1
|
Li J, Chen XY, Wang YH, Wang X, Cheng YJ, Liu MC, Zhu L, Gao X, Deng WY, Liu JY, Lin XJ, Jin ZY, Xue HD. Comparison of Perfusion CT and Conventional Thin-slice Multiphase CT in the Diagnosis of Pancreatic Adenocarcinoma. Acad Radiol 2025:S1076-6332(25)00292-2. [PMID: 40393830 DOI: 10.1016/j.acra.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/22/2025]
Abstract
RATIONALE AND OBJECTIVES Perfusion CT parameters are reported to correlate with pancreatic adenocarcinoma's histopathological response to radiochemotherapy, yet research on morphological diagnosis of perfusion CT for the diagnosis of pancreatic adenocarcinoma is lacking. This study compares mean temporal (MT) post-processed perfusion CT with conventional thin-slice multiphase CT in visualizing tumors, small pancreatic arteries, and assessing tumor resectability. MATERIALS AND METHODS 60 patients (mean age 61.3 ± 8.8, 36 males) underwent perfusion and conventional CT sequentially from December 2021 to April 2024 were retrospectively included. MT images were calculated from perfusion CT and compared with conventional images for tumor depiction (qualitative 5-point scale, quantitative analysis), small pancreatic arteries display (qualitative 4-point scale) and concordance in tumor resectability. Radiation doses were also evaluated. RESULTS MT images showed superior tumor display scores (5 (4,5) vs. 4 (4,5)), better tumor contrast (99.54 (81.88, 117.29) vs. 51.90 ± 18.85), higher signal-to-noise ratio (4.46 ± 1.75 vs. 3.10 ± 0.98), and contrast-to-noise ratio (5.13 (3.84, 6.77) vs. 3.03 ± 1.24), with all p values < 0.001. Qualitative scores for small pancreatic arteries were higher in MT images, with most p values <0.05 (range from <0.001 to 0.018). Both radiologists showed good resectability consistency, with κ values of 0.740 and 0.785, respectively. Effective radiation doses were 11.86 (9.45, 15.57) mSv for perfusion CT and 12.47 ± 4.01 mSv for conventional CT (p=0.958). CONCLUSION Perfusion CT employing MT post-processing outperforms conventional CT in depicting tumors and small pancreatic arteries, with consistent resectability results between the two examinations.
Collapse
Affiliation(s)
- Juan Li
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin-Yue Chen
- From CT collaboration, Siemens-Healthineers, China
| | - Yu-Hong Wang
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao Wang
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue-Juan Cheng
- From the Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meng-Chao Liu
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Zhu
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Gao
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wen-Yi Deng
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing-Yi Liu
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xi-Juan Lin
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hua-Dan Xue
- From the Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Zhu S, Zhang B, Tian Q, Li A, Liu Z, Hou W, Zhao W, Huang X, Xiao Y, Wang Y, Wang R, Li Y, Yang J, Jin C. Reduced-dose deep learning iterative reconstruction for abdominal computed tomography with low tube voltage and tube current. BMC Med Inform Decis Mak 2024; 24:389. [PMID: 39696218 DOI: 10.1186/s12911-024-02811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The low tube-voltage technique (e.g., 80 kV) can efficiently reduce the radiation dose and increase the contrast enhancement of vascular and parenchymal structures in abdominal CT. However, a high tube current is always required in this setting and limits the dose reduction potential. This study investigated the feasibility of a deep learning iterative reconstruction algorithm (Deep IR) in reducing the radiation dose while improving the image quality for abdominal computed tomography (CT) with low tube voltage and current. METHODS Sixty patients (male/female, 36/24; Age, 57.72 ± 10.19 years) undergoing the abdominal portal venous phase CT were randomly divided into groups A (100 kV, automatic exposure control [AEC] with reference tube-current of 213 mAs) and B (80 kV, AEC with reference of 130 mAs). Images were reconstructed via hybrid iterative reconstruction (HIR) and Deep IR (levels 1-5). The mean CT and standard deviation (SD) values of four regions of interest (ROI), i.e. liver, spleen, main portal vein and erector spinae at the porta hepatis level in each image serial were measured, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The image quality was subjectively scored by two radiologists using a 5-point criterion. RESULTS A significant reduction in the radiation dose of 69.94% (5.09 ± 0.91 mSv vs. 1.53 ± 0.37 mSv) was detected in Group B compared with Group A. After application of the Deep IR, there was no significant change in the CT value, but the SD gradually increased. Group B had higher CT values than group A, and the portal vein CT values significantly differed between the groups (P < 0.003). The SNR and CNR in Group B with Deep IR at levels 1-5 were greater than those in Group A and significantly differed when HIR and Deep IR were applied at levels 1-3 of HIR and Deep IR (P < 0.003). The subjective scores (distortion, clarity of the portal vein, visibility of small structures and overall image quality) with Deep IR at levels 4-5 in Group B were significantly higher than those in group A with HIR (P < 0.003). CONCLUSION Deep IR algorithm can meet the clinical requirements and reduce the radiation dose by 69.94% in portal venous phase abdominal CT with a low tube voltage of 80 kV and a low tube current. Deep IR at levels 4-5 can significantly improve the image quality of the abdominal parenchymal organs and the clarity of the portal vein.
Collapse
Affiliation(s)
- Shumeng Zhu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Baoping Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Qian Tian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Ao Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Zhe Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Wei Hou
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Wenzhe Zhao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Xin Huang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Yao Xiao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Yiming Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Yuhang Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China.
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, 710061, P. R. China.
| |
Collapse
|
3
|
Tsalafoutas IA, AlKhazzam S, Kharita MH. The impact of automatic tube current modulation related settings of a modern GE CT scanner on image quality and patient dose; details do matter. J Appl Clin Med Phys 2024; 25:e14356. [PMID: 38659159 PMCID: PMC11163491 DOI: 10.1002/acm2.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE To investigate the operation principles of the automatic tube current modulation (ATCM) of a modern GE healthcare CT scanner, and the impact of related settings on image quality and patient dose. MATERIAL & METHODS A dedicated phantom (Mercury 4.0) was scanned using two of the most frequently used clinical scanning protocols (chest and abdomen-pelvis). The preset protocol settings were used as starting points (reference conditions). Scan direction, scan mode (helical vs. axial), total beam width, tube potential (kVp), and ATCM settings were then modified individually to understand their impact on radiation dose and image quality. Regarding the ATCM settings, the SmartmA minimum and maximum mA limits, and the noise index (NI) values were varied. As surrogates of patient dose, the CTDIvol and DLP values of each scan were used. As surrogates of image quality were used the image noise and the detectability index (d') of five different materials (air, solid water, polystyrene, iodine, and bone) embedded in the Mercury phantom calculated with the ImQuest software. RESULTS The scanning direction did not have any effect on ATCM curves, unlike what has been observed in CT scanners from other manufacturers. Total beam width does matter, however, the SmartmA limit settings and kVp selection had the greatest impact on image quality and dose. It was seen that improper minimum mA limit settings practically invalidated the ATCM operation. In contrast, when full modulation was allowed without restrictions, noise standard deviation, and detectability index became much more consistent across the wide range of phantom diameters. For lower kVp settings an impressive dose reduction was observed that requires further investigation. CONCLUSION SmartmA is a tool that if not properly used may increase the patient doses considerably. Therefore, its settings should be carefully adjusted for each preset different clinical protocol.
