1
|
Coleman CN, Eke I, Makinde AY, Chopra S, Demaria S, Formenti SC, Martello S, Bylicky M, Mitchell JB, Aryankalayil MJ. Radiation-induced Adaptive Response: New Potential for Cancer Treatment. Clin Cancer Res 2020; 26:5781-5790. [PMID: 32554542 PMCID: PMC7669567 DOI: 10.1158/1078-0432.ccr-20-0572] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
Radiotherapy is highly effective due to its ability to physically focus the treatment to target the tumor while sparing normal tissue and its ability to be combined with systemic therapy. This systemic therapy can be utilized before radiotherapy as an adjuvant or induction treatment, during radiotherapy as a radiation "sensitizer," or following radiotherapy as a part of combined modality therapy. As part of a unique concept of using radiation as "focused biology," we investigated how tumors and normal tissues adapt to clinically relevant multifraction (MF) and single-dose (SD) radiation to observe whether the adaptations can induce susceptibility to cell killing by available drugs or by immune enhancement. We identified an adaptation occurring after MF (3 × 2 Gy) that induced cell killing when AKT-mTOR inhibitors were delivered following cessation of radiotherapy. In addition, we identified inducible changes in integrin expression 2 months following cessation of radiotherapy that differ between MF (1 Gy × 10) and SD (10 Gy) that remain targetable compared with preradiotherapy. Adaptation is reflected across different "omics" studies, and thus the range of possible molecular targets is not only broad but also time, dose, and schedule dependent. While much remains to be studied about the radiation adaptive response, radiation should be characterized by its molecular perturbations in addition to physical dose. Consideration of the adaptive effects should result in the design of a tailored radiotherapy treatment plan that accounts for specific molecular changes to be targeted as part of precision multimodality cancer treatment.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Iris Eke
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Adeola Y Makinde
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sandra Demaria
- Radiation Oncology and Pathology, Weill Cornell Medicine, New York, New York
| | - Silvia C Formenti
- Radiation Oncology and Pathology, Weill Cornell Medicine, New York, New York
| | - Shannon Martello
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle Bylicky
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B Mitchell
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Zhao X, Shen R, Bao L, Wang C, Yuan H. Chitosan derived glycolipid nanoparticles for magnetic resonance imaging guided photodynamic therapy of cancer. Carbohydr Polym 2020; 245:116509. [PMID: 32718620 DOI: 10.1016/j.carbpol.2020.116509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
Currently, the development of polysaccharide, especially chitosan (CS), based drug delivery system to afford magnetic resonance imaging (MRI) guided theranostic cancer therapy remains largely unexplored. Herein, we successfully developed a CS derived polymer (Gd-CS-OA) through chemical conjugation of CS, octadecanoic acid (OA) and gadopentetic acid (GA). After self-assemble into glycolipid nanoparticles to loaded chlorin e6 (Ce6), the resulted Gd-CS-OA/Ce6 was able to realize MRI guided photodynamic therapy (PDT) of cancer. Our results revealed that Gd-CS-OA was able to increase the MRI sensitivity as compared to Gd-DTPA with decent residence time and preferable excretion behavior in vivo. Moreover, the Gd-CS-OA/Ce6 showed negligible hemolysis, satisfactory ROS generation and stability in physiological environments with preferable cellular uptake and enhanced in vitro cytotoxicity (through elevated ROS generation) on 4T1 cells. Most importantly, Gd-CS-OA/Ce6 demonstrated promising in vivo tumor targetability (enhanced penetration and retention effect) and powerful MRI guided tumor ablation through PDT on in situ 4T1 tumor model.
