1
|
Li Y, Zong K, Zhou Y, Sun Y, Liu Y, Zhou B, Wu Z. Enhanced preoperative prediction of pancreatic fistula using radiomics and clinical features with SHAP visualization. Front Bioeng Biotechnol 2025; 13:1510642. [PMID: 40256777 PMCID: PMC12006764 DOI: 10.3389/fbioe.2025.1510642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background Clinically relevant postoperative pancreatic fistula (CR-POPF) represents a significant complication after pancreaticoduodenectomy (PD). Therefore, the early prediction of CR-POPF is of paramount importance. Based on above, this study sought to develop a CR-POPF prediction model that amalgamates radiomics and clinical features to predict CR-POPF, utilizing Shapley Additive explanations (SHAP) for visualization. Methods Extensive radiomics features were extracted from preoperative enhanced Computed Tomography (CT) images of patients scheduled for PD. Subsequently, feature selection was performed using Least Absolute Shrinkage and Selection Operator (Lasso) regression and random forest (RF) algorithm to select pertinent radiomics and clinical features. Last, 15 CR-POPF prediction models were developed using five distinct machine learning (ML) predictors, based on selected radiomics features, selected clinical features, and a combination of both. Model performance was compared using DeLong's test for the area under the receiver operating characteristic curve (AUC) differences. Results The CR-POPF prediction model based on the XGBoost predictor with the combination of the radiomics and clinical features selected by Lasso regression and RF exhibited superior performance among these 15 CR-POPF prediction models, achieving an accuracy of 0.85, an AUC of 0.93. DeLong's test showed statistically significant differences (P < 0.05) when compared to the radiomics-only and clinical-only models, with recall of 0.63, precision of 0.65, and F1 score of 0.64. Conclusion The proposed CR-POPF prediction model based on the XGBoost predictor with the combination of the radiomics and clinical features selected by Lasso regression and RF can effectively predicting the CR-POPF and may provide strong support for early clinical management of CR-POPF.
Collapse
Affiliation(s)
- Yan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kenzhen Zong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Hepatobiliary Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Barat M, Greffier J, Si-Mohamed S, Dohan A, Pellat A, Frandon J, Calame P, Soyer P. CT Imaging of the Pancreas: A Review of Current Developments and Applications. Can Assoc Radiol J 2025:8465371251319965. [PMID: 39985297 DOI: 10.1177/08465371251319965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer continues to pose daily challenges to clinicians, radiologists, and researchers. These challenges are encountered at each stage of pancreatic cancer management, including early detection, definite characterization, accurate assessment of tumour burden, preoperative planning when surgical resection is possible, prediction of tumour aggressiveness, response to treatment, and detection of recurrence. CT imaging of the pancreas has made major advances in recent years through innovations in research and clinical practice. Technical advances in CT imaging, often in combination with imaging biomarkers, hold considerable promise in addressing such challenges. Ongoing research in dual-energy and spectral photon-counting computed tomography, new applications of artificial intelligence and image rendering have led to innovative implementations that allow now a more precise diagnosis of pancreatic cancer and other diseases affecting this organ. This article aims to explore the major research initiatives and technological advances that are shaping the landscape of CT imaging of the pancreas. By highlighting key contributions in diagnostic imaging, artificial intelligence, and image rendering, this article provides a comprehensive overview of how these innovations are enhancing diagnostic precision and improving outcome in patients with pancreatic diseases.
Collapse
Affiliation(s)
- Maxime Barat
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Joël Greffier
- Department of Medical Imaging, PRIM Platform, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, IMAGINE UR UM 103, Nîmes, France
| | - Salim Si-Mohamed
- University of Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, Auvergne-Rhône-Alpes, France
| | - Anthony Dohan
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Gastroenterology, Endoscopy and Digestive Oncology Unit, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Julien Frandon
- Department of Medical Imaging, PRIM Platform, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, IMAGINE UR UM 103, Nîmes, France
| | - Paul Calame
- Department of Radiology, University of Franche-Comté, CHRU Besançon, Besançon, France
- EA 4662 Nanomedicine Lab, Imagery and Therapeutics, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| |
Collapse
|
3
|
Lin Y, Liu T, Hu Y, Xu Y, Wang J, Guo S, Xie S, Sun H. Assessment of vascular invasion of pancreatic ductal adenocarcinoma based on CE-boost black blood CT technique. Insights Imaging 2024; 15:293. [PMID: 39636361 PMCID: PMC11621291 DOI: 10.1186/s13244-024-01870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES To explore the diagnostic efficacy of advanced intelligent clear-IQ engine (AiCE) and adaptive iterative dose reduction 3D (AIDR 3D), combination with and without the black blood CT technique (BBCT), for detecting vascular invasion in patients diagnosed with nonmetastatic pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 35 consecutive patients diagnosed with PDAC, proceeding with contrast-enhanced abdominal CT scans, were enrolled in this study. The arterial and portal venous phase images were reconstructed using AiCE and AIDR 3D. The corresponding BBCT images were established as AiCE-BBCT and AIDR 3D-BBCT, respectively. Two observers scored the image quality independently. Cohen's kappa (k) value or intraclass correlation coefficient (ICC) was used to analyze consistency. The diagnostic performance of four algorithms in detecting vascular invasion in PDAC patients was assessed using the area under the curve (AUC). RESULTS The AiCE and AiCE-BBCT groups demonstrated superior image noise and diagnostic acceptability compared with AIDR 3D and AIDR 3D-BBCT groups (all p < 0.001), and the k value was 0.861-0.967 for both reviewers. In terms of diagnostic capability for vascular invasion in PDAC, the AiCE-BBCT group exhibited higher specificity (95.0%) and sensitivity (93.3%) compared to the AIDR 3D and AIDR 3D-BBCT groups, with an AUC of 0.942 (95% CI: 0.849-1.000, p < 0.05). Furthermore, all vascular evaluations conducted using AiCE-BBCT demonstrated better consistency (ICC: 0.847-0.935). CONCLUSION The BBCT technique in conjunction with AiCE could lead to notable enhancements in both the image quality of PDAC images and the diagnostic performance for tumor vascular invasion. CRITICAL RELEVANCE STATEMENT Better diagnostic accuracy of vascular invasion of PDAC based on BBCT in combination with an AiCE is a critical factor in determining treatment strategies and patient outcomes. KEY POINTS Identifying vascular invasion of PDAC is important for prognostication. Combined images provide improved image quality and higher diagnostic accuracy. Combined images can excellently display the vascular wall and invasion.
Collapse
Affiliation(s)
- Yue Lin
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Tongxi Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yingying Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yinghao Xu
- CT Clinical Research Department, CT Business Unit, Canon Medical Systems (China) Co., Ltd., Beijing, China
| | - Jian Wang
- CT Clinical Research Department, CT Business Unit, Canon Medical Systems (China) Co., Ltd., Beijing, China
| | - Sijia Guo
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
4
|
Chu LC, Fishman EK. Pancreatic ductal adenocarcinoma staging: a narrative review of radiologic techniques and advances. Int J Surg 2024; 110:6052-6063. [PMID: 38085802 PMCID: PMC11486980 DOI: 10.1097/js9.0000000000000899] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 10/20/2024]
Abstract
Radiology plays an important role in the initial diagnosis and staging of patients with pancreatic ductal adenocarcinoma (PDAC). CT is the preferred modality over MRI due to wider availability, greater consistency in image quality, and lower cost. MRI and PET/CT are usually reserved as problem-solving tools in select patients. The National Comprehensive Cancer Network (NCCN) guidelines define resectability criteria based on tumor involvement of the arteries and veins and triage patients into resectable, borderline resectable, locally advanced, and metastatic categories. Patients with resectable disease are eligible for upfront surgical resection, while patients with high-stage disease are treated with neoadjuvant chemotherapy and/or radiation therapy with hopes of downstaging the disease. The accuracy of staging critically depends on the imaging technique and the experience of the radiologists. Several challenges in accurate preoperative staging include prediction of lymph node metastases, detection of subtle liver and peritoneal metastases, and disease restaging following neoadjuvant therapy. Artificial intelligence (AI) has the potential to function as 'second readers' to improve upon the radiologists' detection of small early-stage tumors, which can shift more patients toward surgical resection of potentially curable cancer. AI may also provide imaging biomarkers that can predict disease recurrence and patient survival after pancreatic resection and assist in the selection of patients most likely to benefit from surgery, thus improving patient outcomes.