Collapse
Affiliation(s)
- Ioannis A. Tsalafoutas
- Medical Physics SectionOccupational Health and Safety DepartmentHamad Medical CorporationDohaQatar
| | - Shady AlKhazzam
- Medical Physics SectionOccupational Health and Safety DepartmentHamad Medical CorporationDohaQatar
| | - Mohammed Hassan Kharita
- Medical Physics SectionOccupational Health and Safety DepartmentHamad Medical CorporationDohaQatar
| |
Collapse
|
4
|
Feldle P, Grunz JP, Kunz AS, Pannenbecker P, Patzer TS, Pichlmeier S, Sauer ST, Hendel R, Ergün S, Bley TA, Huflage H. Influence of spectral shaping and tube voltage modulation in ultralow-dose computed tomography of the abdomen. BMC Med Imaging 2024; 24:49. [PMID: 38395772 PMCID: PMC10893640 DOI: 10.1186/s12880-024-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the effect of spectral shaping and tube voltage modulation on image quality. METHODS Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor). RESULTS Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3-3) was higher compared with conventional imaging at 120 kVp (2; 2-2), 100 kVp (1; 1-2), and 80 kVp (1; 1-1) (all p < 0.001). Indicated by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927-0.960), interrater reliability was excellent. CONCLUSIONS In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image quality over Sn 150 kVp and conventional imaging without spectral shaping.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Svenja Pichlmeier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Stephanie Tina Sauer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| |
Collapse
|
5
|
Macri F, Khasanova E, Niu BT, Parakh A, Patino M, Kambadakone A, Sahani DV. Optimal Abdominal CT Image Quality in Non-Lean Patients: Customization of CM Injection Protocols and Low-Energy Acquisitions. Diagnostics (Basel) 2023; 13:2279. [PMID: 37443673 PMCID: PMC10377374 DOI: 10.3390/diagnostics13132279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
We compared the image quality of abdominopelvic single-energy CT with 100 kVp (SECT-100 kVp) and dual-energy CT with 65 keV (DECT-65 keV) obtained with customized injection protocols to standard abdominopelvic CT scans (SECT-120 kVp) with fixed volumes of contrast media (CM). We retrospectively included 91 patients (mean age, 60.7 ± 15.8 years) with SECT-100 kVp and 83 (mean age, 60.3 ± 11.7 years) patients with DECT-65 keV in portovenous phase. Total body weight-based customized injection protocols were generated by a software using the following formula: patient weight (kg) × 0.40/contrast concentration (mgI/mL) × 1000. Patients had a prior abdominopelvic SECT-120 kVp with fixed injection. Iopamidol-370 was administered for all examinations. Quantitative and qualitative image quality comparisons were made between customized and fixed injection protocols. Compared to SECT-120 kVp, customized injection yielded a significant reduction in CM volume (mean difference = 9-12 mL; p ≤ 0.001) and injection rate (mean differences = 0.2-0.4 mL/s; p ≤ 0.001) in all weight categories. Improvements in attenuation, noise, signal-to-noise and contrast-to-noise ratios were observed for both SECT-100 kVp and DECT-65 keV compared to SECT-120 kVp in all weight categories (e.g., pancreas DECT-65 keV, 1.2-attenuation-fold increase vs. SECT-120 kVp; p < 0.001). Qualitative scores were ≥4 in 172 cases (98.8.4%) with customized injections and in all cases with fixed injections (100%). These findings suggest that customized CM injection protocols may substantially reduce iodine dose while yielding higher image quality in SECT-100 kVp and DECT-65 keV abdominopelvic scans compared to SECT-120 kVp using fixed CM volumes.
Collapse
Affiliation(s)
- Francesco Macri
- Department of Radiology, Geneva University Hospitals, University of Geneva, 1211 Geneva, Switzerland
| | - Elina Khasanova
- Department of Radiology, Geneva University Hospitals, University of Geneva, 1211 Geneva, Switzerland
| | - Bonnie T Niu
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anushri Parakh
- Department of Radiology, Abdominal Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Manuel Patino
- Department of Radiology, Abdominal Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avinash Kambadakone
- Department of Radiology, Abdominal Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Park MS, Ha HI, Ahn JH, Lee IJ, Lim HK. Reducing contrast-agent volume and radiation dose in CT with 90-kVp tube voltage, high tube current modulation, and advanced iteration algorithm. PLoS One 2023; 18:e0287214. [PMID: 37319309 PMCID: PMC10270572 DOI: 10.1371/journal.pone.0287214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing utilization of computed tomography (CT) has raised concerns regarding CT radiation dose and technology has been developed to achieve an appropriate balance between image quality, radiation dose, and the amount of contrast material. This study was planned to evaluate the image quality and radiation dose in pancreatic dynamic computed tomography (PDCT) with 90-kVp tube voltage and reduction of the standard amount of contrast agent, compared with 100-kVp PDCT of the research hospital's convention. Total of 51 patients with both CT protocols were included. The average Hounsfield units (HU) values of the abdominal organs and image noise were measured for objective image quality analysis. Two radiologists evaluated five categories of image qualities such as subjective image noise, visibility of small structure, beam hardening or streak artifact, lesion conspicuity and overall diagnostic performance for subjective image quality analysis. The total amount of contrast agent, radiation dose, and image noise decreased in the low-kVp group, by 24.4%, 31.7%, and 20.6%, respectively (p < 0.001). The intraobserver and interobserver agreements were moderate to substantial (k = 0.4-0.8). The contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and figure of merit of the almost organs except psoas muscle in the low-kVp group were significantly higher (p < 0.001). Except for lesion conspicuity, both reviewers judged that subjective image quality of the 90-kVp group was better (p < 0.001). With 90-kVp tube voltage, 25% reduced contrast agent volume with advanced iteration algorithm and high tube current modulation achieved radiation dose reduction of 31.7%, as well as better image quality and diagnostic confidence.