Collapse
Affiliation(s)
- Xin Zhao
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Ruoyu Shen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Lu Bao
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Cheng Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; School of Pharmaceutical Engineering & Life Science, Changzhou University, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
3
|
Coleman CN. Sixteenth Annual Warren K. Sinclair Keynote Address: Frontiers in Medical Radiation Science. HEALTH PHYSICS 2020; 118:349-353. [PMID: 32039927 DOI: 10.1097/hp.0000000000001240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
On the occasion of the 90 anniversary of National Council on Radiation Protection and Measurements (NCRP) and its 55 anniversary since being Congressionally Chartered, the theme of "Providing Best Answers to Your Most Pressing Questions about Radiation" is most appropriate. The question proposed here is, "What are the new frontiers for the NCRP with its breadth of talent and expertise in the rapidly evolving era of precision medicine?" Three closely related themes are presented for new applications of radiation science for research and career opportunities: (1) introduction of the new concept of defining radiation dose in biological perturbations in addition to physical dose, particularly for cancer treatment; (2) assessment of early biomarkers of radiation injury for mass casualty exposure (biodosimetry) to guide triage and for clinical application to guide radiation therapy; and (3) proposal to expand opportunities for radiation professionals, including consideration of a new training program within NCRP's "Where are the radiation professionals?" initiative that trains radiation oncologists as molecular radiation epidemiologists.
Collapse
|
4
|
Abstract
The radiation stress response can have broad impact. In this Failla Award presentation it is discussed in three components using terms relevant to the current political season as to how the radiation stress response can be applied to the benefit for cancer care and as service to society. Of the people refers to the impact of radiation on cells, tissues and patients. The paradigm our laboratory uses is radiation as a drug, called "focused biology", and physics as "nano-IMRT" because at the nanometer level physics and biology merge. By the people refers to how the general population often reacts to the word "radiation" and how the Radiation Research Society can better enable society to deal with the current realities of radiation in our lives. For the people refers to the potential for radiation oncology and radiation sciences to improve the lives of millions of people globally who are now beyond benefits of cancer treatment and research.
Collapse
Affiliation(s)
- C. Norman Coleman
- Associate Director, Radiation Research Program, Division of Cancer Treatment and Diagnosis; Senior Investigator, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and Senior Medical Advisor, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington DC
| |
Collapse
|
5
|
Eke I, Makinde AY, Aryankalayil MJ, Ahmed MM, Coleman CN. Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine. Cancer Lett 2016; 382:118-126. [PMID: 26828133 DOI: 10.1016/j.canlet.2016.01.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology.
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
6
|
Palayoor ST, John-Aryankalayil M, Makinde AY, Falduto MT, Magnuson SR, Coleman CN. Differential expression of stress and immune response pathway transcripts and miRNAs in normal human endothelial cells subjected to fractionated or single-dose radiation. Mol Cancer Res 2014; 12:1002-15. [PMID: 24784841 DOI: 10.1158/1541-7786.mcr-13-0623] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Although modern radiotherapy technologies can precisely deliver higher doses of radiation to tumors, thus, reducing overall radiation exposure to normal tissues, moderate dose, and normal tissue toxicity still remains a significant limitation. The present study profiled the global effects on transcript and miR expression in human coronary artery endothelial cells using single-dose irradiation (SD, 10 Gy) or multifractionated irradiation (MF, 2 Gy × 5) regimens. Longitudinal time points were collected after an SD or final dose of MF irradiation for analysis using Agilent Human Gene Expression and miRNA microarray platforms. Compared with SD, the exposure to MF resulted in robust transcript and miR expression changes in terms of the number and magnitude. For data analysis, statistically significant mRNAs (2-fold) and miRs (1.5-fold) were processed by Ingenuity Pathway Analysis to uncover miRs associated with target transcripts from several cellular pathways after irradiation. Interestingly, MF radiation induced a cohort of mRNAs and miRs that coordinate the induction of immune response pathway under tight regulation. In addition, mRNAs and miRs associated with DNA replication, recombination and repair, apoptosis, cardiovascular events, and angiogenesis were revealed. IMPLICATIONS Radiation-induced alterations in stress and immune response genes in endothelial cells contribute to changes in normal tissue and tumor microenvironment, and affect the outcome of radiotherapy.