Collapse
Affiliation(s)
- Linda C. Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
5
|
Rogalla P, Cadour F, Kim TK. Pancreatic Adenocarcinoma Resectability Assessment: Could a Visual Aid Tool Save Both Patients and Radiology Residents? Can Assoc Radiol J 2024; 75:460-461. [PMID: 38334028 DOI: 10.1177/08465371241230905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Affiliation(s)
- Patrik Rogalla
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Farah Cadour
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Tae Kyoung Kim
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Policelli R, Dammak S, Ward AD, Kassam Z, Johnson C, Ramsewak D, Syed Z, Siddiqi L, Siddique N, Kim D, Marshall H. A Visual Aid Tool for Detection of Pancreatic Tumour-Vessel Contact on Staging CT: A Retrospective Cohort Study. Can Assoc Radiol J 2024; 75:575-583. [PMID: 38124063 DOI: 10.1177/08465371231217155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Purpose: In pancreatic adenocarcinoma, the difficult distinction between normal and affected pancreas on CT studies may lead to discordance between the pre-surgical assessment of vessel involvement and intraoperative findings. We hypothesize that a visual aid tool could improve the performance of radiology residents when detecting vascular invasion in pancreatic adenocarcinoma patients. Methods: This study consisted of 94 pancreatic adenocarcinoma patient CTs. The visual aid compared the estimated body fat density of each patient with the densities surrounding the superior mesenteric artery and mapped them onto the CT scan. Four radiology residents annotated the locations of perceived vascular invasion on each scan with the visual aid overlaid on alternating scans. Using 3 expert radiologists as the reference standard, we quantified the area under the receiver operating characteristic curve to determine the performance of the tool. We then used sensitivity, specificity, balanced accuracy ((sensitivity + specificity)/2), and spatial metrics to determine the performance of the residents with and without the tool. Results: The mean area under the curve was 0.80. Radiology residents' sensitivity/specificity/balanced accuracy for predicting vascular invasion were 50%/85%/68% without the tool and 81%/79%/80% with it compared to expert radiologists, and 58%/85%/72% without the tool and 78%/77%/77% with it compared to the surgical pathology. The tool was not found to impact the spatial metrics calculated on the resident annotations of vascular invasion. Conclusion: The improvements provided by the visual aid were predominantly reflected by increased sensitivity and accuracy, indicating the potential of this tool as a learning aid for trainees.
Collapse
Affiliation(s)
- Robert Policelli
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Salma Dammak
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, Western University, London, ON, Canada
- School of Biomedical Engineering, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| | - Zahra Kassam
- Department of Medical Imaging, Western University, London, ON, Canada
- St. Joseph's Health Care London, London, ON, Canada
| | | | - Darryl Ramsewak
- Department of Medical Imaging, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Zafir Syed
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Lubna Siddiqi
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Naman Siddique
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Dongkeun Kim
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Harry Marshall
- Department of Medical Imaging, Western University, London, ON, Canada
- St. Joseph's Health Care London, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
7
|
Li Y, Wu K, Yang H, Wang J, Chen Q, Ding X, Zhao Q, Xiao S, Yang L. Surgical prediction of neonatal necrotizing enterocolitis based on radiomics and clinical information. Abdom Radiol (NY) 2024; 49:1020-1030. [PMID: 38285178 DOI: 10.1007/s00261-023-04157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To assess the predictive value of radiomics for surgical decision-making in neonatal necrotizing enterocolitis (NEC) when abdominal radiographs (ARs) do not suggest an absolute surgical indication for free pneumoperitoneum. METHODS In this retrospective study, we finally included 171 newborns with NEC and obtained their ARs and clinical data. The dataset was randomly divided into a training set (70%) and a test set (30%). We developed machine learning models for predicting surgical treatment using clinical features and radiomic features, respectively, and combined these features to build joint models. We assessed predictive performance of the different models by receiver operating characteristic curve (ROC) analysis and compared area under curve (AUC) using the Delong test. Decision curve analysis (DCA) was used to assess the potential clinical benefit of the models to patients. RESULTS There was no significant difference in AUC between the clinical model and the four radiomic models (P > 0.05). The XGBoost joint model had better predictive efficacy and stability (AUC, training set: 0.988, test set: 0.959). Its AUC in the test set was significantly higher than that of the clinical model (P < 0.05). DCA showed that the XGBoost joint model achieved higher net clinical benefit compared to the clinical model in the threshold probability range (0.2-0.6). CONCLUSION Radiomic features based on AR are objective and reproducible. The joint model combining radiomic features and clinical signs has good surgical predictive efficacy and may be an important method to help primary neonatal surgeons assess the surgical risk of NEC neonates.
Collapse
Affiliation(s)
- Yongteng Li
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Huirong Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jianjun Wang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Qinming Chen
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Xiaoting Ding
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Qianyun Zhao
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shan Xiao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Liucheng Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
8
|
Miao Q, Wang X, Cui J, Zheng H, Xie Y, Zhu K, Chai R, Jiang Y, Feng D, Zhang X, Shi F, Tan X, Fan G, Liang K. Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging. Comput Biol Med 2024; 171:108125. [PMID: 38340439 DOI: 10.1016/j.compbiomed.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. METHODS The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55-67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753-0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). CONCLUSION The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.
Collapse
Affiliation(s)
- Qi Miao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xuechun Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Jingjing Cui
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Bejing, China
| | - Haoxin Zheng
- Department of Computer Science, University of California, Los Angeles, USA
| | - Yan Xie
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Kexin Zhu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Ruimei Chai
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yuanxi Jiang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Dongli Feng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Xiaodong Tan
- Department of General Surgery/Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China.
| | - Keke Liang
- Department of General Surgery/Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Bereska JI, Janssen BV, Nio CY, Kop MPM, Kazemier G, Busch OR, Struik F, Marquering HA, Stoker J, Besselink MG, Verpalen IM. Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer. Eur Radiol Exp 2024; 8:18. [PMID: 38342782 PMCID: PMC10859357 DOI: 10.1186/s41747-023-00419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 02/13/2024] Open
Abstract
OBJECTIVE This study aimed to develop and evaluate an automatic model using artificial intelligence (AI) for quantifying vascular involvement and classifying tumor resectability stage in patients with pancreatic ductal adenocarcinoma (PDAC), primarily to support radiologists in referral centers. Resectability of PDAC is determined by the degree of vascular involvement on computed tomography scans (CTs), which is associated with considerable inter-observer variability. METHODS We developed a semisupervised machine learning segmentation model to segment the PDAC and surrounding vasculature using 613 CTs of 467 patients with pancreatic tumors and 50 control patients. After segmenting the relevant structures, our model quantifies vascular involvement by measuring the degree of the vessel wall that is in contact with the tumor using AI-segmented CTs. Based on these measurements, the model classifies the resectability stage using the Dutch Pancreatic Cancer Group criteria as either resectable, borderline resectable, or locally advanced (LA). RESULTS We evaluated the performance of the model using a test set containing 60 CTs from 60 patients, consisting of 20 resectable, 20 borderline resectable, and 20 locally advanced cases, by comparing the automated analysis obtained from the model to expert visual vascular involvement assessments. The model concurred with the radiologists on 227/300 (76%) vessels for determining vascular involvement. The model's resectability classification agreed with the radiologists on 17/20 (85%) resectable, 16/20 (80%) for borderline resectable, and 15/20 (75%) for locally advanced cases. CONCLUSIONS This study demonstrates that an AI model may allow automatic quantification of vascular involvement and classification of resectability for PDAC. RELEVANCE STATEMENT This AI model enables automated vascular involvement quantification and resectability classification for pancreatic cancer, aiding radiologists in treatment decisions, and potentially improving patient outcomes. KEY POINTS • High inter-observer variability exists in determining vascular involvement and resectability for PDAC. • Artificial intelligence accurately quantifies vascular involvement and classifies resectability for PDAC. • Artificial intelligence can aid radiologists by automating vascular involvement and resectability assessments.
