dynamically map the joint spaces in the lateral compartment during the single-leg lunge following FB and MB UKA procedures, and compare them with the respective contralateral native knees. It is hypothesized that the significant change in joint space for post-UKA compared to their native knees. METHODS Twelve patients with unilateral medial FB UKA and eleven patients with unilateral medial MB UKA were included and underwent computed tomography scans. The exclusion criteria included anterior cruciate ligament deficiency, postoperative knee pain, any postoperative complications, and musculoskeletal illnesses. A dual fluoroscopic imaging system was utilized to capture the single-leg lunge, and 2D-to-3D registration facilitated the visualization of knee motion. According to the knee motions, joint spaces on tibial and femoral surfaces in the lateral compartments of native, FB, and MB UKA knees were calculated and mapped. RESULTS In comparison to the native knees, FB UKA knees exhibited significant increases in medial, lateral, central, and posterior joint spaces in the lateral compartment (p < 0.05), while MB UKA knees showed significant increases only in central and posterior joint spaces (p < 0.05). Moreover, FB UKA demonstrated greater increases in medial, central, and posterior joint spaces compared to MB UKA. Tibial varus and valgus during lunges, as well as the Oxford Knee Score (OKS) and Hip-Knee-Ankle angle (HKA), correlated with joint spaces. CONCLUSIONS Dynamic joint space analysis provided a more comprehensive insight into contact dynamics. FB UKA led to an enlargement of joint spaces, whereas MB UKA resulted in joint spaces closer to native knees. These findings contribute to understanding potential postoperative complication in UKAs.
Collapse
Affiliation(s)
- Jingheng Shu
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Yibin Institute of Industrial Technology/Sichuan University Yibin Park, Yibin, China
| | - Nan Zheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai, China
| | - Huiyong Dai
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai, China
| | - Zhan Liu
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Yibin Institute of Industrial Technology/Sichuan University Yibin Park, Yibin, China.
| |
Collapse
|
3
|
Bernasconi A, Dechir Y, Izzo A, D’Agostino M, Magliulo P, Smeraglia F, de Cesar Netto C, International Weightbearing CT Society, Lintz F. Trends in the Use of Weightbearing Computed Tomography. J Clin Med 2024; 13:5519. [PMID: 39337007 PMCID: PMC11432607 DOI: 10.3390/jcm13185519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: This review aimed to critically appraise the most recent orthopedic literature around cone beam weightbearing computed tomography (WBCT), summarizing what evidence has been provided so far and identifying the main research trends in the area. Methods: This scoping review was performed on studies published between January 2013 and December 2023 on the Pubmed database. All studies (both clinical and nonclinical) in which WBCT had been used were critically analyzed to extract the aim (or aims) of the study, and the main findings related to the role of this imaging modality in the diagnostic pathway. Results: Out of 1759 studies, 129 were selected. One hundred five manuscripts (81%) dealt with elective orthopedic conditions. The majority of the analyses (88 studies; 84%) were performed on foot and ankle conditions, while 13 (12%) studies looked at knee pathologies. There was a progressive increase in the number of studies published over the years. Progressive Collapsing Foot Deformity (22 studies; 25%) and Hallux Valgus (19 studies; 21%) were frequent subjects. Twenty-four (19%) manuscripts dealt with traumatic conditions. A particular interest in syndesmotic injuries was documented (12 studies; 60%). Conclusions: In this review, we documented an increasing interest in clinical applications of weightbearing CT in the orthopedic field between 2013 and 2023. The majority of the analyses focused on conditions related to the foot and the ankle; however, we found several works investigating the value of WBCT on other joints (in particular, the knee).
Collapse
Affiliation(s)
- Alessio Bernasconi
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Yanis Dechir
- Department of Orthopaedic and Trauma Surgery, Centre Hospitalier Universitaire (CHU) de Toulouse, 31300 Toulouse, France;
| | - Antonio Izzo
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Martina D’Agostino
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Paolo Magliulo
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | - Francesco Smeraglia
- Trauma and Orthopaedics Unit, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.I.); (M.D.); (P.M.); (F.S.)