Collapse
Affiliation(s)
- Sanjeewani T Palayoor
- Authors' Affiliations: Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Molykutty John-Aryankalayil
- Authors' Affiliations: Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Adeola Y Makinde
- Authors' Affiliations: Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and
| | | | | | - C Norman Coleman
- Authors' Affiliations: Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and
| |
Collapse
|
7
|
Munley MT, Kagadis GC, McGee KP, Kirov AS, Jang S, Mutic S, Jeraj R, Xing L, Bourland JD. An introduction to molecular imaging in radiation oncology: a report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR). Med Phys 2014; 40:101501. [PMID: 24089890 DOI: 10.1118/1.4819818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging is the direct or indirect noninvasive monitoring and recording of the spatial and temporal distribution of in vivo molecular, genetic, and/or cellular processes for biochemical, biological, diagnostic, or therapeutic applications. Molecular images that indicate the presence of malignancy can be acquired using optical, ultrasonic, radiologic, radionuclide, and magnetic resonance techniques. For the radiation oncology physicist in particular, these methods and their roles in molecular imaging of oncologic processes are reviewed with respect to their physical bases and imaging characteristics, including signal intensity, spatial scale, and spatial resolution. Relevant molecular terminology is defined as an educational assist. Current and future clinical applications in oncologic diagnosis and treatment are discussed. National initiatives for the development of basic science and clinical molecular imaging techniques and expertise are reviewed, illustrating research opportunities in as well as the importance of this growing field.
Collapse
Affiliation(s)
- Michael T Munley
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sun CJ, Li C, Lv HB, Zhao C, Yu JM, Wang GH, Luo YX, Li Y, Xiao M, Yin J, Lang JY. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model. JOURNAL OF RADIATION RESEARCH 2014; 55:183-190. [PMID: 24078878 PMCID: PMC3885125 DOI: 10.1093/jrr/rrt092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3-127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2-53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7-124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2-62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14-47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice.
Collapse
Affiliation(s)
- Chang-Jin Sun
- Department of Radiation Oncology, Chengdu Third People's Hospital, Sichuan, 610041, China
| | - Chao Li
- Department of Head and Neck Surgery Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| | - Hai-Bo Lv
- Department of Radiology, Civil Aviation Medical Center, Chengdu, Sichuan, 610041, China
| | - Cong Zhao
- Department of Radiation Oncology, Chengdu Third People's Hospital, Sichuan, 610041, China
| | - Jin-Ming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, No. 8 Zhenyunling Road, Chengdu, Sichuan, 610202, China
| | - Guang-Hui Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| | - Yun-Xiu Luo
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| | - Yan Li
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| | - Mingyong Xiao
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| | - Jun Yin
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Sichuan, 610041, China
| |
Collapse
|
9
|
mRNA Expression Profiles for Prostate Cancer following Fractionated Irradiation Are Influenced by p53 Status. Transl Oncol 2013; 6:573-85. [PMID: 24151538 DOI: 10.1593/tlo.13241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
We assessed changes in cell lines of varying p53 status after various fractionation regimens to determine if p53 influences gene expression and if multifractionated (MF) irradiation can induce molecular pathway changes. LNCaP (p53 wild-type), PC3 (p53 null), and DU145 (p53 mutant) prostate carcinoma cells received 5 and 10 Gy as single-dose (SD) or MF (0.5 Gy x 10, 1 Gy x 10, and 2 Gy x 5) irradiation to simulate hypofractionated and conventionally fractionated prostate radiotherapies, respectively. mRNA analysis revealed 978 LNCaP genes differentially expressed (greater than two-fold change, P < .05) after irradiation. Most were altered with SD (69%) and downregulated (75%). Fewer PC3 (343) and DU145 (116) genes were induced, with most upregulated (87%, 89%) and altered with MF irradiation. Gene ontology revealed immune response and interferon genes most prominently expressed after irradiation in PC3 and DU145. Cell cycle regulatory (P = 9.23 x 10(-73), 14.2% of altered genes, nearly universally downregulated) and DNA replication/repair (P = 6.86 x 10(-30)) genes were most prominent in LNCaP. Stress response and proliferation genes were altered in all cell lines. p53-activated genes were only induced in LNCaP. Differences in gene expression exist between cell lines and after varying irradiation regimens that are p53 dependent. As the duration of changes is ≥24 hours, it may be possible to use radiation-inducible targeted therapy to enhance the efficacy of molecular targeted agents.