Collapse
Affiliation(s)
- Jacqueline I Bereska
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
| | - Boris V Janssen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - C Yung Nio
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marnix P M Kop
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Geert Kazemier
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Olivier R Busch
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Femke Struik
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henk A Marquering
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marc G Besselink
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Inez M Verpalen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Zhao B, Xia C, Xia T, Qiu Y, Zhu L, Cao B, Gao Y, Ge R, Cai W, Ding Z, Yu Q, Lu C, Tang T, Wang Y, Song Y, Long X, Ye J, Lu D, Ju S. Development of a radiomics-based model to predict occult liver metastases of pancreatic ductal adenocarcinoma: a multicenter study. Int J Surg 2024; 110:740-749. [PMID: 38085810 PMCID: PMC10871636 DOI: 10.1097/js9.0000000000000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Undetectable occult liver metastases block the long-term survival of pancreatic ductal adenocarcinoma (PDAC). This study aimed to develop a radiomics-based model to predict occult liver metastases and assess its prognostic capacity for survival. MATERIALS AND METHODS Patients who underwent surgical resection and were pathologically proven with PDAC were recruited retrospectively from five tertiary hospitals between January 2015 and December 2020. Radiomics features were extracted from tumors, and the radiomics-based model was developed in the training cohort using LASSO-logistic regression. The model's performance was assessed in the internal and external validation cohorts using the area under the receiver operating curve (AUC). Subsequently, the association of the model's risk stratification with progression-free survival (PFS) and overall survival (OS) was then statistically examined using Cox regression analysis and the log-rank test. RESULTS A total of 438 patients [mean (SD) age, 62.0 (10.0) years; 255 (58.2%) male] were divided into the training cohort ( n =235), internal validation cohort ( n =100), and external validation cohort ( n =103). The radiomics-based model yielded an AUC of 0.73 (95% CI: 0.66-0.80), 0.72 (95% CI: 0.62-0.80), and 0.71 (95% CI: 0.61-0.80) in the training, internal validation, and external validation cohorts, respectively, which were higher than the preoperative clinical model. The model's risk stratification was an independent predictor of PFS (all P <0.05) and OS (all P <0.05). Furthermore, patients in the high-risk group stratified by the model consistently had a significantly shorter PFS and OS at each TNM stage (all P <0.05). CONCLUSION The proposed radiomics-based model provided a promising tool to predict occult liver metastases and had a great significance in prognosis.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Cong Xia
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Tianyi Xia
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Yue Qiu
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Liwen Zhu
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Buyue Cao
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Yin Gao
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Rongjun Ge
- School of Instrument Science and Engineering, Southeast University, Nanjing
| | - Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou
| | - Zhimin Ding
- Department of Radiology, Yijishan Hospital of Wannan Medical College, Wuhu
| | - Qian Yu
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Chunqiang Lu
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Tianyu Tang
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Yuancheng Wang
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers, Shanghai
| | - Xueying Long
- Department of Radiology, The Xiangya Hospital of Central South University, Changsha
| | - Jing Ye
- Department of Radiology, Northern Jiangsu People’s Hospital, Yangzhou
| | - Dong Lu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, People’s Republic of China
| | - Shenghong Ju
- Department of Radiology, The Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, School of Medicine
| |
Collapse
|
11
|
Chen Z, Zhan W, Wu Z, He H, Wang S, Huang X, Xu Z, Yang Y. The ultrasound-based radiomics-clinical machine learning model to predict papillary thyroid microcarcinoma in TI-RADS 3 nodules. Transl Cancer Res 2024; 13:278-289. [PMID: 38410213 PMCID: PMC10894343 DOI: 10.21037/tcr-23-1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background Conventional ultrasound (CUS) technology has proven to be successful in the identification of thyroid nodules. Moreover, the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) was developed for the purpose of evaluating the risk of thyroid nodules based on ultrasound imaging. Nevertheless, identifying papillary thyroid microcarcinoma (PTMC) from TI-RADS 3 nodules using this system can be difficult due to overlapping morphological features. The main objective of this study was to investigate the efficacy of a machine learning model that utilizes ultrasound-based radiomics features and clinical information in accurately predicting the presence of PTMC in TI-RADS 3 nodules. Methods A total of 221 patients with TI-RADS 3 nodules were included, consisting of 91 cases of PTMC and 130 benign thyroid nodules. They were randomly divided into training and test cohort in an 8:2 ratio. Radiomics features were extracted from CUS images by manually outlining the targets, while clinical parameters were obtained from electronic medical records. The radiomics model, clinical model, and combined model were constructed and validated to distinguish between PTMC and benign thyroid nodules. Radiomics variables were extracted via the Pyradiomics package (V1.3.0). Moreover, least absolute shrinkage and selection operator (LASSO) regression was used for feature selection. Light Gradient Boosting Machine (LightGBM) was employed to build both radiomics and clinical models. Ultimately, a radiomics-clinical model, which fused radiomics features with clinical information, was developed. Results Among a total of 1,477 radiomics features, fifteen features that were found to be associated with PTMC through univariate analysis and LASSO regression were selected for the development of the radiomics model. The combined "radiomics-clinical" model demonstrated superior diagnostic accuracy compared to the clinical model for distinguishing PTMC in both the training dataset [area under receiver operating curve (AUC): 0.975 vs. 0.845] and the validation dataset (AUC: 0.898 vs. 0.811). We constructed a radiomics-clinical nomogram, and the clinical applicability was confirmed through decision curve analysis. Conclusions Utilizing an ultrasound-based radiomics approach has proven to be effective in predicting PTMC in patients with TI-RADS 3 nodules.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Zhan
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijing Wu
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Huiliao He
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaoyi Wang
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Huang
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihua Xu
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Yang
- Department of Ultrasound Imaging, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Kang J, Lafata K, Kim E, Yao C, Lin F, Rattay T, Nori H, Katsoulakis E, Lee CI. Artificial intelligence across oncology specialties: current applications and emerging tools. BMJ ONCOLOGY 2024; 3:e000134. [PMID: 39886165 PMCID: PMC11203066 DOI: 10.1136/bmjonc-2023-000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Oncology is becoming increasingly personalised through advancements in precision in diagnostics and therapeutics, with more and more data available on both ends to create individualised plans. The depth and breadth of data are outpacing our natural ability to interpret it. Artificial intelligence (AI) provides a solution to ingest and digest this data deluge to improve detection, prediction and skill development. In this review, we provide multidisciplinary perspectives on oncology applications touched by AI-imaging, pathology, patient triage, radiotherapy, genomics-driven therapy and surgery-and integration with existing tools-natural language processing, digital twins and clinical informatics.
Collapse
Affiliation(s)
- John Kang
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Kyle Lafata
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Ellen Kim
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christopher Yao
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Frank Lin
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Rattay
- Department of Genetics and Genome Biology, University of Leicester Cancer Research Centre, Leicester, UK
| | - Harsha Nori
- Microsoft Research, Redmond, Washington, USA
| | - Evangelia Katsoulakis
- Department of Radiation Oncology, University of South Florida, Tampa, Florida, USA
- Veterans Affairs Informatics and Computing Infrastructure, Salt Lake City, Utah, USA
| | | |
Collapse
|
13
|
Yuan Z, Shu Z, Peng J, Wang W, Hou J, Han L, Zheng G, Wei Y, Zhong J. Prediction of postoperative liver metastasis in pancreatic ductal adenocarcinoma based on multiparametric magnetic resonance radiomics combined with serological markers: a cohort study of machine learning. Abdom Radiol (NY) 2024; 49:117-130. [PMID: 37819438 DOI: 10.1007/s00261-023-04047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE To construct and validate a multi-dimensional model based on multiple machine leaning algorithms to predict PCLM using multi-parameter magnetic resonance (MRI) sequences with clinical and imaging parameters. METHODS A total of 148 PDAC retrospectively examined patients were classified as metastatic or non-metastatic based on results at 3 months after surgery. The radiomics features of the primary tumor were extracted from T2WI images, followed by dimension reduction. Then, multiple machine learning methods were used to construct models. Independent predictors were also screened using multifactor logistic regression and a nomogram was constructed in combination with the radiomics model. Area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to assess the accuracy and reliability of the nomogram. RESULTS The diagnostic efficacy of the radiomics model in the training and test set was 0.822 and 0.803, sensitivity was 0.742 and 0.692, and specificity was 0.792 and 0.875, respectively. The diagnostic efficacy of the nomogram in the training and test set was 0.866 and 0.832. CONCLUSION A radiomics nomogram based on machine learning improved the accuracy of predicting PCLM and may be useful for early preoperative diagnosis.