Collapse
Affiliation(s)
- Min Su Park
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hong Il Ha
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Jhii-Hyun Ahn
- Department of Radiology, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Gangwon-do, Republic of Korea
| | - In Jae Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Kyung Lim
- Department of Radiology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| |
Collapse
|
7
|
Agostini A, Borgheresi A, Mariotti F, Ottaviani L, Carotti M, Valenti M, Giovagnoni A. New Frontiers in Oncological Imaging With Computed Tomography: From Morphology to Function. Semin Ultrasound CT MR 2023; 44:214-227. [PMID: 37245886 DOI: 10.1053/j.sult.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The latest evolutions in Computed Tomography (CT) technology have several applications in oncological imaging. The innovations in hardware and software allow for the optimization of the oncological protocol. Low-kV acquisitions are possible thanks to the new powerful tubes. Iterative reconstruction algorithms and artificial intelligence are helpful for the management of image noise during image reconstruction. Functional information is provided by spectral CT (dual-energy and photon counting CT) and perfusion CT.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy.
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Francesco Mariotti
- Department of Radiological Sciences, Division of Medical Physics, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Letizia Ottaviani
- Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Marina Carotti
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Marco Valenti
- Department of Radiological Sciences, Division of Medical Physics, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences. University Politecnica delle Marche, Ancona, Italy; Department of Radiological Sciences, Division of Clinical Radiology, University Hospital "Azienda Ospedaliero Universitaria delle Marche", Ancona, Italy
| |
Collapse
|
8
|
Bellizzi A, Bezzina P, Zarb F. Low dose CTPA using a low kV technique combined with high IR: A clinical study. Radiography (Lond) 2023; 29:738-744. [PMID: 37209581 DOI: 10.1016/j.radi.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION To investigate optimising a computerised tomography pulmonary angiogram (CTPA) scan protocol in terms of radiation dose and image quality using a low kV technique combined with high iterative reconstruction (IR) parameters (>50%) and apply the optimised protocol in clinical practice on patients irrespective of their body weight. METHODS CTPA examinations were performed on 64 patients equally divided into control and experimental groups. Patients in the control group were scanned using the current protocol (100 kV with 50% IR) while patients in the experimental group were scanned using an optimised protocol (80 kV with 60%IR). The radiation dose indices volume computerised tomography dose index (CTDIvol), dose length product (DLP), size specific dose estimates (SSDE) and effective dose (ED) were recorded. Subjective image quality was evaluated by 3 radiologists through absolute visual grading analysis (VGA) using an image quality scoring tool. The resultant image quality scores were analysed using Visual Grading Characteristics (VGC). Objective image quality was recorded in terms of contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR). RESULTS The application of the optimised protocol resulted in a statistically significant (p < 0.05) reduction in mean CTDIvol (-49%), DLP (-48%), SSDE (-52%) and ED (-49%). Objective image quality was significantly (p < 0.05) improved both in CNR (32%) and SNR (13%). Subjective image quality scores were higher for the current protocol but variation between the two protocols was not significant (p = 0.650). CONCLUSIONS When applying the low kV technique combined with high IR parameters, a significant dose reduction may be achieved while still maintaining diagnostic image quality. IMPLICATIONS FOR PRACTICE The low kV technique combined with high IR parameters is an effective optimisation technique which can be easily implemented for the CTPA protocol.
Collapse
Affiliation(s)
- A Bellizzi
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta.
| | - P Bezzina
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta.
| | - F Zarb
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta.
| |
Collapse
|
9
|
Cellina M, Cè M, Rossini N, Cacioppa LM, Ascenti V, Carrafiello G, Floridi C. Computed Tomography Urography: State of the Art and Beyond. Tomography 2023; 9:909-930. [PMID: 37218935 PMCID: PMC10204399 DOI: 10.3390/tomography9030075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Computed Tomography Urography (CTU) is a multiphase CT examination optimized for imaging kidneys, ureters, and bladder, complemented by post-contrast excretory phase imaging. Different protocols are available for contrast administration and image acquisition and timing, with different strengths and limits, mainly related to kidney enhancement, ureters distension and opacification, and radiation exposure. The availability of new reconstruction algorithms, such as iterative and deep-learning-based reconstruction has dramatically improved the image quality and reducing radiation exposure at the same time. Dual-Energy Computed Tomography also has an important role in this type of examination, with the possibility of renal stone characterization, the availability of synthetic unenhanced phases to reduce radiation dose, and the availability of iodine maps for a better interpretation of renal masses. We also describe the new artificial intelligence applications for CTU, focusing on radiomics to predict tumor grading and patients' outcome for a personalized therapeutic approach. In this narrative review, we provide a comprehensive overview of CTU from the traditional to the newest acquisition techniques and reconstruction algorithms, and the possibility of advanced imaging interpretation to provide an up-to-date guide for radiologists who want to better comprehend this technique.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Nicolo’ Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Laura Maria Cacioppa
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Velio Ascenti
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Radiology Department, Policlinico di Milano Ospedale Maggiore|Fondazione IRCCS Ca’ Granda, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Floridi
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I-Lancisi-Salesi”, 60126 Ancona, Italy
| |
Collapse
|
10
|
Cressoni C, Vurro F, Milan E, Muccilli M, Mazzer F, Gerosa M, Boschi F, Spinelli AE, Badocco D, Pastore P, Delgado NF, Collado MH, Marzola P, Speghini A. From Nanothermometry to Bioimaging: Lanthanide-Activated KY 3F 10 Nanostructures as Biocompatible Multifunctional Tools for Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12171-12188. [PMID: 36826830 PMCID: PMC9999348 DOI: 10.1021/acsami.2c22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federica Vurro
- Division
of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- University
Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Emil Milan
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matilde Muccilli
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesco Mazzer
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marco Gerosa
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Antonello Enrico Spinelli
- Experimental
Imaging Centre, San Raffaele Scientific
Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Natalia Fernández Delgado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Miriam Herrera Collado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Pasquina Marzola
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
11
|
Dillinger D, Overhoff D, Booz C, Kaatsch HL, Piechotka J, Hagen A, Froelich MF, Vogl TJ, Waldeck S. Impact of CT Photon-Counting Virtual Monoenergetic Imaging on Visualization of Abdominal Arterial Vessels. Diagnostics (Basel) 2023; 13:938. [PMID: 36900082 PMCID: PMC10000913 DOI: 10.3390/diagnostics13050938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
PURPOSE The novel photon-counting detector (PCD) technique acquires spectral data for virtual monoenergetic imaging (VMI) in every examination. The aim of this study was the evaluation of the impact of VMI of abdominal arterial vessels on quantitative and qualitative subjective image parameters. METHODS A total of 20 patients that underwent an arterial phase computed tomography (CT) scan of the abdomen with a novel PCD CT (Siemens NAEOTOM alpha) were analyzed regarding attenuation at different energy levels in virtual monoenergetic imaging. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated and compared between the different virtual monoenergetic (VME) levels with correlation to vessel diameter. In addition, subjective image parameters (overall subjective image quality, subjective image noise and vessel contrast) were evaluated. RESULTS Our research showed decreasing attenuation levels with increasing energy levels in virtual monoenergetic imaging regardless of vessel diameter. CNR showed best overall results at 60 keV, and SNR at 70 keV with no significant difference to 60 keV (p = 0.294). Subjective image quality was rated best at 70 keV for overall image quality, vessel contrast and noise. CONCLUSIONS Our data suggest that VMI at 60-70 keV provides the best objective and subjective image quality concerning vessel contrast irrespective of vessel size.