| | | | | | - François Lintz
- Department of Foot and Ankle Surgery, Ramsay Healthcare, Clinique de l’Union, 31240 Saint Jean, France;
| |
Collapse
|
4
|
Chalian M, Pooyan A, Alipour E, Roemer FW, Guermazi A. What is New in Osteoarthritis Imaging? Radiol Clin North Am 2024; 62:739-753. [PMID: 39059969 DOI: 10.1016/j.rcl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Osteoarthritis (OA) is the leading joint disorder globally, affecting a significant proportion of the population. Recent studies have changed our understanding of OA, viewing it as a complex pathology of the whole joint with a multifaceted etiology, encompassing genetic, biological, and biomechanical elements. This review highlights the role of imaging in diagnosing and monitoring OA. Today's role of radiography is discussed, while also elaborating on the advances in computed tomography and magnetic resonance imaging, discussing semiquantitative methods, quantitative morphologic and compositional techniques, and giving an outlook on the potential role of artificial intelligence in OA research.
Collapse
Affiliation(s)
- Majid Chalian
- Department of Radiology, University of Washington, Seattle, USA; Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology, Roosevelt Clinic, 4245 Roosevelt Way, NE Box 354755, Seattle, WA 98105, USA
| | - Atefe Pooyan
- Department of Radiology, University of Washington, Seattle, USA; Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology, Roosevelt Clinic, 4245 Roosevelt Way, NE Box 354755, Seattle, WA 98105, USA
| | - Ehsan Alipour
- Department of Radiology, University of Washington, Seattle, USA; Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology, Roosevelt Clinic, 4245 Roosevelt Way, NE Box 354755, Seattle, WA 98105, USA
| | - Frank W Roemer
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg; Universitätsklinikum Erlangen, Erlangen, Germany; Department of Radiology, Quantitative Imaging Center, Boston University School of Medicine
| | - Ali Guermazi
- Department of Radiology, Quantitative Imaging Center, Boston University School of Medicine; Department of Radiology, VA Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
5
|
Wang W, Jiang T, Zhang J, Liu J, Chan LC, Lin M, Li J, Ding C, Chiu KY, Fu H, Chan PK, Wen C. Subchondral bone expansion in advanced knee osteoarthritis: Relation with radiographic severity and role in surgical decision-making. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100461. [PMID: 38558888 PMCID: PMC10979271 DOI: 10.1016/j.ocarto.2024.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Joint space width (JSW) is a traditional imaging marker for knee osteoarthritis (OA) severity, but it lacks sensitivity in advanced cases. We propose tibial subchondral bone area (TSBA), a new CT imaging marker to explore its relationship with OA radiographic severity, and to test its performance for classifying surgical decisions between unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) compared to JSW. Methods We collected clinical, radiograph, and CT data from 182 patients who underwent primary knee arthroplasty (73 UKA, 109 TKA). The radiographic severity was scored using Kellgren-Lawrence (KL) grading system. TSBA and JSW were extracted from 3D CT-reconstruction model. We used independent t-test to investigate the relationship between TSBA and KL grade, and binary logistic regression to identify factors associated with TKA risk. The accuracy of TSBA, JSW and established classification model in differentiating between UKA and TKA was assessed using AUC. Results All parameters exhibited inter- and intra-class coefficients greater than 0.966. Patients with KL grade 4 had significantly larger TSBA than those with KL grade 3. TSBA (0.708 of AUC) was superior to minimal/average JSW (0.547/0.554 of AUC) associated with the risk of receiving TKA. Medial TSBA, together with gender and Knee Society Knee Score, emerged as independent classification factors in multivariate analysis. The overall AUC of composite model for surgical decision-making was 0.822. Conclusion Tibial subchondral bone area is an independent imaging marker for radiographic severity, and is superior to JSW for surgical decision-making between UKA and TKA in advanced OA patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianshu Jiang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jun Liu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lok Chun Chan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengqi Lin
- Department of Software Engineering, Faculty of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun, China
| | - Jia Li
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kwong Yuen Chiu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Henry Fu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Ping Keung Chan
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
6
|