Collapse
Affiliation(s)
- Zhongyu Yuan
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hanzhou, Zhejiang, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Wei Wang
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jie Hou
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Han
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Guangying Zheng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuguo Wei
- Advanced Analytics, Global Medical Service, GE Healthcare, China, Xihu District, Hangzhou, 310000, China
| | - Jianguo Zhong
- Cancer Center, Department of Radiology, Zhejiang Provincial Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hanzhou, Zhejiang, China.
| |
Collapse
|
14
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
15
|
Zhang Y, Yao J, Liu F, Cheng Z, Qi E, Han Z, Yu J, Dou J, Liang P, Tan S, Dong X, Li X, Sun Y, Wang S, Wang Z, Yu X. Radiomics Based on Contrast-Enhanced Ultrasound Images for Diagnosis of Pancreatic Serous Cystadenoma. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2469-2475. [PMID: 37749013 DOI: 10.1016/j.ultrasmedbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE The purpose of the study was to develop and validate a radiomics model by using contrast-enhanced ultrasound (CEUS) data for pre-operative differential diagnosis of pancreatic cystic neoplasms (PCNs), especially pancreatic serous cystadenoma (SCA). METHODS Patients with pathologically confirmed PCNs who underwent CEUS examination at Chinese PLA hospital from May 2015 to August 2022 were retrospectively collected. Radiomic features were extracted from the regions of interest, which were obtained based on CEUS images. A support vector machine algorithm was used to construct a radiomics model. Moreover, based on the CEUS image features, the CEUS and the combined models were constructed using logistic regression. The performance and clinical utility of the optimal model were evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity and decision curve analysis. RESULTS A total of 113 patients were randomly split into the training (n = 79) and test cohorts (n = 34). These patients were pathologically diagnosed with SCA, mucinous cystadenoma, intraductal papillary mucinous neoplasm and solid-pseudopapillary tumor. The radiomics model achieved an AUC of 0.875 and 0.862 in the training and test cohorts, respectively. The sensitivity and specificity of the radiomics model were 81.5% and 86.5% in the training cohort and 81.8% and 91.3% in the test cohort, respectively, which were higher than or comparable with that of the CEUS model and the combined model. CONCLUSION The radiomics model based on CEUS images had a favorable differential diagnostic performance in distinguishing SCA from other PCNs, which may be beneficial for the exploration of personalized management strategies.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Jundong Yao
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China; Department of Ultrasound, First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Fifth Medical Centre, Chinese PLA Hospital, Beijing, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Fifth Medical Centre, Chinese PLA Hospital, Beijing, China
| | - Erpeng Qi
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Fifth Medical Centre, Chinese PLA Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Centre, Chinese PLA Hospital, Beijing, China
| | - Jianping Dou
- Department of Interventional Ultrasound, Fifth Medical Centre, Chinese PLA Hospital, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Centre, Chinese PLA Hospital, Beijing, China
| | - Shuilian Tan
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xuejuan Dong
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ya Sun
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| | - Shuo Wang
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhen Wang
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
16
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
17
|
Pacella G, Brunese MC, D’Imperio E, Rotondo M, Scacchi A, Carbone M, Guerra G. Pancreatic Ductal Adenocarcinoma: Update of CT-Based Radiomics Applications in the Pre-Surgical Prediction of the Risk of Post-Operative Fistula, Resectability Status and Prognosis. J Clin Med 2023; 12:7380. [PMID: 38068432 PMCID: PMC10707069 DOI: 10.3390/jcm12237380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer-related deaths worldwide. Surgical resection is the main driver to improving survival in resectable tumors, while neoadjuvant treatment based on chemotherapy (and radiotherapy) is the best option-treatment for a non-primally resectable disease. CT-based imaging has a central role in detecting, staging, and managing PDAC. As several authors have proposed radiomics for risk stratification in patients undergoing surgery for PADC, in this narrative review, we have explored the actual fields of interest of radiomics tools in PDAC built on pre-surgical imaging and clinical variables, to obtain more objective and reliable predictors. METHODS The PubMed database was searched for papers published in the English language no earlier than January 2018. RESULTS We found 301 studies, and 11 satisfied our research criteria. Of those included, four were on resectability status prediction, three on preoperative pancreatic fistula (POPF) prediction, and four on survival prediction. Most of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to get predictive information in pre-surgical evaluation. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Giulia Pacella
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | - Maria Chiara Brunese
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | | | - Marco Rotondo
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| | - Andrea Scacchi
- General Surgery Unit, University of Milano-Bicocca, 20126 Milan, Italy
| | - Mattia Carbone
- San Giovanni di Dio e Ruggi d’Aragona Hospital, 84131 Salerno, Italy;
| | - Germano Guerra
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (G.P.)
| |
Collapse
|
18
|
Zhou X, Xu D, Wang M, Ma R, Song C, Dong Z, Luo Y, Wang J, Feng ST. Preoperative assessment of peripheral vascular invasion of pancreatic ductal adenocarcinoma based on high-resolution MRI. BMC Cancer 2023; 23:1092. [PMID: 37950223 PMCID: PMC10638695 DOI: 10.1186/s12885-023-11451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVES Preoperative imaging of vascular invasion is important for surgical resection of pancreatic ductal adenocarcinoma (PDAC). However, whether MRI and CT share the same evaluation criteria remains unclear. This study aimed to compare the diagnostic accuracy of high-resolution MRI (HR-MRI), conventional MRI (non-HR-MRI) and CT for PDAC vascular invasion. METHODS Pathologically proven PDAC with preoperative HR-MRI (79 cases, 58 with CT) and non-HR-MRI (77 cases, 59 with CT) were retrospectively collected. Vascular invasion was confirmed surgically or pathologically. The degree of tumour-vascular contact, vessel narrowing and contour irregularity were reviewed respectively. Diagnostic criteria 1 (C1) was the presence of all three characteristics, and criteria 2 (C2) was the presence of any one of them. The diagnostic efficacies of different examination methods and criteria were evaluated and compared. RESULTS HR-MRI showed satisfactory performance in assessing vascular invasion (AUC: 0.87-0.92), especially better sensitivity (0.79-0.86 vs. 0.40-0.79) than that with non-HR-MRI and CT. HR-MRI was superior to non-HR-MRI. C2 was superior to C1 on CT evaluation (0.85 vs. 0.79, P = 0.03). C1 was superior to C2 in the venous assessment using HR-MRI (0.90 vs. 0.87, P = 0.04) and in the arterial assessment using non-HR-MRI (0.69 vs. 0.68, P = 0.04). The combination of C1-assessed HR-MRI and C2-assessed CT was significantly better than that of CT alone (0.96 vs. 0.86, P = 0.04). CONCLUSIONS HR-MRI more accurately assessed PDAC vascular invasion than conventional MRI and may contribute to operative decision-making. C1 was more applicable to MRI scans, and C2 to CT scans. The combination of C1-assessed HR-MRI and C2-assessed CT outperformed CT alone and showed the best efficacy in preoperative examination of PDAC.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Danyang Xu
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Meng Wang
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Ruixia Ma
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Chenyu Song
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Zhi Dong
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Yanji Luo
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China.
| | - Jifei Wang
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China.
| | - Shi-Ting Feng
- Department of Radiology, The first Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Khasawneh H, Ferreira Dalla Pria HR, Miranda J, Nevin R, Chhabra S, Hamdan D, Chakraborty J, Biachi de Castria T, Horvat N. CT Imaging Assessment of Pancreatic Adenocarcinoma Resectability after Neoadjuvant Therapy: Current Status and Perspective on the Use of Radiomics. J Clin Med 2023; 12:6821. [PMID: 37959287 PMCID: PMC10649102 DOI: 10.3390/jcm12216821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is the most common pancreatic cancer and is associated with poor prognosis, a high mortality rate, and a substantial number of healthy life years lost. Surgical resection is the primary treatment option for patients with resectable disease; however, only 10-20% of all patients with PDAC are eligible for resection at the time of diagnosis. In this context, neoadjuvant therapy has the potential to increase the number of patients who are eligible for resection, thereby improving the overall survival rate. For patients who undergo neoadjuvant therapy, computed tomography (CT) remains the primary imaging tool for assessing treatment response. Nevertheless, the interpretation of imaging findings in this context remains challenging, given the similarity between viable tumor and treatment-related changes following neoadjuvant therapy. In this review, following an overview of the various treatment options for PDAC according to its resectability status, we will describe the key challenges regarding CT-based evaluation of PDAC treatment response following neoadjuvant therapy, as well as summarize the literature on CT-based evaluation of PDAC treatment response, including the use of radiomics. Finally, we will outline key recommendations for the management of PDAC after neoadjuvant therapy, taking into consideration CT-based findings.
Collapse
Affiliation(s)
- Hala Khasawneh
- Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX 75390, USA;
| | | | - Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
- Department of Radiology, University of Sao Paulo, R. Dr. Ovidio Pires de Campos, 75-Cerqueira Cesar, Sao Paulo 05403-010, SP, Brazil
| | - Rachel Nevin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
| | - Shalini Chhabra
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
| | - Dina Hamdan
- Department of Radiology, The Mount Sinai Hospital, 1468 Madison Ave, New York, NY 10029, USA;
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Tiago Biachi de Castria
- Department of Gastrointestinal Oncology, Moffit Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA;
- Morsani College of Medicine, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.M.); (R.N.); (S.C.)