Collapse
Affiliation(s)
- Daniel Dillinger
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christian Booz
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hanns L. Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Joel Piechotka
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Achim Hagen
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Thomas J. Vogl
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Bellizzi A, Bezzina P, Zarb F. Optimisation of the CT pulmonary angiogram (CTPA) protocol using a low kV technique combined with high iterative reconstruction (IR): A phantom study. Radiography (Lond) 2023; 29:313-318. [PMID: 36689833 DOI: 10.1016/j.radi.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION This study aims to optimise the current CTPA protocol at a public general hospital in Malta using lower kV combined with high Iterative Reconstruction (IR) (>50%). METHODS The research consisted of a 2-phase anthropomorphic phantom study. Phase 1: radiation dose evaluation of 6 experimental protocols consisting of the low kV technique and high IR values and comparison with the current protocol. Phase 2: image evaluation. Objective image quality was evaluated in terms of contrast to noise ratio (CNR) and signal to noise ratio (SNR). Subjective image quality evaluation was performed by 3 radiologists undertaking Absolute Visual Grading Analysis (VGA). Resultant image quality scores were analysed using Visual Grading Characteristics (VGC). RESULTS All experimental protocols achieved significant (p < 0.05) dose reductions. SNR and CNR improved in almost all protocols, however, differences were not significant (p > 0.05). In subjective image quality analysis, the current protocol provided significant superior image quality (AUC > 0.5; p < 0.05) when compared to the experimental protocols consisting of 80 kV with 70%, 80%, 90% and 100% IR. The only two experimental protocols yielding comparable image quality to the current protocol were 80 kV with 50% IR (AUC: 0.195; p: 0.137) and 80 kV with 60% IR (AUC: 0.554; p: 0.624). The protocol yielding the greatest decrease in radiation dose being 80 kV with 60% IR. CONCLUSIONS The optimal IR value was 60%. When applying the optimal experimental protocol (80 kV combined with 60% IR), a significant dose reduction was achieved while maintaining diagnostic image quality. IMPLICATIONS FOR PRACTICE The low kV technique combined with high IR parameter is easily implemented and involves no additional cost and equipment.
Collapse
Affiliation(s)
- A Bellizzi
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta.
| | - P Bezzina
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta.
| | - F Zarb
- Department of Radiography, Faculty of Health Sciences, University of Malta, Msida, Malta.
| |
Collapse
|
13
|
Otgonbaatar C, Ryu JK, Shin J, Kim HM, Seo JW, Shim H, Hwang DH. Deep learning reconstruction allows for usage of contrast agent of lower concentration for coronary CTA than filtered back projection and hybrid iterative reconstruction. Acta Radiol 2023; 64:1007-1017. [PMID: 35979586 DOI: 10.1177/02841851221118476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The demand for homogeneous and higher vascular contrast enhancement is critical to provide an appropriate interpretation of abnormal vascular findings in coronary computed tomography angiography (CTA). PURPOSE To evaluate the effect of various contrast media concentrations (Iohexol-370, Iohexol-300, Iohexol-240) and image reconstructions (filtered back projection [FBP], hybrid iterative reconstruction [IR], and deep learning reconstruction [DLR]) on coronary CTA. MATERIAL AND METHODS A total of 63 patients referred for coronary CTA between July and October 2021 were enrolled in this prospective study, and they randomly received one of three contrast media. CTA images were reconstructed with FBP, hybrid IR, and DLR. The CT attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated for all three images. The images were subjectively evaluated by two radiologists in terms of overall image quality, artifacts, image noise, and vessel wall delineation on a 5-point Likert scale. RESULTS The application of DLR resulted in significantly lower image noise; higher CT attenuation, SNR, and CNR; and better subjective analysis among the three different concentrations of contrast media groups (P < 0.001). There was no significant difference in the CT attenuation of the left ventricle (P = 0.089) and coronary arteries (P = 0.072) between hybrid IR at Iohexol-300 and DLR at Iohexol-240. Furthermore, application of DLR to the Iohexol-240 significantly improved SNR and CNR; it achieved higher subjective scores compared with hybrid IR at Iohexol-300 (P < 0.001). CONCLUSION We suggest that using DLR with Iohexol-240 contrast media is preferable to hybrid IR with Iohexol-300 contrast media in coronary CTA.
Collapse
Affiliation(s)
- Chuluunbaatar Otgonbaatar
- Department of Radiology, 26725Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyun Ryu
- Medical Imaging AI Research Center, 496517Canon Medical Systems Korea, Seoul, Republic of Korea
| | - Jaemin Shin
- Department of Neurology, 58934Korea University Guro Hospital, Seoul, Republic of Korea
| | - Han Myun Kim
- Department of Radiology, 65521Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jung Wook Seo
- Department of Radiology, 119750Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Hackjoon Shim
- Medical Imaging AI Research Center, 496517Canon Medical Systems Korea, Seoul, Republic of Korea
- ConnectAI Research Center, 37991Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae Hyun Hwang
- Department of Radiology, 65521Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Comparison of single- and dual-energy CT combined with artificial intelligence for the diagnosis of pulmonary nodules. Clin Radiol 2023; 78:e99-e105. [PMID: 36266099 DOI: 10.1016/j.crad.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023]
Abstract
AIM To explore the efficiency of single- and dual-energy computed tomography (CT) with artificial intelligence (AI) for the diagnosis of pulmonary nodules. MATERIALS AND METHODS In a prospective study, 682 patients undergoing a chest CT examination using a dual-energy system were divided randomly into two groups: single-energy mode (group S, n=341) and dual-energy mode (group D, n=341). CT images were first analysed automatically with the AI pulmonary nodule-detection software. CT features including nodule number, lesion size, and nodule type were then analysed by experienced radiologists to establish a reference diagnosis. Subsequently, the accuracy, sensitivity, false-positive rate, and miss rate of AI were calculated. Additionally, image quality and radiation dose were also compared between the two groups. RESULTS The contrast-to-noise ratio data suggested that the image quality of group D was superior to that of group S (0.16 ± 0.10 versus 0.00 ± 0.17), and the radiation dose of group D was lower than that of group S (0.32 ± 0.10 versus 0.62 ± 0.11 mSv.cm). Compared to group S, group D exhibited a significantly higher sensitivity and lower accuracy for nodule identification, size classification, and nodule type (all p<0.05, except for 5-10 mm and calcified nodules). CONCLUSIONS Compared with single-energy CT, dual-energy CT may significantly improve the sensitivity of AI for the diagnosis of pulmonary nodules and is practical for the screening of pulmonary nodules in a large population. In addition, dual-energy CT examination demonstrates improved image quality and is associated with reduced exposure to ionising radiation, but its accuracy is poorer.