Azari F, Uniyal P, Soete J, Coudyzer W, Wyers CE, Quintiens J, van den Bergh JP, van Lenthe GH. Accuracy of photon-counting computed tomography for the measurement of bone quality in the knee. Bone 2024; 181:117027. [PMID: 38309413 DOI: 10.1016/j.bone.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Visualization and quantification of bone microarchitecture in the human knee allows gaining insight into normal bone structure, and into the structural changes occurring in the onset and progression of bone diseases such as osteoporosis and osteoarthritis. However, current imaging modalities have limitations in capturing the intricacies of bone microarchitecture. Photon counting computed tomography (PCCT) is a promising imaging modality that presents high-resolution three-dimensional visualization of bone with a large field of view. However, the potential of PCCT in assessing trabecular microstructure has not been investigated yet. Therefore, this study aimed to evaluate the accuracy of PCCT in quantifying bone microstructure and bone mechanics in the knee. Five human cadaveric knees were scanned ex vivo using a PCCT scanner (Naetom alpha, Siemens, Germany) with an in-plane resolution of 146.5 μm and slice thickness of 100 μm. To assess accuracy, the specimens were also scanned with a high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT II, Scanco Medical, Switzerland) with a nominal isotropic voxel size of 60.7 μm as well as with micro-computed tomography (micro-CT; TESCAN UniTOM XL, Czech Republic) with a nominal isotropic voxel size of 25 μm which can be considered gold standards for in vivo and ex vivo scanning, respectively. The thickness and porosity of the subchondral bone and the microstructure of the underlying trabecular bone were assessed in the load bearing regions of the proximal tibia and distal femur. The apparent Young's modulus was determined by micro-finite element (μFE) analysis of subchondral trabecular bone (STB) in the load bearing regions of the proximal tibia using PCCT, HR-pQCT and micro-CT images. The correlation between PCCT measurements and micro-CT and HR-pQCT, respectively, was calculated. The coefficients of determination (R2) between PCCT and micro-CT based parameters, ranged from 0.69 to 0.87. The coefficients of determination between PCCT and HR-pQCT were slightly higher and ranged from 0.71 to 0.91. Apparent Young's modulus, assessed by μFE analysis of PCCT images, correlated well with that of micro-CT (R2 = 0.80, mean relative difference = 19 %). However, PCCT overestimated the apparent Young's modulus by 47 %, but the correlation (R2 = 0.84) remained strong when compared to HR-pQCT. The results of this study suggest that PCCT can be used to quantify bone microstructure in the knee.
Collapse
Affiliation(s)
- Fahimeh Azari
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Piyush Uniyal
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Jeroen Soete
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Walter Coudyzer
- Radiology Section, Faculty of Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Centre, Venlo, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Jilmen Quintiens
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Joop P van den Bergh
- Department of Internal Medicine, VieCuri Medical Centre, Venlo, the Netherlands; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Piccolo CL, Mallio CA, Vaccarino F, Grasso RF, Zobel BB. Imaging of knee osteoarthritis: a review of multimodal diagnostic approach. Quant Imaging Med Surg 2023; 13:7582-7595. [PMID: 37969633 PMCID: PMC10644136 DOI: 10.21037/qims-22-1392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 11/17/2023]
Abstract
Knee osteoarthritis (KOA) is a common chronic condition among the elderly population that significantly affects the quality of life. Imaging is crucial in the diagnosis, evaluation, and management of KOA. This manuscript reviews the various imaging modalities available until now, with a little focus on the recent developments with Artificial Intelligence. Currently, radiography is the first-line imaging modality recommended for the diagnosis of KOA, owing to its wide availability, affordability, and ability to provide a clear view of bony components of the knee. Although radiography is useful in assessing joint space narrowing (JSN), osteophytes and subchondral sclerosis, it has limited effectiveness in detecting early cartilage damage, soft tissue abnormalities and synovial inflammation. Ultrasound is a safe and affordable imaging technique that can provide information on cartilage thickness, synovial fluid, JSN and osteophytes, though its ability to evaluate deep structures such as subchondral bone is limited. Magnetic resonance imaging (MRI) represents the optimal imaging modality to assess soft tissue structures. New MRI techniques are able to detect early cartilage damage measuring the T1ρ and T2 relaxation time of knee cartilage. Delayed gadolinium-enhanced MRI of cartilage, by injecting a contrast agent to enhance the visibility of the cartilage on MRI scans, can provide information about its integrity. Despite these techniques can provide valuable information about the biochemical composition of knee cartilage and can help detect early signs of osteoarthritis (OA), they may not be widely available. Computed tomography (CT) has restricted utility in evaluating OA; nonetheless, weight-bearing CT imaging, using the joint space mapping technique, exhibits potential in quantifying knee joint space width and detecting structural joint ailments. PET-MRI is a hybrid imaging technique able to combine morphological information on bone and soft tissue alterations with the biochemical changes, but more research is needed to justify its high cost and time involved. The new tools of artificial intelligence, including machine learning models, can assist in detecting patterns and correlations in KOA that may be useful in the diagnosis, grading, predicting the need for arthroplasty, and improving surgical accuracy.