Collapse
|
10
|
|
11
|
Makinde AY, John-Aryankalayil M, Palayoor ST, Cerna D, Coleman CN. Radiation survivors: understanding and exploiting the phenotype following fractionated radiation therapy. Mol Cancer Res 2013; 11:5-12. [PMID: 23175523 PMCID: PMC3552079 DOI: 10.1158/1541-7786.mcr-12-0492] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation oncology modalities such as intensity-modulated and image-guided radiation therapy can reduce the high dose to normal tissue and deliver a heterogeneous dose to tumors, focusing on areas deemed at highest risk for tumor persistence. Clinical radiation oncology produces daily doses ranging from 1 to 20 Gy, with tissues being exposed to 30 or more daily fractions. Hypothesizing the cells that survive fractionated radiation therapy have a substantially different phenotype than the untreated cells, which might be exploitable for targeting with molecular therapeutics or immunotherapy, three prostate cancer cell lines (PC3, DU145, and LNCaP) and normal endothelial cells were studied to understand the biology of differential effects of multifraction (MF) radiation of 0.5, 1, and/or 2 Gy fraction to 10 Gy total dose, and a single dose of 5 and 10 Gy. The resulting changes in mRNA, miRNA, and phosphoproteome were analyzed. Significant differences were observed in the MF radiation exposures including those from the 0.5 Gy MF that produces little cell killing. As expected, p53 function played a major role in response. Pathways modified by MF include immune response, DNA damage, cell-cycle arrest, TGF-β, survival, and apoptotic signal transduction. The radiation-induced stress response will set forth a unique platform for exploiting the effects of radiation therapy as "focused biology" for cancer treatment in conjunction with molecular targeted or immunologically directed therapy. Given that more normal tissue is treated, albeit to lower doses with these newer techniques, the response of the normal tissue may also influence long-term treatment outcome.
Collapse
Affiliation(s)
- Adeola Y Makinde
- National Institutes of Health/National Cancer Institute, 9000 Rockville Pike, Bldg 10, B3B406, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Patel V, Papineni RVL, Gupta S, Stoyanova R, Ahmed MM. A realistic utilization of nanotechnology in molecular imaging and targeted radiotherapy of solid tumors. Radiat Res 2012; 177:483-95. [PMID: 22404738 DOI: 10.1667/rr2597.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Precise dose delivery to malignant tissue in radiotherapy is of paramount importance for treatment efficacy while minimizing morbidity of surrounding normal tissues. Current conventional imaging techniques, such as magnetic resonance imaging (MRI) and computerized tomography (CT), are used to define the three-dimensional shape and volume of the tumor for radiation therapy. In many cases, these radiographic imaging (RI) techniques are ambiguous or provide limited information with regard to tumor margins and histopathology. Molecular imaging (MI) modalities, such as positron emission tomography (PET) and single photon-emission computed-tomography (SPECT) that can characterize tumor tissue, are rapidly becoming routine in radiation therapy. However, their inherent low spatial resolution impedes tumor delineation for the purposes of radiation treatment planning. This review will focus on applications of nanotechnology to synergize imaging modalities in order to accurately highlight, as well as subsequently target, tumor cells. Furthermore, using such nano-agents for imaging, simultaneous coupling of novel therapeutics including radiosensitizers can be delivered specifically to the tumor to maximize tumor cell killing while sparing normal tissue.