Collapse
|
15
|
Tsai MY, Liang HL, Chuo CC, Li CW, Ai-Chih C, Hsiao CC. A novel protocol for abdominal low-dose CT scans adapted with a model-based iterative reconstruction method. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:453-461. [PMID: 36806539 DOI: 10.3233/xst-221325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
PURPOSE This study aims to introduce a novel low-dose abdominal computed tomography (CT) protocol adapted with model-based iterative reconstruction (MBIR), To validate the adaptability of this protocol, objective image quality and subjective clinical scores of low-dose MBIR images are compared with the normal-dose images. METHODS Normal-dose abdominal CT images of 58 patients and low-dose abdominal CT images of 52 patients are reconstructed using both conventional filtered back projection (FBP) and MBIR methods with and without smooth applying. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) are used to compare image quality between the normal-dose and low-dose CT scans. CT dose indices (CTDI) of normal-dose and low-dose abdominal CT images on post-contrast venous phase are also compared. RESULTS The SNR, CNR and clinical score of low-dose MBIR images all show significant higher values (Bonferroni p < 0.05) than those of normal-dose images with conventional FBP method. A total of around 40% radiation dose reduction (CTDI: 5.3 vs 8.7 mGy) could be achieved via our novel abdominal CT protocol. CONCLUSIONS With the higher SNR/CNR and clinical scores, the low-dose CT abdominal imaging protocol with MBIR could effectively reduce the radiation for patients and provide equal or even higher image quality and also its adaptability in clinical abdominal CT image diagnosis.
Collapse
Affiliation(s)
- Meng-Yuan Tsai
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, ROC
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan, ROC
| | - Huei-Lung Liang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, ROC
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan, ROC
| | - Chiung-Chen Chuo
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, ROC
| | | | | | - Chia-Chi Hsiao
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, ROC
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
16
|
Fu M, Duan Y, Cheng Z, Qin W, Wang Y, Liang D, Hu Z. Total-body low-dose CT image denoising using a prior knowledge transfer technique with a contrastive regularization mechanism. Med Phys 2022; 50:2971-2984. [PMID: 36542423 DOI: 10.1002/mp.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Reducing the radiation exposure experienced by patients in total-body computed tomography (CT) imaging has attracted extensive attention in the medical imaging community. A low radiation dose may result in increased noise and artifacts that greatly affect the subsequent clinical diagnosis. To obtain high-quality total-body low-dose CT (LDCT) images, previous deep learning-based research works developed various network architectures. However, most of these methods only employ normal-dose CT (NDCT) images as ground truths to guide the training process of the constructed denoising network. As a result of this simple restriction, the reconstructed images tend to lose favorable image details and easily generate oversmoothed textures. This study explores how to better utilize the information contained in the feature spaces of NDCT images to guide the LDCT image reconstruction process and achieve high-quality results. METHODS We propose a novel intratask knowledge transfer (KT) method that leverages the knowledge distilled from NDCT images as an auxiliary component of the LDCT image reconstruction process. Our proposed architecture is named the teacher-student consistency network (TSC-Net), which consists of teacher and student networks with identical architectures. By employing the designed KT loss, the student network is encouraged to emulate the teacher network in the representation space and gain robust prior content. In addition, to further exploit the information contained in CT scans, a contrastive regularization mechanism (CRM) built upon contrastive learning is introduced. The CRM aims to minimize and maximize the L2 distances from the predicted CT images to the NDCT samples and to the LDCT samples in the latent space, respectively. Moreover, based on attention and the deformable convolution approach, we design a dynamic enhancement module (DEM) to improve the network capability to transform input information flows. RESULTS By conducting ablation studies, we prove the effectiveness of the proposed KT loss, CRM, and DEM. Extensive experimental results demonstrate that the TSC-Net outperforms the state-of-the-art methods in both quantitative and qualitative evaluations. Additionally, the excellent results obtained for clinical readings also prove that our proposed method can reconstruct high-quality CT images for clinical applications. CONCLUSIONS Based on the experimental results and clinical readings, the TSC-Net has better performance than other approaches. In our future work, we may explore the reconstruction of LDCT images by fusing the positron emission tomography (PET) and CT modalities to further improve the visual quality of the reconstructed CT images.
Collapse
Affiliation(s)
- Minghan Fu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Yanhua Duan
- Department of PET/CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhaoping Cheng
- Department of PET/CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenjian Qin
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Ying Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Health Informatics, Shenzhen, China
| |
Collapse
|
17
|
Graafen D, Müller L, Halfmann M, Düber C, Hahn F, Yang Y, Emrich T, Kloeckner R. Photon-counting detector CT improves quality of arterial phase abdominal scans: A head-to-head comparison with energy-integrating CT. Eur J Radiol 2022; 156:110514. [PMID: 36108479 DOI: 10.1016/j.ejrad.2022.110514] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Photon-counting detector (PCD)-CT is expected to have a substantial impact on oncologic abdominal imaging. We compared subjective and objective image quality between PCD-CT and conventional energy-integrating detector (EID-)CT arterial phase abdominal scans. METHODS This study included 84 patients undergoing both types of abdominal CT. EID-CT scans were acquired with a tube voltage of 100 kVp. With PCD-CT, acquired with 120-kVp, we reconstructed polychromatic T3D images and virtual monoenergetic images (VMIs) in 10-keV intervals from 40 to 90 keV. Quantitative image analysis included noise and contrast-to-noise ratio (CNR) of hepatic vessels, kidney cortex, and hypervascular liver lesions to liver parenchyma. Three raters used a 5-point Likert scale for qualitative image analysis of image noise and contrast, lesion conspicuity, and overall image quality. Radiation dose exposure (CT dose index) was compared between the two CT types. RESULTS Mean CT dose index and effective dose were respectively 18 % and 26 % lower with PCD-CT versus EID-CT. Compared with EID-CT, CNRs of kidney cortex and vessel to liver parenchyma were significantly higher in PCD-CT VMIs at energies ≤ 60 keV and in polychromatic T3D images (p < 0.004). Overall image quality of PCD-CT VMIs at 50 and 60 keV was rated as significantly better (p < 0.01) than the EID-CT images (inter-reader agreement alpha = 0.80). Lesion conspicuity was significantly better in low-keV VMIs (p < 0.03) and worse in > 70-keV VMIs. CONCLUSIONS With low-keV VMI, PCD-CT yields significantly improved objective and subjective quality of arterial phase oncological imaging compared with EID-CT. This advantage may translate into higher diagnostic confidence and lower radiation dose protocols.