Collapse
Affiliation(s)
- Claudia Lucia Piccolo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Federica Vaccarino
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Rosario Francesco Grasso
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| |
Collapse
|
8
|
Turmezei TD, Malhotra K, MacKay JW, Gee AH, Treece GM, Poole KES, Welck MJ. 3-D joint space mapping at the ankle from weight-bearing CT: reproducibility, repeatability, and challenges for standardisation. Eur Radiol 2023; 33:8333-8342. [PMID: 37256354 PMCID: PMC10598168 DOI: 10.1007/s00330-023-09718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 06/01/2023]
Abstract
OBJECTIVES We present a 3-D approach to joint space width (JSW) measurement across the ankle from weight-bearing CT (WBCT) to demonstrate inter-operator reproducibility, test-retest repeatability, and how differences in angulation affect ankle JSW distribution. METHODS One side from repeat WBCT imaging of both feet and ankles was analysed from 23 individuals as part of their routine clinical care pathway. Joint space mapping was performed at four facets across the talus: talonavicular, talar dome and medial gutter (dome-medial), lateral gutter, and posterior subtalar. Inter-operator reproducibility was calculated for two users, while test-retest repeatability was calculated by comparing the two visits, both presented as Bland-Altman statistics. Statistical parametric mapping determined any significant relationships between talocrural joint space angulation and 3-D JSW distribution. RESULTS The average ± standard deviation interval between imaging was 74.0 ± 29.6 days. Surface averaged bias ± limits of agreement were similar for reproducibility and repeatability, the latter being: talonavicular 0.01 ± 0.26 mm, dome-medial 0.00 ± 0.28 mm, lateral gutter - 0.02 ± 0.40 mm, and posterior subtalar 0.02 ± 0.34 mm. Results are presented as 3-D distribution maps, with optimum test-retest repeatability reaching a smallest detectable difference of ± 0.15 mm. CONCLUSIONS Joint space mapping is a robust approach to 3-D quantification of JSW measurement, inter-operator reproducibility, and test-retest repeatability at the ankle, with sensitivity reaching a best value of ± 0.15 mm. Standardised imaging protocols and optimised metal artefact reduction will be needed to further understand the clinical value of these 3-D measures derived from WBCT. CLINICAL RELEVANCE STATEMENT Weight-bearing computed tomography is an increasingly important tool in the clinical assessment of orthopaedic ankle disorders. This paper establishes the performance of measuring 3-D joint space width using this technology, which is an important surrogate marker for severity of osteoarthritis. KEY POINTS • Joint space width values and error metrics from across the ankle measured from weight-bearing CT can be presented as 3-D maps that show topographic variation. • The best sensitivity for detecting meaningful change in 3-D joint space width at the ankle was ± 0.15 mm, a value less than the isotropic imaging voxel dimensions. • Standardised imaging protocols and optimised metal artefact reduction will be needed to understand the clinical value of 3-D measures from weight-bearing CT.
Collapse
Affiliation(s)
- Tom D Turmezei
- Department of Radiology, Norfolk and Norwich University Hospital NHS Foundation Trust, Colney Lane, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Karan Malhotra
- Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, UK
| | - James W MacKay
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Radiology, University of Cambridge, Hills Road, Cambridge, UK
| | - Andrew H Gee
- Cambridge University Engineering Department, Trumpington Street, Cambridge, UK
| | - Graham M Treece
- Cambridge University Engineering Department, Trumpington Street, Cambridge, UK
| | - Kenneth E S Poole
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, UK
| | - Matthew J Welck
- Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, UK
| |
Collapse
|
9
|
Atkins PR, Morris A, Elhabian SY, Anderson AE. A Correspondence-Based Network Approach for Groupwise Analysis of Patient-Specific Spatiotemporal Data. Ann Biomed Eng 2023; 51:2289-2300. [PMID: 37357248 PMCID: PMC11047278 DOI: 10.1007/s10439-023-03270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
Methods for statistically analyzing patient-specific data that vary both spatially and over time are currently either limited to summary statistics or require elaborate surface registration. We propose a new method, called correspondence-based network analysis, which leverages particle-based shape modeling to establish correspondence across a population and preserve patient-specific measurements and predictions through statistical analysis. Herein, we evaluated this method using three published datasets of the hip describing cortical bone thickness of the proximal femur, cartilage contact stress, and dynamic joint space between control and patient cohorts to evaluate activity- and group-based differences, as applicable, using traditional statistical parametric mapping (SPM) and our proposed spatially considerate correspondence-based network analysis approach. The network approach was insensitive to correspondence density, while the traditional application of SPM showed decreasing area of the region of significance with increasing correspondence density. In comparison to SPM, the network approach identified broader and more connected regions of significance for all three datasets. The correspondence-based network analysis approach identified differences between groups and activities without loss of subject and spatial specificity which could improve clinical interpretation of results.