Collapse
Affiliation(s)
- Vivek Patel
- Department of Radiation Oncology, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
13
|
Lu X, Yan P, Wang R, Liu M, Yu M, Zhang C, Guo F. The further study on radioiodinated peptide Arg-Arg-Leu targeted to neovascularization as well as tumor cells in molecular tumor imaging. J Radioanal Nucl Chem 2011; 290:623-630. [DOI: 10.1007/s10967-011-1342-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
John-Aryankalayil M, Palayoor ST, Cerna D, Simone CB, Falduto MT, Magnuson SR, Coleman CN. Fractionated radiation therapy can induce a molecular profile for therapeutic targeting. Radiat Res 2010; 174:446-58. [PMID: 20726711 DOI: 10.1667/rr2105.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To examine the possibility of using fractionated radiation in a unique way with molecular targeted therapy, gene expression profiles of prostate carcinoma cells treated with 10 Gy radiation administered either as a single dose or as fractions of 2 Gy × 5 and 1 Gy × 10 were examined by microarray analysis. Compared to the single dose, the fractionated irradiation resulted in significant increases in differentially expressed genes in both cell lines, with more robust changes in PC3 cells than in DU145 cells. The differentially expressed genes (>twofold change; P < 0.05) were clustered and their ontological annotations evaluated. In PC3 cells genes regulating immune and stress response, cell cycle and apoptosis were significantly up-regulated by multifractionated radiation compared to single-dose radiation. Ingenuity Pathway Analysis (IPA) of the differentially expressed genes revealed that immune response and cardiovascular genes were in the top functional category in PC3 cells and cell-to-cell signaling in DU145 cells. RT-PCR analysis showed that a flexure point for gene expression occurred at the 6th-8th fraction and AKT inhibitor perifosine produced enhanced cell killing after 1 Gy × 8 fractionated radiation in PC3 and DU145 cells compared to single dose. This study suggests that fractionated radiation may be a uniquely exploitable, non-oncogene-addiction stress pathway for molecular therapeutic targeting.
Collapse
Affiliation(s)
- Molykutty John-Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The authors look back at the five decades of radiation oncology and consider how one's choices and decisions influence how a career is pursued and how a professional life is lived. Accomplishments and contributions in a career in radiation oncology, and in medicine in general, involve individual choices that impact the direction of a specialty, decisions in patient care, consequences of treatment outcome, and personal satisfaction. Issues in radiation oncology include: the development and implementation of new radiation treatment technology; the use of multimodality and biologically based therapies; the role of nonradiation “energy” technologies, often by other medical specialties, including the need for quality assurance in treatment and data reporting; and the type of evidence, including appropriate study design, analysis, and rigorous long-term follow-up, that is sought before widespread implementation of a new treatment. Personal choices must weigh: the pressure from institutions—practices, departments, universities, and hospitals; the need to serve society and the underserved; the balance between individual reward and a greater mission; and the critical role of personal values and integrity, often requiring difficult and “life-defining” decisions. The impact that each of us makes in a career is perhaps more a result of character than of the specific details enumerated on one's curriculum vitae. The individual tapestry weaved by choosing the more or less traveled paths during a career results in many pathways that would be called success; however, the one path for which there is no good alternative is that of living and acting with integrity.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Research Program, 6130 Executive Boulevard, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
16
|
Balter JM, Haffty BG, Dunnick NR, Siegel EL. Imaging opportunities in radiation oncology. Int J Radiat Oncol Biol Phys 2010; 79:342-7. [PMID: 20800378 DOI: 10.1016/j.ijrobp.2010.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022]
Abstract
Interdisciplinary efforts may significantly affect the way that clinical knowledge and scientific research related to imaging impact the field of Radiation Oncology. This report summarizes the findings of an intersociety workshop held in October 2008, with the express purpose of exploring "Imaging Opportunities in Radiation Oncology." Participants from the American Society for Radiation Oncology (ASTRO), National Institutes of Health (NIH), Radiological Society of North America (RSNA), American Association of physicists in Medicine (AAPM), American Board of Radiology (ABR), Radiation Therapy Oncology Group (RTOG), European Society for Therapeutic Radiology and Oncology (ESTRO), and Society of Nuclear Medicine (SNM) discussed areas of education, clinical practice, and research that bridge disciplines and potentially would lead to improved clinical practice. Findings from this workshop include recommendations for cross-training opportunities within the allowed structured of Radiology and Radiation Oncology residency programs, expanded representation of ASTRO in imaging related multidisciplinary groups (and reciprocal representation within ASTRO committees), increased attention to imaging validation and credentialing for clinical trials (e.g., through the American College of Radiology Imaging Network (ACRIN)), and building ties through collaborative research as well as smaller joint workshops and symposia.