- Department of Radiology, University of Sao Paulo, R. Dr. Ovidio Pires de Campos, 75-Cerqueira Cesar, Sao Paulo 05403-010, SP, Brazil
| |
Collapse
|
20
|
Litjens G, Broekmans JPEA, Boers T, Caballo M, van den Hurk MHF, Ozdemir D, van Schaik CJ, Janse MHA, van Geenen EJM, van Laarhoven CJHM, Prokop M, de With PHN, van der Sommen F, Hermans JJ. Computed Tomography-Based Radiomics Using Tumor and Vessel Features to Assess Resectability in Cancer of the Pancreatic Head. Diagnostics (Basel) 2023; 13:3198. [PMID: 37892019 PMCID: PMC10606005 DOI: 10.3390/diagnostics13203198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted. Features were selected via stability and collinearity testing, and least absolute shrinkage and selection operator application (LASSO). Three models, using tumor features, vessel features, and a combination of both, were trained with the training set (N = 86) to predict resectability. The results were validated with the test set (N = 15) and compared to the multidisciplinary team's (MDT) performance. The vessel-features-only model performed best, with an AUC of 0.92 and sensitivity and specificity of 97% and 73%, respectively. Test set validation showed a sensitivity and specificity of 100% and 88%, respectively. The combined model was as good as the vessel model (AUC = 0.91), whereas the tumor model showed poor performance (AUC = 0.76). The MDT's prediction reached a sensitivity and specificity of 97% and 84% for the training set and 88% and 100% for the test set, respectively. Our clinician-independent vessel-based radiomics model can aid in predicting resectability and shows performance comparable to that of the MDT. With these encouraging results, improved, automated, and generalizable models can be developed that reduce workload and can be applied in non-expert hospitals.
Collapse
Affiliation(s)
- Geke Litjens
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Joris P. E. A. Broekmans
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Tim Boers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marco Caballo
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Maud H. F. van den Hurk
- Department of Plastic and Reconstructive Surgery, Saint Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Dilek Ozdemir
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Caroline J. van Schaik
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Markus H. A. Janse
- Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Erwin J. M. van Geenen
- Department of Gastroenterology and Hepatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Cees J. H. M. van Laarhoven
- Department of Surgery, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter H. N. de With
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - John J. Hermans
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
21
|
Ahmed TM, Kawamoto S, Hruban RH, Fishman EK, Soyer P, Chu LC. A primer on artificial intelligence in pancreatic imaging. Diagn Interv Imaging 2023; 104:435-447. [PMID: 36967355 DOI: 10.1016/j.diii.2023.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Artificial Intelligence (AI) is set to transform medical imaging by leveraging the vast data contained in medical images. Deep learning and radiomics are the two main AI methods currently being applied within radiology. Deep learning uses a layered set of self-correcting algorithms to develop a mathematical model that best fits the data. Radiomics converts imaging data into mineable features such as signal intensity, shape, texture, and higher-order features. Both methods have the potential to improve disease detection, characterization, and prognostication. This article reviews the current status of artificial intelligence in pancreatic imaging and critically appraises the quality of existing evidence using the radiomics quality score.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Sol Goldman Pancreatic Research Center, Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Department of Radiology, Hôpital Cochin-APHP, 75014, 75006, Paris, France, 7501475006
| | - Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Rigiroli F, Hoye J, Lerebours R, Lyu P, Lafata KJ, Zhang AR, Erkanli A, Mettu NB, Morgan DE, Samei E, Marin D. Exploratory analysis of mesenteric-portal axis CT radiomic features for survival prediction of patients with pancreatic ductal adenocarcinoma. Eur Radiol 2023; 33:5779-5791. [PMID: 36894753 DOI: 10.1007/s00330-023-09532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE To develop and evaluate task-based radiomic features extracted from the mesenteric-portal axis for prediction of survival and response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Consecutive patients with PDAC who underwent surgery after neoadjuvant therapy from two academic hospitals between December 2012 and June 2018 were retrospectively included. Two radiologists performed a volumetric segmentation of PDAC and mesenteric-portal axis (MPA) using a segmentation software on CT scans before (CTtp0) and after (CTtp1) neoadjuvant therapy. Segmentation masks were resampled into uniform 0.625-mm voxels to develop task-based morphologic features (n = 57). These features aimed to assess MPA shape, MPA narrowing, changes in shape and diameter between CTtp0 and CTtp1, and length of MPA segment affected by the tumor. A Kaplan-Meier curve was generated to estimate the survival function. To identify reliable radiomic features associated with survival, a Cox proportional hazards model was used. Features with an ICC ≥ 0.80 were used as candidate variables, with clinical features included a priori. RESULTS In total, 107 patients (60 men) were included. The median survival time was 895 days (95% CI: 717, 1061). Three task-based shape radiomic features (Eccentricity mean tp0, Area minimum value tp1, and Ratio 2 minor tp1) were selected. The model showed an integrated AUC of 0.72 for prediction of survival. The hazard ratio for the Area minimum value tp1 feature was 1.78 (p = 0.02) and 0.48 for the Ratio 2 minor tp1 feature (p = 0.002). CONCLUSION Preliminary results suggest that task-based shape radiomic features can predict survival in PDAC patients. KEY POINTS • In a retrospective study of 107 patients who underwent neoadjuvant therapy followed by surgery for PDAC, task-based shape radiomic features were extracted and analyzed from the mesenteric-portal axis. • A Cox proportional hazards model that included three selected radiomic features plus clinical information showed an integrated AUC of 0.72 for prediction of survival, and a better fit compared to the model with only clinical information.
Collapse
Affiliation(s)
- Francesca Rigiroli
- Department of Radiology, Duke University Health System, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA.
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Road, Boston, MA, 02215, USA.
| | - Jocelyn Hoye
- Carl E. Ravin Advanced Imaging Laboratories, Durham, NC, USA
| | - Reginald Lerebours
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Peijie Lyu
- Department of Radiology, Duke University Health System, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Kyle J Lafata
- Carl E. Ravin Advanced Imaging Laboratories, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Anru R Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Alaattin Erkanli
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Desiree E Morgan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Durham, NC, USA
| | - Daniele Marin
- Department of Radiology, Duke University Health System, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA
| |
Collapse
|
23
|
Mukherjee S, Korfiatis P, Khasawneh H, Rajamohan N, Patra A, Suman G, Singh A, Thakkar J, Patnam NG, Trivedi KH, Karbhari A, Chari ST, Truty MJ, Halfdanarson TR, Bolan CW, Sandrasegaran K, Majumder S, Goenka AH. Bounding box-based 3D AI model for user-guided volumetric segmentation of pancreatic ductal adenocarcinoma on standard-of-care CTs. Pancreatology 2023; 23:522-529. [PMID: 37296006 PMCID: PMC10676442 DOI: 10.1016/j.pan.2023.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES To develop a bounding-box-based 3D convolutional neural network (CNN) for user-guided volumetric pancreas ductal adenocarcinoma (PDA) segmentation. METHODS Reference segmentations were obtained on CTs (2006-2020) of treatment-naïve PDA. Images were algorithmically cropped using a tumor-centered bounding box for training a 3D nnUNet-based-CNN. Three radiologists independently segmented tumors on test subset, which were combined with reference segmentations using STAPLE to derive composite segmentations. Generalizability was evaluated on Cancer Imaging Archive (TCIA) (n = 41) and Medical Segmentation Decathlon (MSD) (n = 152) datasets. RESULTS Total 1151 patients [667 males; age:65.3 ± 10.2 years; T1:34, T2:477, T3:237, T4:403; mean (range) tumor diameter:4.34 (1.1-12.6)-cm] were randomly divided between training/validation (n = 921) and test subsets (n = 230; 75% from other institutions). Model had a high DSC (mean ± SD) against reference segmentations (0.84 ± 0.06), which was comparable to its DSC against composite segmentations (0.84 ± 0.11, p = 0.52). Model-predicted versus reference tumor volumes were comparable (mean ± SD) (29.1 ± 42.2-cc versus 27.1 ± 32.9-cc, p = 0.69, CCC = 0.93). Inter-reader variability was high (mean DSC 0.69 ± 0.16), especially for smaller and isodense tumors. Conversely, model's high performance was comparable between tumor stages, volumes and densities (p > 0.05). Model was resilient to different tumor locations, status of pancreatic/biliary ducts, pancreatic atrophy, CT vendors and slice thicknesses, as well as to the epicenter and dimensions of the bounding-box (p > 0.05). Performance was generalizable on MSD (DSC:0.82 ± 0.06) and TCIA datasets (DSC:0.84 ± 0.08). CONCLUSION A computationally efficient bounding box-based AI model developed on a large and diverse dataset shows high accuracy, generalizability, and robustness to clinically encountered variations for user-guided volumetric PDA segmentation including for small and isodense tumors. CLINICAL RELEVANCE AI-driven bounding box-based user-guided PDA segmentation offers a discovery tool for image-based multi-omics models for applications such as risk-stratification, treatment response assessment, and prognostication, which are urgently needed to customize treatment strategies to the unique biological profile of each patient's tumor.