Collapse
Affiliation(s)
- D Graafen
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - L Müller
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - M Halfmann
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
| | - C Düber
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - F Hahn
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Y Yang
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - T Emrich
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
| | - R Kloeckner
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Shigematsu S, Oda S, Sakabe D, Matsuoka A, Hayashi H, Taguchi N, Kidoh M, Nagayama Y, Nakaura T, Murakami M, Hatemura M, Hirai T. Practical Preventive Strategies for Extravasation of Contrast Media During CT: What the Radiology Team Should Do. Acad Radiol 2022; 29:1555-1559. [PMID: 35246376 DOI: 10.1016/j.acra.2022.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to assess the effectiveness of practical preventive strategies (i.e., venous vulnerability assessment and prevention scan protocol rules) taken by our radiology team (radiology nurses, radiology technicians, radiologists) on reducing extravasation of contrast media (ECM) during CT. MATERIALS AND METHODS A total of 73,931 patients who underwent contrast-enhanced CT scans between January 2013 and December 2019 were retrospectively included. Venous vulnerability assessment by the radiology team began in 2015, and prevention scan protocol rules for the prevention of ECM were added in 2017. We defined each period as follows: 2013-2014, no prevention (Period A); 2015-2016, early prevention (Period B, venous vulnerability assessment only); and 2017-2019: late prevention (Period C, venous vulnerability assessment with prevention scan protocol rules). The incident reports, radiology reports, and medical records of patients in whom ECM occurred were reviewed. We compared the frequency of ECM during each period. RESULTS ECM occurred in 0.39% (292/73,931) of the patients. The frequencies of ECM for Periods A, B, and C were 0.62% (121/19,505), 0.43% (89/20,847), and 0.24% (82/33,579), respectively. There were significant differences in the frequencies of ECM among the three periods (Chi-squared test, p < 0.01). CONCLUSION Implementation of venous vulnerability assessment and prevention scan protocol rules by a radiology team can be a practical and simple solution to reduce the risk of ECM during CT.
Collapse
Affiliation(s)
- Shinsuke Shigematsu
- Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
| | - Ayumi Matsuoka
- Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
| | - Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Narumi Taguchi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Michiyo Murakami
- Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
| | - Masahiro Hatemura
- Department of Central Radiology, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
19
|
The Role of a DirectDensity® CT Reconstruction in A Radiotherapy Workflow: A Phantom Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DirectDensity® CT reconstruction algorithm provides a reconstruction approach independent of the tube voltage, directly reconstructing the CT projection data into CT numbers related to the electron densities of the materials. This work examines the efficacy of DirectDensity® in the treatment planning process with both tissues and metallic materials. CT scans of a Cheese phantom were acquired at 80, 100, 120 and 140 kVp and reconstructed with different algorithms. Calibration curves were built for each kVp and reconstruction technique. To evaluate the flexibility of the DirectDensity® in dose calculations, a prostate cancer treatment plan was simulated on phantom images with and without metal inserts. Moreover, the robustness of the algorithm was tested by simulating a possible error in the selection of the calibration curve. As expected, the calibration curves related to DirectDensity® showed a tube voltage dependence only for densities above 1.82 g/cm3. The maximum percentage differences in dose distributions comparations never exceeded the 3% of tolerance and the 3D gamma analysis always returned indices greater than 90%. The results suggest that the DD reconstruction algorithm can be employed in most clinical cases and allows for a personalized radiotherapy cancer treatment workflow, maintaining its robustness and simplicity.
Collapse
|
20
|
Azour L, Ko JP, Toussie D, Gomez GV, Moore WH. Current imaging of PE and emerging techniques: is there a role for artificial intelligence? Clin Imaging 2022; 88:24-32. [DOI: 10.1016/j.clinimag.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
21
|
Zarei F, Jalli R, Chatterjee S, Ravanfar Haghighi R, Iranpour P, Vardhan Chatterjee V, Emadi S. Evaluation of Ultra-Low-Dose Chest Computed Tomography Images in Detecting Lung Lesions Related to COVID-19: A Prospective Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:338-349. [PMID: 35919083 PMCID: PMC9339117 DOI: 10.30476/ijms.2021.90665.2165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 11/04/2022]
Abstract
Background The present study aimed to evaluate the effectiveness of ultra-low-dose (ULD) chest computed tomography (CT) in comparison with the routine dose (RD) CT images in detecting lung lesions related to COVID-19. Methods A prospective study was conducted during April-September 2020 at Shahid Faghihi Hospital affiliated with Shiraz University of Medical Sciences, Shiraz, Iran. In total, 273 volunteers with suspected COVID-19 participated in the study and successively underwent RD-CT and ULD-CT chest scans. Two expert radiologists qualitatively evaluated the images. Dose assessment was performed by determining volume CT dose index, dose length product, and size-specific dose estimate. Data analysis was performed using a ranking test and kappa coefficient (κ). P<0.05 was considered statistically significant. Results Lung lesions could be detected with both RD-CT and ULD-CT images in patients with suspected or confirmed COVID-19 (κ=1.0, P=0.016). The estimated effective dose for the RD-CT protocol was 22-fold higher than in the ULD-CT protocol. In the case of the ULD-CT protocol, sensitivity, specificity, accuracy, and positive predictive value for the detection of consolidation were 60%, 83%, 80%, and 20%, respectively. Comparably, in the case of RD-CT, these percentages for the detection of ground-glass opacity (GGO) were 62%, 66%, 66%, and 18%, respectively. Assuming the result of real-time polymerase chain reaction as true-positive, analysis of the receiver-operating characteristic curve for GGO detected using the ULD-CT protocol showed a maximum area under the curve of 0.78. Conclusion ULD-CT, with 94% dose reduction, can be an alternative to RD-CT to detect lung lesions for COVID-19 diagnosis and follow-up.An earlier preliminary report of a similar work with a lower sample size was submitted to the arXive as a preprint. The preprint is cited as: https://arxiv.org/abs/2005.03347.