Collapse
Affiliation(s)
- James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
17
|
Tran WT, Gillies C. Perspectives in Implementing Radiogenomics to Radiotherapy. J Med Imaging Radiat Sci 2010; 41:79-86. [DOI: 10.1016/j.jmir.2010.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
|
18
|
Meetoo D. Nanotechnology: the revolution of the big future with tiny medicine. ACTA ACUST UNITED AC 2009; 18:1201-6. [DOI: 10.12968/bjon.2009.18.19.44832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Danny Meetoo
- Collaborative Health and Social Care, University of Salford, Salford
| |
Collapse
|
19
|
Abstract
Cancer occurs as a result of misregulation of cell growth, which appears to be a consequence of alteration in the function of oncogenes and tumour suppressor genes. Ionising radiation has been used, since the discovery of X-rays in 1896 by Roentgen, both in cancer research and treatment of the disease. The main purpose of cancer research is to understand the molecular alterations involved in the development and progression of the disease in order to improve diagnosis and develop personalised therapies, by focusing on the features of the tumoral cell and the biological events associated to carcinogenesis. Radioisotopic techniques have been used routinely for in vitro research in the molecular and cellular biology of cancer for more than 20 years and are in the process of being substituted by alternative non-radioactive techniques. However in vivo techniques such as irradiation of cells in culture and/or experimental animal models and radioactive labelling are in development, due in part to advances in molecular imaging technologies. The objective of this review is to analyse in an integrative way the applications of ionising radiation in cancer research and therapy. It had been divided into two parts. The first one will approach the techniques applied to cancer research and the second will summarise how ionising radiation is applied to the treatment of neoplastic disease.
Collapse
Affiliation(s)
- M T Macías
- Servicio de Protección Radiológica, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.
| |
Collapse
|
20
|
Nikiforidis GC, Sakellaropoulos GC, Kagadis GC. Molecular imaging and the unification of multilevel mechanisms and data in medical physics. Med Phys 2008; 35:3444-52. [DOI: 10.1118/1.2948321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
|
22
|
Abstract
Multidisciplinary approach for rectal cancer treatment is currently well defined. Nevertheless, new and promising advances are enriching the portrait. Since the US NIH Consensus in the early 90’s some new characters have been added. A bird’s-eye view along the last decade shows the main milestones in the development of rectal cancer treatment protocols. New drugs, in combination with radiotherapy are being tested to increase response and tumor control outcomes. However, therapeutic intensity is often associated with toxicity. Thus, innovative strategies are needed to create a better-balanced therapeutic ratio. Molecular targeted therapies and improved technology for delivering radiotherapy respond to the need for accuracy and precision in rectal cancer treatment.