Collapse
Affiliation(s)
- Penny R Atkins
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Alan Morris
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Shireen Y Elhabian
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Andrew E Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Therapy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Demehri S, Kasaeian A, Roemer FW, Guermazi A. Osteoarthritis year in review 2022: imaging. Osteoarthritis Cartilage 2023; 31:1003-1011. [PMID: 36924919 DOI: 10.1016/j.joca.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This narrative review summarizes original research focusing on imaging in osteoarthritis (OA) published between April 1st 2021 and March 31st 2022. We only considered English publications that were in vivo human studies. METHODS The PubMed, Medline, Embase, Scopus, and ISI Web of Science databases were searched for "Osteoarthritis/OA" studies based on the search terms: "Radiography", "Ultrasound/US", "Computed Tomography/CT", "DXA", "Magnetic Resonance Imaging/MRI", "Artificial Intelligence/AI", and "Deep Learning". This review highlights the anatomical focus of research on the structures within the tibiofemoral, patellofemoral, hip, and hand joints. There is also a noted focus on artificial intelligence applications in OA imaging. RESULTS Over the last decade, the increasing trend of using open-access large databases has reached a plateau (from 17 to 37). Compositional MRI has had the most prominent use in OA imaging and its biomarkers have been used in the detection of preclinical OA and prediction of OA outcomes. Most noteworthy, there has been an accelerated rate of publications on the implications of artificial intelligence, used in developing prediction models and performing trabecular texture analysis, in OA imaging (from 17 to 154). CONCLUSIONS While imaging has maintained its key role in OA research, publication trends have shown an emphasis on the integration of AI. During the past year, MRI has maintained the highest prevalence in usage while US and CT remain as readily available modalities. Finally, there has been a notable uptake in the development and validation of AI techniques used to perform texture analysis and predict OA progression.
Collapse
Affiliation(s)
- S Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - A Kasaeian
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - F W Roemer
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA; Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - A Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Li X, Roemer FW, Cicuttini F, MacKay JW, Turmezei T, Link TM. Early knee OA definition-what do we know at this stage? An imaging perspective. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158204. [PMID: 36937824 PMCID: PMC10017942 DOI: 10.1177/1759720x231158204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
While criteria for early-stage knee osteoarthritis (OA) in a primary care setting have been proposed, the role of imaging has been limited to radiography using the standard Kellgren-Lawrence classification. Standardized imaging and interpretation are critical with radiographs, yet studies have also shown that even early stages of radiographic OA already demonstrate advanced damage to knee joint tissues such as cartilage, menisci, and bone marrow. Morphological magnetic resonance imaging (MRI) shows degenerative damage earlier than radiographs and definitions for OA using MRI have been published though no accepted definition of early OA based on MRI is currently available. The clinical significance of structural abnormalities has also not been well defined, and the differentiation between normal aging and structural OA development remains a challenge. Compositional MRI of cartilage provides information on biochemical, degenerative changes within the cartilage matrix before cartilage defects occur and when cartilage damage is potentially reversible. Studies have shown that cartilage composition can predict cartilage loss and radiographic OA. However, while this technology is most promising for characterizing early OA it has currently limited clinical application. Better standardization of compositional MRI is required, which is currently work in progress. Finally, there has been renewed interest in computed tomography (CT) for assessing early knee OA as new techniques such as weight bearing and spectral CT are available, which may provide information on joint loading, cartilage, and bone and potentially have a role in better characterizing early OA. In conclusion, while imaging may have a limited role in diagnosing early OA in a primary care setting, there are advanced imaging technologies available, which detect early degeneration and may thus significantly alter management as new therapeutic modalities evolve.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Frank W. Roemer