Collapse
Affiliation(s)
- Sovanlal Mukherjee
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Panagiotis Korfiatis
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Hala Khasawneh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Naveen Rajamohan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Anurima Patra
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Garima Suman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Aparna Singh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Jay Thakkar
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Nandakumar G Patnam
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Kamaxi H Trivedi
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Aashna Karbhari
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | - Candice W Bolan
- Department of Radiology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| | - Kumar Sandrasegaran
- Department of Radiology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA.
| | - Shounak Majumder
- Department of Gastroenterology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Ramaekers M, Viviers CGA, Janssen BV, Hellström TAE, Ewals L, van der Wulp K, Nederend J, Jacobs I, Pluyter JR, Mavroeidis D, van der Sommen F, Besselink MG, Luyer MDP. Computer-Aided Detection for Pancreatic Cancer Diagnosis: Radiological Challenges and Future Directions. J Clin Med 2023; 12:4209. [PMID: 37445243 PMCID: PMC10342462 DOI: 10.3390/jcm12134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Radiological imaging plays a crucial role in the detection and treatment of pancreatic ductal adenocarcinoma (PDAC). However, there are several challenges associated with the use of these techniques in daily clinical practice. Determination of the presence or absence of cancer using radiological imaging is difficult and requires specific expertise, especially after neoadjuvant therapy. Early detection and characterization of tumors would potentially increase the number of patients who are eligible for curative treatment. Over the last decades, artificial intelligence (AI)-based computer-aided detection (CAD) has rapidly evolved as a means for improving the radiological detection of cancer and the assessment of the extent of disease. Although the results of AI applications seem promising, widespread adoption in clinical practice has not taken place. This narrative review provides an overview of current radiological CAD systems in pancreatic cancer, highlights challenges that are pertinent to clinical practice, and discusses potential solutions for these challenges.
Collapse
Affiliation(s)
- Mark Ramaekers
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands;
| | - Christiaan G. A. Viviers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Boris V. Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.V.J.); (M.G.B.)
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Terese A. E. Hellström
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Lotte Ewals
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Kasper van der Wulp
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Joost Nederend
- Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands; (L.E.); (K.v.d.W.); (J.N.)
| | - Igor Jacobs
- Department of Hospital Services and Informatics, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Jon R. Pluyter
- Department of Experience Design, Philips Design, 5656 AE Eindhoven, The Netherlands;
| | - Dimitrios Mavroeidis
- Department of Data Science, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; (C.G.A.V.); (T.A.E.H.); (F.v.d.S.)
| | - Marc G. Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.V.J.); (M.G.B.)
- Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Misha D. P. Luyer
- Department of Surgery, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands;
| |
Collapse
|
25
|
Volumetric visceral fat machine learning phenotype on CT for differential diagnosis of inflammatory bowel disease. Eur Radiol 2023; 33:1862-1872. [PMID: 36255487 DOI: 10.1007/s00330-022-09171-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate whether volumetric visceral adipose tissue (VAT) features extracted using radiomics and three-dimensional convolutional neural network (3D-CNN) approach are effective in differentiating Crohn's disease (CD) and ulcerative colitis (UC). METHODS This retrospective study enrolled 316 patients (mean age, 36.25 ± 13.58 [standard deviation]; 219 men) with confirmed diagnosis of CD and UC who underwent CT enterography between 2012 and 2021. Volumetric VAT was semi-automatically segmented on the arterial phase images. Radiomics analysis was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. We developed a 3D-CNN model using VAT imaging data from the training cohort. Clinical covariates including age, sex, modified body mass index, and disease duration that impact VAT were added to the machine learning model for adjustment. The model's performance was evaluated on the testing cohort separating from the model's development process by its discrimination and clinical utility. RESULTS Volumetric VAT radiomics analysis with LASSO had the highest AUC value of 0.717 (95% CI, 0.614-0.820), though difference of diagnostic performance among the 3D-CNN model (AUC = 0.693; 95% CI, 0.587-0.798) and radiomics analysis with PCA (AUC = 0.662; 95% CI, 0.548-0.776) and LASSO have not reached statistical significance (all p > 0.05). The radiomics score was higher in UC than in CD on the testing cohort (mean ± SD, UC 0.29 ± 1.05 versus CD -0.60 ± 1.25; p < 0.001). The LASSO model with adjustment of clinical covariates reached an AUC of 0.775 (95%CI, 0.683-0.868). CONCLUSION The developed volumetric VAT-based radiomics and 3D-CNN models provided comparable and effective performance for the characterization of CD from UC. KEY POINTS • High-output feature data extracted from volumetric visceral adipose tissue on CT enterography had an effective diagnostic performance for differentiating Crohn's disease from ulcerative colitis. • With adjustment of clinical covariates that cause difference in volumetric visceral adipose tissue, adjusted clinical machine learning model reached stronger performance when distinguishing Crohn's disease patients from ulcerative colitis patients.
Collapse
|
26
|
Liu Z, Deng Y, Wang X, Liu X, Zheng X, Sun G, Zhen Y, Liu M, Ye Z, Wen J, Liu P. Radiomics signature of epicardial adipose tissue for predicting postoperative atrial fibrillation after pulmonary endarterectomy. Front Cardiovasc Med 2023; 9:1046931. [PMID: 36698949 PMCID: PMC9869069 DOI: 10.3389/fcvm.2022.1046931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose This study aimed to construct a radiomics signature of epicardial adipose tissue for predicting postoperative atrial fibrillation (POAF) after pulmonary endarterectomy (PEA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Methods We reviewed the preoperative computed tomography pulmonary angiography images of CTEPH patients who underwent PEA at our institution between December 2016 and May 2022. Patients were divided into training/validation and testing cohorts by stratified random sampling in a ratio of 7:3. Radiomics features were selected by using intra- and inter-class correlation coefficient, redundancy analysis, and Least Absolute Shrinkage and Selection Operator algorithm to construct the radiomics signature. The area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, calibration, and clinical practicability of the radiomics signature. Two hundred-times stratified five-fold cross-validation was applied to assess the reliability and robustness of the radiomics signature. Results A total of 93 patients with CTEPH were included in this study, including 23 patients with POAF and 70 patients without POAF. Five of the 1,218 radiomics features were finally selected to construct the radiomics signature. The radiomics signature showed good discrimination with an AUC of 0.804 (95%CI: 0.664-0.943) in the training/validation cohort and 0.728 (95% CI: 0.503-0.953) in the testing cohorts. The average AUC of 200 times stratified five-fold cross-validation was 0.804 (95%CI: 0.801-0.806) and 0.807 (95%CI: 0.798-0.816) in the training and validation cohorts, respectively. The calibration curve showed good agreement between the predicted and actual observations. Based on the DCA, the radiomics signature was found to be clinically significant and useful. Conclusion The radiomics signature achieved good discrimination, calibration, and clinical practicability. As a potential imaging biomarker, the radiomics signature of epicardial adipose tissue (EAT) may provide a reference for the risk assessment and individualized treatment of CTEPH patients at high risk of developing POAF after PEA.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yisen Deng
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xuming Wang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xia Zheng
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Guang Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Jianyan Wen,
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peng Liu,
| |
Collapse
|
27
|
An P, Lin Y, Zhang J, Hu Y, Qin P, Ye Y, Li X, Feng G, Wang J. Prognostic Predicting Model of Pancreatic Body Tail Carcinoma Using Clinical and CT Radiomic Data. Technol Cancer Res Treat 2023; 22:15330338231186739. [PMID: 37464839 PMCID: PMC10363996 DOI: 10.1177/15330338231186739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 07/20/2023] Open
Abstract
Objective: To collect the clinical, pathological, and computed tomography (CT) data of 143 accepted surgical cases of pancreatic body tail cancer (PBTC) and to model and predict its prognosis. Methods: The clinical, pathological, and CT data of 143 PBTC patients who underwent surgical resection or endoscopic ultrasound biopsy and were pathologically diagnosed in Xiangyang No.1 People's Hospital Hospital from December 2012 to December 2022 were retrospectively analyzed. The Kaplan-Meier method was adopted to make survival curves based on the 1 to 5 years' follow-up data, and then the log-rank was employed to analyze the survival. According to the median survival of 6 months, the PBTC patients were divided into a group with a good prognosis (survival time ≥ 6 months) and a group with a poor prognosis (survival time < 6 months), and further the training set and test set were set at a ratio of 7/3. Then logistic regression was conducted to find independent risk factors, establish predictive models, and further the models were validated. Results: The Kaplan-Meier analysis showed that age, diabetes, tumor, node, and metastasis stage, CT enhancement mode, peripancreatic lymph node swelling, nerve invasion, surgery in a top hospital, tumor size, carbohydrate antigen 19-9, carcinoembryonic antigen, Radscore 1/2/3 were the influencing factors of PBTC recurrence. The overall average survival was 7.4 months in this study. The multivariate logistic analysis confirmed that nerve invasion, surgery in top hospital, dilation of the main pancreatic duct, and Radscore 2 were independent factors affecting the mortality of PBTC (P < .05). In the test set, the combined model achieved the best predictive performance [AUC 0.944, 95% CI (0.826-0.991)], significantly superior to the clinicopathological model [AUC 0.770, 95% CI (0.615-0.886), P = .0145], and the CT radiomics model [AUC 0.883, 95% CI (0.746-0.961), P = .1311], with a good clinical net benefit confirmed by decision curve. The same results were subsequently validated on the test set. Conclusion: The diagnosis and treatment of PBTC are challenging, and survival is poor. Nevertheless, the combined model benefits the clinical management and prognosis of PBTC.