Collapse
|
23
|
Olsen DR, Thwaites DI. Now you see it... Imaging in radiotherapy treatment planning and delivery. Radiother Oncol 2007; 85:173-5. [PMID: 18022267 DOI: 10.1016/j.radonc.2007.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJG, Tennvall J. Clinical radionuclide therapy dosimetry: the quest for the "Holy Gray". Eur J Nucl Med Mol Imaging 2007; 34:772-786. [PMID: 17268773 PMCID: PMC1914264 DOI: 10.1007/s00259-006-0338-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction Radionuclide therapy has distinct similarities to, but also profound differences from external radiotherapy. Review This review discusses techniques and results of previously developed dosimetry methods in thyroid carcinoma, neuro-endocrine tumours, solid tumours and lymphoma. In each case, emphasis is placed on the level of evidence and practical applicability. Although dosimetry has been of enormous value in the preclinical phase of radiopharmaceutical development, its clinical use to optimise administered activity on an individual patient basis has been less evident. In phase I and II trials, dosimetry may be considered an inherent part of therapy to establish the maximum tolerated dose and dose-response relationship. To prove that dosimetry-based radionuclide therapy is of additional benefit over fixed dosing or dosing per kilogram body weight, prospective randomised phase III trials with appropriate end points have to be undertaken. Data in the literature which underscore the potential of dosimetry to avoid under- and overdosing and to standardise radionuclide therapy methods internationally are very scarce. Developments In each section, particular developments and insights into these therapies are related to opportunities for dosimetry. The recent developments in PET and PET/CT imaging, including micro-devices for animal research, and molecular medicine provide major challenges for innovative therapy and dosimetry techniques. Furthermore, the increasing scientific interest in the radiobiological features specific to radionuclide therapy will advance our ability to administer this treatment modality optimally.
Collapse
Affiliation(s)
- B Brans
- Department of Nuclear Medicine, University Hospital Maastricht, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - L Bodei
- Division of Nuclear Medicine, Istituto Europeo di Oncologia, Milan, Italy
| | - F Giammarile
- Service de Médecine Nucléaire, Centre Léon Bérard, Lyon, France
| | - O Linden
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - M Luster
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - W J G Oyen
- Department of Nuclear Medicine, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - J Tennvall
- Department of Oncology, Lund University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Stefflova K, Li H, Chen J, Zheng G. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem 2007; 18:379-88. [PMID: 17298029 PMCID: PMC2535810 DOI: 10.1021/bc0602578] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed and synthesized a folate receptor-targeted, water-soluble, and pharmacomodulated photodynamic therapy (PDT) agent that selectively detects and destroys the targeted cancer cells while sparing normal tissue. This was achieved by minimizing the normal organ uptake (e.g., liver and spleen) and by discriminating between tumors with different levels of folate receptor (FR) expression. This construct (Pyro-peptide-Folate, PPF) is composed of three components: (1) pyropheophorbide a (Pyro) as an imaging and therapeutic agent, (2) peptide sequence as a stable linker and modulator improving the delivery efficiency, and (3) Folate as a homing molecule targeting FR-expressing cancer cells. We observed an enhanced accumulation of PPF in KB cancer cells (FR+) compared to HT 1080 cancer cells (FR-), resulting in a more effective post-PDT killing of KB cells over HT 1080 or normal CHO cells. The accumulation of PPF in KB cells can be up to 70% inhibited by an excess of free folic acid. The effect of Folate on preferential accumulation of PPF in KB tumors (KB vs HT 1080 tumors 2.5:1) was also confirmed in vivo. In contrast to that, no significant difference between the KB and HT 1080 tumor was observed in case of the untargeted probe (Pyro-peptide, PP), eliminating the potential influence of Pyro's own nonspecific affinity to cancer cells. More importantly, we found that incorporating a short peptide sequence considerably improved the delivery efficiency of the probe--a process we attributed to a possible peptide-based pharmacomodulation--as was demonstrated by a 50-fold reduction in PPF accumulation in liver and spleen when compared to a peptide-lacking probe (Pyro-K-Folate, PKF). This approach could potentially be generalized to improve the delivery efficiency of other targeted molecular imaging and photodynamic therapy agents.