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Jamie W. MacKay
- Department of Radiology, University of Cambridge, Cambridge, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Tom Turmezei
- Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 400 Parnassus Ave, A-367, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
MRI underestimates presence and size of knee osteophytes using CT as a reference standard. Osteoarthritis Cartilage 2023; 31:656-668. [PMID: 36796577 DOI: 10.1016/j.joca.2023.01.575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To explore the diagnostic performance of routine magnetic resonance imaging (MRI) for the cross-sectional assessment of osteophytes (OPs) in all three knee compartments using computed tomography (CT) as a reference standard. METHODS The Strontium Ranelate Efficacy in Knee Osteoarthritis (SEKOIA) trial explored the effect of 3 years of treatment with strontium ranelate in patients with primary knee OA. OPs were scored for the baseline visit only using a modified MRI Osteoarthritis Knee Score (MOAKS) scoring system in the patellofemoral (PFJ), the medial tibiofemoral (TFJ) and the lateral TFJ. Size was assessed from 0 to 3 in 18 locations. Descriptive statistics were used to describe differences in ordinal grading between CT and MRI. In addition, weighted-kappa statistics were employed to assess agreement between scoring using the two methods. Sensitivity, specificity, positive predictive value and negative predictive value as well as area under the curve (AUC) measures of diagnostic performance were employed using CT as the reference standard. RESULTS Included were 74 patients with available MRI and CT data. Mean age was 62.9 ± 7.5 years. Altogether 1,332 locations were evaluated. For the PFJ, MRI detected 141 (72%) of 197 CT-defined OPs with a w-kappa of 0.58 (95% CI [0.52-0.65]). In the medial TFJ, MRI detected 178 (81%) of 219 CT-OPs with a w-kappa of 0.58 (95% CI [0.51-0.64]). For the lateral compartment these numbers were 84 (70%) of 120 CT-OPs with a w-kappa of 0.58 (95% CI [0.50-0.66]). CONCLUSION MRI underestimates presence of osteophytes in all three knee compartments. CT may be helpful particularly regarding assessment of small osteophytes particularly in early disease.
Collapse
|
13
|
Brett A, Bowes MA, Conaghan PG. Comparison of 3D quantitative osteoarthritis imaging biomarkers from paired CT and MR images: data from the IMI-APPROACH study. BMC Musculoskelet Disord 2023; 24:76. [PMID: 36710346 PMCID: PMC9885640 DOI: 10.1186/s12891-023-06187-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION MRI bone surface area and femoral bone shape (B-score) measures have been employed as quantitative endpoints in DMOAD clinical trials. Computerized Tomography (CT) imaging is more commonly used for 3D visualization of bony anatomy due to its high bone-soft tissue contrast. We aimed to compare CT and MRI assessments of 3D imaging biomarkers. METHODS We used baseline and 24-month image data from the IMI-APPROACH 2-year prospective cohort study. Femur and tibia were automatically segmented using active appearance models, a machine-learning method, to measure 3D bone shape, area and 3D joint space width (3DJSW). Linear regression was used to test for correlation between measures. Limits of agreement and bias were tested using Bland-Altman analysis. RESULTS CT-MR pairs of the same knee were available from 434 participants (78% female). B-scores from CT and MR were strongly correlated (CCC = 0.967) with minimal bias of 0.1 (SDD = 0.227). Area measures were also correlated but showed a consistent bias (MR smaller). 3DJSW showed different biases (MR larger) in both lateral and medial compartments. DISCUSSION The strong correlation and small B-score bias suggests that B-score may be measured reliably using either modality. It is likely that the bone surface identified using MR and CT will be at slightly different positions within the bone/cartilage boundary. The negative bone area bias suggests the MR bone boundary is inside the CT boundary producing smaller areas for MR, consistent with the positive 3DJSW bias. The lateral-medial 3DJSW difference is possibly due to a difference in knee pose during acquisition (extended for CT, flexed for MR). TRIAL REGISTRATION NCT03883568.