Collapse
Affiliation(s)
- Peng An
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yong Lin
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pancreatic Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junyan Zhang
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Depatment of Radiology, Hubei Clinical Research Center of Parkinson’s disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, P.R.C
| | - Yan Hu
- Department of Pancreatic Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Ping Qin
- Department of Pancreatic Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Depatment of Radiology, Hubei Clinical Research Center of Parkinson’s disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, P.R.C
- Department of internal medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingjian Ye
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of internal medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiumei Li
- Depatment of Radiology, Hubei Clinical Research Center of Parkinson’s disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, P.R.C
- Department of Pharmacy and Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of internal medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guoyan Feng
- Department of Radiology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jinsong Wang
- Department of Internal Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
28
|
Xu ML, Zeng SE, Li F, Cui XW, Liu GF. Preoperative prediction of lymphovascular invasion in patients with T1 breast invasive ductal carcinoma based on radiomics nomogram using grayscale ultrasound. Front Oncol 2022; 12:1071677. [PMID: 36568215 PMCID: PMC9770991 DOI: 10.3389/fonc.2022.1071677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to develop a radiomics nomogram based on grayscale ultrasound (US) for preoperatively predicting Lymphovascular invasion (LVI) in patients with pathologically confirmed T1 (pT1) breast invasive ductal carcinoma (IDC). Methods One hundred and ninety-two patients with pT1 IDC between September 2020 and August 2022 were analyzed retrospectively. Study population was randomly divided in a 7: 3 ratio into a training dataset of 134 patients (37 patients with LVI-positive) and a validation dataset of 58 patients (19 patients with LVI-positive). Clinical information and conventional US (CUS) features (called clinic_CUS features) were recorded and evaluated to predict LVI. In the training dataset, independent predictors of clinic_CUS features were obtained by univariate and multivariate logistic regression analyses and incorporated into a clinic_CUS prediction model. In addition, radiomics features were extracted from the grayscale US images, and the radiomics score (Radscore) was constructed after radiomics feature selection. Subsequent multivariate logistic regression analysis was also performed for Radscore and the independent predictors of clinic_CUS features, and a radiomics nomogram was developed. The performance of the nomogram model was evaluated via its discrimination, calibration, and clinical usefulness. Results The US reported axillary lymph node metastasis (LNM) (US_LNM) status and tumor margin were determined as independent risk factors, which were combined for the construction of clinic_CUS prediction model for LVI in pT1 IDC. Moreover, tumor margin, US_LNM status and Radscore were independent predictors, incorporated as the radiomics nomogram model, which achieved a superior discrimination to the clinic_CUS model in the training dataset (AUC: 0.849 vs. 0.747; P < 0.001) and validation dataset (AUC: 0.854 vs. 0.713; P = 0.001). Calibration curve for the radiomic nomogram showed good concordance between predicted and actual probability. Furthermore, decision curve analysis (DCA) confirmed that the radiomics nomogram had higher clinical net benefit than the clinic_CUS model. Conclusion The US-based radiomics nomogram, incorporating tumor margin, US_LNM status and Radscore, showed a satisfactory preoperative prediction of LVI in pT1 IDC patients.
Collapse
Affiliation(s)
- Mao-Lin Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shu-E Zeng
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Fang Li, ; Xin-Wu Cui, ; Gui-Feng Liu,
| |
Collapse
|
29
|
Mukherjee S, Patra A, Khasawneh H, Korfiatis P, Rajamohan N, Suman G, Majumder S, Panda A, Johnson MP, Larson NB, Wright DE, Kline TL, Fletcher JG, Chari ST, Goenka AH. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022; 163:1435-1446.e3. [PMID: 35788343 DOI: 10.1053/j.gastro.2022.06.066] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Our purpose was to detect pancreatic ductal adenocarcinoma (PDAC) at the prediagnostic stage (3-36 months before clinical diagnosis) using radiomics-based machine-learning (ML) models, and to compare performance against radiologists in a case-control study. METHODS Volumetric pancreas segmentation was performed on prediagnostic computed tomography scans (CTs) (median interval between CT and PDAC diagnosis: 398 days) of 155 patients and an age-matched cohort of 265 subjects with normal pancreas. A total of 88 first-order and gray-level radiomic features were extracted and 34 features were selected through the least absolute shrinkage and selection operator-based feature selection method. The dataset was randomly divided into training (292 CTs: 110 prediagnostic and 182 controls) and test subsets (128 CTs: 45 prediagnostic and 83 controls). Four ML classifiers, k-nearest neighbor (KNN), support vector machine (SVM), random forest (RM), and extreme gradient boosting (XGBoost), were evaluated. Specificity of model with highest accuracy was further validated on an independent internal dataset (n = 176) and the public National Institutes of Health dataset (n = 80). Two radiologists (R4 and R5) independently evaluated the pancreas on a 5-point diagnostic scale. RESULTS Median (range) time between prediagnostic CTs of the test subset and PDAC diagnosis was 386 (97-1092) days. SVM had the highest sensitivity (mean; 95% confidence interval) (95.5; 85.5-100.0), specificity (90.3; 84.3-91.5), F1-score (89.5; 82.3-91.7), area under the curve (AUC) (0.98; 0.94-0.98), and accuracy (92.2%; 86.7-93.7) for classification of CTs into prediagnostic versus normal. All 3 other ML models, KNN, RF, and XGBoost, had comparable AUCs (0.95, 0.95, and 0.96, respectively). The high specificity of SVM was generalizable to both the independent internal (92.6%) and the National Institutes of Health dataset (96.2%). In contrast, interreader radiologist agreement was only fair (Cohen's kappa 0.3) and their mean AUC (0.66; 0.46-0.86) was lower than each of the 4 ML models (AUCs: 0.95-0.98) (P < .001). Radiologists also recorded false positive indirect findings of PDAC in control subjects (n = 83) (7% R4, 18% R5). CONCLUSIONS Radiomics-based ML models can detect PDAC from normal pancreas when it is beyond human interrogation capability at a substantial lead time before clinical diagnosis. Prospective validation and integration of such models with complementary fluid-based biomarkers has the potential for PDAC detection at a stage when surgical cure is a possibility.