Collapse
Affiliation(s)
- Klara Stefflova
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hui Li
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Juan Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Ontario Cancer Institute, University of Toronto, MaRS Center, TMDT 5-363, 101 College St., Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Ontario Cancer Institute, University of Toronto, MaRS Center, TMDT 5-363, 101 College St., Toronto, Ontario M5G 1L7, Canada
- Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research
- *To whom correspondence should be addressed: E-mail: . Phone: 1-416-581-7666. Fax: 1-416-581-7667
| |
Collapse
|
26
|
"What goes round comes round". Biomed Imaging Interv J 2006; 2:e1. [PMID: 21614213 PMCID: PMC3097604 DOI: 10.2349/biij.2.1.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 12/31/2005] [Indexed: 11/17/2022] Open
|
27
|
Neff T, Kiessling F, Brix G, Baudendistel K, Zechmann C, Giesel FL, Bendl R. An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI. Phys Med Biol 2005; 50:4209-23. [PMID: 16177540 DOI: 10.1088/0031-9155/50/17/020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Planning of radiotherapy is often difficult due to restrictions on morphological images. New imaging techniques enable the integration of biological information into treatment planning and help to improve the detection of vital and aggressive tumour areas. This might improve clinical outcome. However, nowadays morphological data sets are still the gold standard in the planning of radiotherapy. In this paper, we introduce an in-house software platform enabling us to combine images from different imaging modalities yielding biological and morphological information in a workflow driven approach. This is demonstrated for the combination of morphological CT, MRI, functional DCE-MRI and PET data. Data of patients with a tumour of the prostate and with a meningioma were examined with DCE-MRI by applying pharmacokinetic two-compartment models for post-processing. The results were compared with the clinical plans for radiation therapy. Generated parameter maps give additional information about tumour spread, which can be incorporated in the definition of safety margins.
Collapse
Affiliation(s)
- T Neff
- Department of Medical Physics in Radiation Therapy, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Coleman CN. International Conference on Translational Research ICTR 2003 Conference Summary: marshalling resources in a complex time. Int J Radiat Oncol Biol Phys 2004; 58:307-19. [PMID: 14751498 DOI: 10.1016/j.ijrobp.2003.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The knowledge, tools, and environment for the practice of radiation oncology are changing rapidly. The National Cancer Institute has articulated the need for a balanced portfolio, including the interrelated components of discovery, development, and delivery. Underpinning practice is the emerging knowledge from molecular, cellular, and tumor biology that is the engine of discovery. The use of high-throughput technologies to analyze biochemical and molecular profiles will ultimately enable the individualization of cancer treatment requiring the appropriate integration of radiation with a range of systemic therapies, including chemotherapy, biologic therapy, and immunotherapy. Technological advances in treatment delivery using photons, brachytherapy, particle therapy, radioisotopes, and other forms of energy require an improved ability to localize the tumor and critical subregions and to ensure necessary tissue immobilization and/or real-time target adjustment. Functional imaging is helping to define tumor characteristics and response to treatment. The development of appropriate radiation oncology treatment requires a wide range of expertise, a multimodality approach, and multi-institutional collaboration to provide improved and cost-effective outcome. The delivery of appropriate cancer care to those who need it requires biology and technology but also reaching the underserved populations worldwide. ICTR 2003 demonstrated substantial progress in translational radiation oncology. Faced with financial constraints for research and patient care, the broad field of radiation oncology must continually examine and balance its research and development portfolio and invest in its future leaders to enable it be an important contributor to the future of cancer care.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Sciences Program, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute/NIH, Bldg. 10, B3-B69, Bethesda, MD 20892-1002, USA.
| |
Collapse
|
29
|
Coleman CN, Stone HB, Alexander GA, Barcellos-Hoff MH, Bedford JS, Bristow RG, Dynlacht JR, Fuks Z, Gorelic LS, Hill RP, Joiner MC, Liu FF, McBride WH, McKenna WG, Powell SN, Robbins MEC, Rockwell S, Schiff PB, Shaw EG, Siemann DW, Travis EL, Wallner PE, Wong RSL, Zeman EM. Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12-14, 2003. Radiat Res 2004; 160:729-37. [PMID: 14640790 DOI: 10.1667/rr3096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other scientists and the general public on the quantitative, basic, molecular, translational and applied aspects of radiation sciences.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|