Collapse
Affiliation(s)
- Alan Brett
- Imorphics, Worthington House, Towers Business Park, Wilmslow Road, Manchester, M20 2HJ UK
| | - Michael A. Bowes
- Imorphics, Worthington House, Towers Business Park, Wilmslow Road, Manchester, M20 2HJ UK
| | - Philip G. Conaghan
- grid.454370.10000 0004 0439 7412Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
14
|
Weight-bearing cone-beam CT: the need for standardised acquisition protocols and measurements to fulfill high expectations-a review of the literature. Skeletal Radiol 2022; 52:1073-1088. [PMID: 36350387 DOI: 10.1007/s00256-022-04223-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Weight bearing CT (WBCT) of the lower extremity is gaining momentum in evaluation of the foot/ankle and knee. A growing number of international studies use WBCT, which is promising for improving our understanding of anatomy and biomechanics during natural loading of the lower extremity. However, we believe there is risk of excessive enthusiasm for WBCT leading to premature application of the technique, before sufficiently robust protocols are in place e.g. standardised limb positioning and imaging planes, choice of anatomical landmarks and image slices used for individual measurements. Lack of standardisation could limit benefits from introducing WBCT in research and clinical practice because useful imaging information could become obscured. Measurements of bones and joints on WBCT are influenced by joint positioning and magnitude of loading, factors that need to be considered within a 3-D coordinate system. A proportion of WBCT studies examine inter- and intraobserver reproducibility for different radiological measurements in the knee or foot with reproducibility generally reported to be high. However, investigations of test-retest reproducibility are still lacking. Thus, the current ability to evaluate, e.g. the effects of surgery or structural disease progression, is questionable. This paper presents an overview of the relevant literature on WBCT in the lower extremity with an emphasis on factors that may affect measurement reproducibility in the foot/ankle and knee. We discuss the caveats of performing WBCT without consensus on imaging procedures and measurements.
Collapse
|
15
|
Turmezei TD, Low SB, Rupret S, Treece GM, Gee AH, MacKay JW, Lynch JA, Poole KES, Segal NA. Multiparametric 3-D analysis of bone and joint space width at the knee from weight bearing computed tomography. OSTEOARTHRITIS IMAGING 2022; 2:100069. [PMID: 36249485 PMCID: PMC9559750 DOI: 10.1016/j.ostima.2022.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Computed tomography (CT) can deliver multiple parameters relevant to osteoarthritis. In this study we demonstrate that a 3-D multiparametric approach at the weight bearing knee with cone beam CT is feasible, can include multiple parameters from across the joint space, and can reveal stronger relationships with disease status in combination. DESIGN 33 participants with knee weight bearing CT (WBCT) were analysed with joint space mapping and cortical bone mapping to deliver joint space width (JSW), subchondral bone plate thickness, endocortical thickness, and trabecular attenuation at both sides of the joint. All data were co-localised to the same canonical surface. Statistical parametric mapping (SPM) was applied in uni- and multivariate models to demonstrate significant dependence of parameters on Kellgren & Lawrence grade (KLG). Correlation between JSW and bony parameters and 2-week test-retest repeatability were also calculated. RESULTS SPM revealed that the central-to-posterior medial tibiofemoral joint space was significantly narrowed by up to 0.5 mm with significantly higher tibial trabecular attenuation up to 50 units for each increment in KLG as single features, and in a wider distribution when combined (p<0.05). These were also more strongly correlated with worsening KLG grade category. Test-retest repeatability was subvoxel (0.37 mm) for nearly all thickness parameters. CONCLUSIONS 3-D JSW and tibial trabecular attenuation are repeatable and significantly dependent on radiographic disease severity at the weight bearing knee joint not just alone, but more strongly in combination. A quantitative multiparametric approach with WBCT may have potential for more sensitive investigation of disease progression in osteoarthritis.
Collapse
Affiliation(s)
- Tom D Turmezei
- Norfolk and Norwich University Hospital NHS Foundation Trust, Colney Lane, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Samantha B Low
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Simon Rupret
- University Hospitals Bristol and Weston NHS Foundation Trust, Marlborough Street, Bristol, UK
| | - Graham M Treece
- Cambridge University Engineering Department, Trumpington Street, Cambridge, UK
| | - Andrew H Gee
- Cambridge University Engineering Department, Trumpington Street, Cambridge, UK
| | - James W MacKay
- Norfolk and Norwich University Hospital NHS Foundation Trust, Colney Lane, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - John A Lynch
- University of California San Francisco, 550 16th Street, San Francisco, USA
| | - Kenneth ES Poole
- University of Cambridge Department of Medicine, Hills Road, Cambridge, UK
| | - Neil A Segal
- University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, USA
| |
Collapse
|
16
|
Affiliation(s)
- Frank W Roemer
- From the Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; and Quantitative Imaging Center (QIC), Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 4th Floor, Boston, MA 02118
| |
Collapse
|