Collapse
Affiliation(s)
| | - Anurima Patra
- Department of Radiology, Tata Medical Centre, Kolkata, India
| | - Hala Khasawneh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Garima Suman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Shounak Majumder
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Ananya Panda
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Matthew P Johnson
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Nicholas B Larson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota; Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Suresh T Chari
- Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
30
|
Stoop TF, van Veldhuisen E, van Rijssen LB, Klaassen R, Gurney-Champion OJ, de Hingh IH, Busch OR, van Laarhoven HWM, van Lienden KP, Stoker J, Wilmink JW, Nio CY, Nederveen AJ, Engelbrecht MRW, Besselink MG. Added value of 3T MRI and the MRI-halo sign in assessing resectability of locally advanced pancreatic cancer following induction chemotherapy (IMAGE-MRI): prospective pilot study. Langenbecks Arch Surg 2022; 407:3487-3499. [PMID: 36242618 DOI: 10.1007/s00423-022-02653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Restaging of locally advanced pancreatic cancer (LAPC) after induction chemotherapy using contrast-enhanced computed tomography (CE-CT) imaging is imprecise in evaluating local tumor response. This study explored the value of 3 Tesla (3 T) contrast-enhanced (CE) and diffusion-weighted (DWI) magnetic resonance imaging (MRI) for local tumor restaging. METHODS This is a prospective pilot study including 20 consecutive patients with LAPC with RECIST non-progressive disease on CE-CT after induction chemotherapy. Restaging CE-CT, CE-MRI, and DWI-MRI were retrospectively evaluated by two abdominal radiologists in consensus, scoring tumor size and vascular involvement. A halo sign was defined as replacement of solid perivascular (arterial and venous) tumor tissue by a zone of fatty-like signal intensity. RESULTS Adequate MRI was obtained in 19 patients with LAPC after induction chemotherapy. Tumor diameter was non-significantly smaller on CE-MRI compared to CE-CT (26 mm vs. 30 mm; p = 0.073). An MRI-halo sign was seen on CE-MRI in 52.6% (n = 10/19), whereas a CT-halo sign was seen in 10.5% (n = 2/19) of patients (p = 0.016). An MRI-halo sign was not associated with resection rate (60.0% vs. 62.5%; p = 1.000). In the resection cohort, patients with an MRI-halo sign had a non-significant increased R0 resection rate as compared to patients without an MRI-halo sign (66.7% vs. 20.0%; p = 0.242). Positive and negative predictive values of the CE-MRI-halo sign for R0 resection were 66.7% and 66.7%, respectively. CONCLUSIONS 3 T CE-MRI and the MRI-halo sign might be helpful to assess the effect of induction chemotherapy in patients with LAPC, but its diagnostic accuracy has to be evaluated in larger series.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands. .,Cancer Center, Amsterdam, The Netherlands.
| | - Eran van Veldhuisen
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | - L Bengt van Rijssen
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | - Remy Klaassen
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Oliver J Gurney-Champion
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Ignace H de Hingh
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Olivier R Busch
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Krijn P van Lienden
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands.,Department of Radiology, St Antonius Hospital Nieuwegein, University Medical Center Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Nieuwegein, the Netherlands
| | - Jaap Stoker
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - C Yung Nio
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Marc R W Engelbrecht
- Cancer Center, Amsterdam, The Netherlands.,Amsterdam UMC, location University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands.,Cancer Center, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
What Can We Learn About Pancreatic Adenocarcinoma from Imaging? Hematol Oncol Clin North Am 2022; 36:911-928. [DOI: 10.1016/j.hoc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Barat M, Marchese U, Pellat A, Dohan A, Coriat R, Hoeffel C, Fishman EK, Cassinotto C, Chu L, Soyer P. Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances. Can Assoc Radiol J 2022; 74:351-361. [PMID: 36065572 DOI: 10.1177/08465371221124927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Ugo Marchese
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Digestive, Hepatobiliary and Pancreatic Surgery, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Romain Coriat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | | | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, 27037University of Montpellier, Saint-Éloi Hospital, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| |
Collapse
|
33
|
Liver metastases in pancreatic ductal adenocarcinoma: a predictive model based on CT texture analysis. Radiol Med 2022; 127:1079-1084. [PMID: 36057929 DOI: 10.1007/s11547-022-01548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
34
|
Marti-Bonmati L, Cerdá-Alberich L, Pérez-Girbés A, Díaz Beveridge R, Montalvá Orón E, Pérez Rojas J, Alberich-Bayarri A. Pancreatic cancer, radiomics and artificial intelligence. Br J Radiol 2022; 95:20220072. [PMID: 35687700 PMCID: PMC10996946 DOI: 10.1259/bjr.20220072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) are generally classified into four categories based on contrast-enhanced CT at diagnosis: resectable, borderline resectable, unresectable, and metastatic disease. In the initial grading and staging of PDAC, structured radiological templates are useful but limited, as there is a need to define the aggressiveness and microscopic disease stage of these tumours to ensure adequate treatment allocation. Quantitative imaging analysis allows radiomics and dynamic imaging features to provide information of clinical outcomes, and to construct clinical models based on radiomics signatures or imaging phenotypes. These quantitative features may be used as prognostic and predictive biomarkers in clinical decision-making, enabling personalised management of advanced PDAC. Deep learning and convolutional neural networks also provide high level bioinformatics tools that can help define features associated with a given aspect of PDAC biology and aggressiveness, paving the way to define outcomes based on these features. Thus, the prediction of tumour phenotype, treatment response and patient prognosis may be feasible by using such comprehensive and integrated radiomics models. Despite these promising results, quantitative imaging is not ready for clinical implementation in PDAC. Limitations include the instability of metrics and lack of external validation. Large properly annotated datasets, including relevant semantic features (demographics, blood markers, genomics), image harmonisation, robust radiomics analysis, clinically significant tasks as outputs, comparisons with gold-standards (such as TNM or pretreatment classifications) and fully independent validation cohorts, will be required for the development of trustworthy radiomics and artificial intelligence solutions to predict PDAC aggressiveness in a clinical setting.
Collapse
Affiliation(s)
- Luis Marti-Bonmati
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Department of Radiology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Leonor Cerdá-Alberich
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
| | | | | | - Eva Montalvá Orón
- Department of Surgery, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Judith Pérez Rojas
- Department of Pathology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Angel Alberich-Bayarri
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, Quibim
SL, Valencia,
Spain
| |
Collapse
|
35
|
A systematic review of radiomics in pancreatitis: applying the evidence level rating tool for promoting clinical transferability. Insights Imaging 2022; 13:139. [PMID: 35986798 PMCID: PMC9391628 DOI: 10.1186/s13244-022-01279-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Background Multiple tools have been applied to radiomics evaluation, while evidence rating tools for this field are still lacking. This study aims to assess the quality of pancreatitis radiomics research and test the feasibility of the evidence level rating tool. Results Thirty studies were included after a systematic search of pancreatitis radiomics studies until February 28, 2022, via five databases. Twenty-four studies employed radiomics for diagnostic purposes. The mean ± standard deviation of the adherence rate was 38.3 ± 13.3%, 61.3 ± 11.9%, and 37.1 ± 27.2% for the Radiomics Quality Score (RQS), the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guideline for preprocessing steps, respectively. The median (range) of RQS was 7.0 (− 3.0 to 18.0). The risk of bias and application concerns were mainly related to the index test according to the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The meta-analysis on differential diagnosis of autoimmune pancreatitis versus pancreatic cancer by CT and mass-forming pancreatitis versus pancreatic cancer by MRI showed diagnostic odds ratios (95% confidence intervals) of, respectively, 189.63 (79.65–451.48) and 135.70 (36.17–509.13), both rated as weak evidence mainly due to the insufficient sample size. Conclusions More research on prognosis of acute pancreatitis is encouraged. The current pancreatitis radiomics studies have insufficient quality and share common scientific disadvantages. The evidence level rating is feasible and necessary for bringing the field of radiomics from preclinical research area to clinical stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01279-4.
Collapse
|
36
|
Yan G, Yan G, Li H, Liang H, Peng C, Bhetuwal A, McClure MA, Li Y, Yang G, Li Y, Zhao L, Fan X. Radiomics and Its Applications and Progress in Pancreatitis: A Current State of the Art Review. Front Med (Lausanne) 2022; 9:922299. [PMID: 35814756 PMCID: PMC9259974 DOI: 10.3389/fmed.2022.922299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics involves high-throughput extraction and analysis of quantitative information from medical images. Since it was proposed in 2012, there are some publications on the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain (functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3) identifying CP and normal pancreas, and CP risk factors and complications. In this review, we aim to systematically summarize the applications and progress of radiomics in pancreatitis and it associated situations, so as to provide reference for related research.
Collapse
Affiliation(s)
- Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gaowen Yan
- Department of Radiology, The First Hospital of Suining, Suining, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Peng
- Department of Gastroenterology, The First Hospital of Suining, Suining, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongmei Li
| | - Guoqing Yang
- Department of Radiology, Suining Central Hospital, Suining, China
- Guoqing Yang
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining, China
- Yong Li
| | - Linwei Zhao
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Xiaoping Fan
- Department of Radiology, Suining Central Hospital, Suining, China
| |
Collapse
|
37
|
Do RKG, Kambadakone A. Radiomics for CT Assessment of Vascular Contact in Pancreatic Adenocarcinoma. Radiology 2021; 301:623-624. [PMID: 34491133 PMCID: PMC8630530 DOI: 10.1148/radiol.2021211635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Richard K. G. Do
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, 1275 York Ave, H-710, New York, NY 10065 (R.K.G.D.); and Division of
Abdominal Imaging and Intervention, Massachusetts General Hospital, Boston, Mass
(A.K.)
| | - Avinash Kambadakone
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, 1275 York Ave, H-710, New York, NY 10065 (R.K.G.D.); and Division of
Abdominal Imaging and Intervention, Massachusetts General Hospital, Boston, Mass
(A.K.)
| |
Collapse
|