Collapse
Affiliation(s)
- Fariba Zarei
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vani Vardhan Chatterjee
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Sedigheh Emadi
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Inoue A, Uemura R, Takaki K, Sonoda A, Ota S, Nitta N, Batsaikhan B, Takahashi H, Watanabe Y. Clinical impact of low tube voltage computed tomography during hepatic arteriography with low iodine to detect hepatocellular carcinoma before transarterial chemoembolization. Eur J Radiol 2022; 154:110420. [DOI: 10.1016/j.ejrad.2022.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
23
|
Yoshida M, Nakaura T, Oda S, Kidoh M, Nagayama Y, Uetani H, Azuma M, Sakabe D, Hirai T, Funama Y. Effects of tube voltage and iodine contrast medium on radiation dose of whole-body CT. Acta Radiol 2022; 63:458-466. [PMID: 33709794 DOI: 10.1177/02841851211001539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The low-tube-voltage scan generally needs a higher tube current than the conventional 120 kVp to maintain the image noise. In addition, the low-tube-voltage scan increases the photoelectric effect, which increases the radiation absorption in organs. PURPOSE To compare the organ radiation dose caused by iodine contrast medium between low tube voltage with low contrast medium and that of conventional 120-kVp protocol with standard contrast medium. MATERIAL AND METHODS After the propensity-matching analysis, 66 patients were enrolled including 33 patients with 120 kVp and 600 mgI/kg and 33 patients with 80 kVp and 300 mgI/kg (50% iodine reduction). The pre- and post-contrast phases were assessed in all patients. The Monte Carlo simulation tool was used to simulate the radiation dose. The computed tomography (CT) numbers for 10 organs and the organ doses were measured. The organ doses were normalized by the volume CT dose index, and the 120-kVp protocol was compared with the 80-kVp protocol. RESULTS On contrast-enhanced CT, there were no significant differences in the mean CT numbers of the organs between 80-kVp and 120-kVp protocols except for the pancreas, kidneys, and small intestine. The normalized organ doses at 80 kVp were significantly lower than those of 120 kVp in all organs (e.g. liver, 1.6 vs. 1.9; pancreas, 1.5 vs. 1.8; spleen, 1.7 vs. 2.0) on contrast-enhanced CT. CONCLUSION The low tube voltage with low-contrast-medium protocol significantly reduces organ doses at the same volume CT dose index setting compared with conventional 120-kVp protocol with standard contrast medium on contrast-enhanced CT.
Collapse
Affiliation(s)
| | | | - Seitaro Oda
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masafumi Kidoh
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Hiroyuki Uetani
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - M Azuma
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Daisuke Sakabe
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | | |
Collapse
|
24
|
Henning MK, Aaløkken TM, Johansen S. Contrast medium protocols in routine chest CT: a survey study. Acta Radiol 2022; 63:351-359. [PMID: 33648351 DOI: 10.1177/0284185121997111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Administration of contrast medium (CM) is an important image quality factor in computed tomography (CT) of the chest. There is no clear evidence or guidelines on CM strategies for chest CT, thus a consensus approach is needed. PURPOSE To survey the potential impact on differences in chest CT protocols, with emphasis on strategies for the administration of CM. MATERIAL AND METHODS A total of 170 respondents were included in this survey, which used two different approaches: (i) an online survey was sent to the members of the European Society of Thoracic Imaging (ESTI); and (ii) an email requesting a copy of their CT protocol was sent to all hospitals in Norway, and university hospitals in Sweden and Denmark. The survey focused on factors affecting CM protocols and enhancement in chest CT. RESULTS The overall response rate was 24% (n = 170): 76% of the respondents used a CM concentration of ≥350 mgI/mL; 52% of the respondents used a fixed CM volume strategy. Fixed strategies for injection rate and delay were also the most common approach, practiced by 73% and 57% of the respondents, respectively. The fixed delay was in the range of 20-90 s. Of the respondents, 56% used flexible tube potential strategies (kV). CONCLUSION The chest CT protocols and CM administration strategies employed by the respondents vary widely, affecting the image quality. The results of this study underline the need for further research and consensus guidelines related to chest CT.
Collapse
Affiliation(s)
- Mette Karen Henning
- Faculty of Health Sciences, Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Trond Mogens Aaløkken
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faulty of Medicine, University of Oslo, Oslo, Norway
| | - Safora Johansen
- Faculty of Health Sciences, Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- Department of Cancer Treatment, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Choi Y, Kim DK, Youn SY, Kim H, Choi JI. Unenhanced computed tomography for non-invasive diagnosis of hepatic steatosis with low tube potential protocol. Quant Imaging Med Surg 2022; 12:1348-1358. [PMID: 35111629 DOI: 10.21037/qims-21-474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Background Lowering kVp affects the image contrast and computed tomography (CT) attenuation values of low kVp CT is different from those of conventional 120-kVp scans. The purpose of this study is to determine the diagnostic performance and to establish the reference range of low-kVp unenhanced CT for the assessment of hepatic steatosis in liver transplantation donors using magnetic resonance (MR) spectroscopy as a reference standard. Methods This retrospective study included 165 potential donors (male:female =114:51, 36.5±12.0 years old) who underwent 100-kVp single-slice unenhanced CT scan and MR spectroscopy. The difference between hepatic and splenic attenuation (CTL-S) and liver-to-spleen attenuation ratio (CTL/S) were calculated. Reference standard was the fat signal fraction measured by MR spectroscopy. Limits of agreement between CT measurements and the reference standard were calculated. Areas under receiver operating characteristic curves (AUROCs) of CTL-S and CTL/S were compared for the diagnosis of moderate to severe steatosis. Cut-off values of CTL-S and CTL/S that provided a balance between sensitivity and specificity and the highest specificity using the lower limit of the reference range were calculated. Results Eighty-seven subjects had a non-steatotic liver. Sixty-one subjects had mild steatosis and 17 subjects had moderate to severe steatosis based on MR spectroscopy. CTL-S and CTL/S values were negatively correlated with the fat signal fraction (P<0.001) and limits of agreement were -8.4% to 8.4% for CTL-S and -9.6% to 9.6% for CTL/S. AUROCs of CTL-S and CTL/S for diagnosing moderate to severe steatosis were 0.956 and 0.957, respectively. Cut-off values of CTL-S and CTL/S for diagnosis of moderate to severe steatosis by the Youden index were -0.5 HU for CTL-S and 0.99 for CTL/S. Reference ranges of non-steatotic liver were -6.90 to 31.40 HU for CTL-S and 0.89 to 1.77 for CTL/S. Using -6.9 HU for CTL-S and 0.89 for CTL/S as cut-off values, the sensitivity and specificity for diagnosing moderate to severe steatosis were 70.59% and 90.54% (CTL-S) and 76.47% and 90.54% (CTL/S), respectively. Conclusions Measurements from a low-kVp unenhanced CT scan were negatively correlated with the degree of hepatic steatosis. Low-kVp unenhanced CT is a robust technique with reduced radiation exposure for diagnosing moderate to severe hepatic steatosis.
Collapse
Affiliation(s)
- Yunjung Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Kyun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seo Yeon Youn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hokun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon-Il Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
26
|
Sodagari F, Wood CG, Agrawal R, Yaghmai V. Feasibility of sub-second CT angiography of the abdomen and pelvis with very low volume of contrast media, low tube voltage, and high-pitch technique, on a third-generation dual-source CT scanner. Clin Imaging 2021; 82:15-20. [PMID: 34768221 DOI: 10.1016/j.clinimag.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Concerns about potential risks of using contrast media in patients with chronic renal insufficiency limit the utilization of CT angiography in this population. PURPOSE To evaluate the feasibility of abdominopelvic CTA with very low volumes of contrast media. MATERIAL AND METHODS In this retrospective study, 20 patients with chronic renal insufficiency underwent high-pitch abdominopelvic (AP) CTA on a third-generation dual-source CT scanner with 30 mL of nonionic iodinated contrast. The homogeneity of intravascular attenuation at the suprarenal aorta, infrarenal aorta, and the right common iliac artery was measured. Image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were used to assess objective image quality. Subjective image quality was evaluated on a 5-point scale (1 = unacceptable; 5 = excellent). RESULTS Twelve male and eight female patients underwent CTA of the abdomen and pelvis at 80 kVp. Five CTAs also included the chest (CAP). The mean scan duration was 0.78 ± 0.19 s for AP and 0.96 ± 0.06 s for CAP CTAs. The mean ± SD of attenuation at suprarenal aorta, infrarenal aorta, and right common iliac artery were 235.1 ± 68.0, 249.2 ± 61.3, and 254.4 ± 67.7 HU, respectively. The attenuation was homogeneous across vascular levels (P = 0.06). All scans had diagnostic subjective image quality with the median (IQR) of 3.5 (1.75). CNR and SNR were homogeneous across vascular levels (P = 0.08 and P = 0.14, respectively). CONCLUSION Sub-second, high-pitch abdominopelvic CTA with a low volume of contrast in patients with chronic renal insufficiency is technically and clinically feasible with good diagnostic image quality and homogenous attenuation across vascular levels.
Collapse
Affiliation(s)
- Faezeh Sodagari
- Department of Radiology, Northwestern University-Feinberg School of Medicine, Chicago, IL, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| | - Cecil G Wood
- Department of Radiology, Northwestern University-Feinberg School of Medicine, Chicago, IL, USA.
| | - Rishi Agrawal
- Department of Radiology, Northwestern University-Feinberg School of Medicine, Chicago, IL, USA.
| | - Vahid Yaghmai
- Department of Radiology, Northwestern University-Feinberg School of Medicine, Chicago, IL, USA; Department of Radiological Sciences, University of California, Irvine School of Medicine, Orange, CA, USA.
| |
Collapse
|
27
|
Computed Tomography Techniques, Protocols, Advancements, and Future Directions in Liver Diseases. Magn Reson Imaging Clin N Am 2021; 29:305-320. [PMID: 34243919 DOI: 10.1016/j.mric.2021.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Computed tomography (CT) is often performed as the initial imaging study for the workup of patients with known or suspected liver disease. Our article reviews liver CT techniques and protocols in clinical practice along with updates on relevant CT advances, including wide-detector CT, radiation dose optimization, and multienergy scanning, that have already shown clinical impact. Particular emphasis is placed on optimizing the late arterial phase of enhancement, which is critical to evaluation of hepatocellular carcinoma. We also discuss emerging techniques that may soon influence clinical care.
Collapse
|
28
|
Zhang T, Geng X, Li D, Xu Y, Zhao Y. Comparison of the image quality and radiation dose of different scanning modes in head-neck CT angiography. Dentomaxillofac Radiol 2021; 50:20200428. [PMID: 33353399 DOI: 10.1259/dmfr.20200428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To analyze and compare the radiation dose and image quality of different CT scanning modes on head-neck CT angiography. METHODS A total of 180 patients were divided into Group A and Group B. The groups were further subdivided according to different scanning modes: subgroups A1, A2, A3, B1, B2, and B3. Subgroups A1 and B1 used conventional CT protocol, subgroups A2 and B2 used the kV-Assist scan mode, and subgroups A3 and B3 used the dual-energy gemstone spectral imaging protocol. The CT dose index and dose-length product were recorded. The objective image quality and subjective image evaluation was conducted by two independent radiologists. RESULTS The signal-to-noise ratios, contrast-to-noise ratios, and subjective scores of subgroups A3 and B3 were higher than the other subgroups. In subgroups B1 and B2, the subjective scores of 9 patients and 12 patients were lower than 3, respectively. The subjective scores of subgroups B1 and B2 were lower than the other subgroups. There was no statistically significant difference in signal-to-noise ratios, contrast-to-noise ratios, and subjective scores between subgroups A1 and A2. The effective dose of subgroup A2 was 41.7 and 36.4% lower than that in subgroups A1 and A3, respectively (p < 0.05). In Group B, there were no statistically significant differences in CT dose indexvol, dose-length product, and ED among the subgroups (p > 0.05). CONCLUSION In the head-neck CT angiography, the kV-Assist scan mode is recommended for patients with body mass index between 18.5 and 34.9 kg m-2; gemstone spectral imaging scanning mode is recommended for patients with body mass index ≥34.9 kg m-2.
Collapse
Affiliation(s)
- Tianle Zhang
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding, China
| | - Xue Geng
- Department of Radiology, Baoding No.2 hospital, Baoding, China
| | - Dongxue Li
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding, China
| | - Yize Xu
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding, China
| | - Yongxia Zhao
- Department of Radiology, The Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
29
|
Ippolito D, Maino C, Pecorelli A, De Vito A, Riva L, Talei Franzesi C, Sironi S. Incidental pancreatic cystic lesions: comparison between CT with model-based algorithm and MRI. Radiography (Lond) 2021; 27:554-560. [PMID: 33281035 DOI: 10.1016/j.radi.2020.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The present study aims to compare low-kV CT reconstructed with MBIR technique with MRI in detecting high-risk stigmata and worrisome features in patients with pancreatic cystic lesions. METHODS We retrospective enrolled 75 patients who underwent low-kV CT with contrast media injection for general abdominal disorders and MRI with MRCP sequences. The reviewer, blinded to clinical and histopathological data, recorded the overall number of pancreatic cystic lesions, size, location, presence of calcifications, septa, or solid enhancing or non-enhancing components, main pancreatic duct (MPD) communication, and MPD dilatation. Mean differences with 95% limits of agreement, ICC, and κ statistics were used to compare CT and MRI. RESULTS More pancreatic cystic lesions were detected with MRI than with CT, however, the ICC value of 0.81 suggested a good agreement. According to the evaluated target lesion, a very good agreement (ICC = 0.98) was found regarding the diameter (21.4 mm CT vs 21.8 mm MRI), the location (κ = 0.90), the detection of MPD dilatation (κ = 1), the presence of septa (κ = 0.86) and the MPD communication (κ = 0.87). A moderate agreement on the assessment of enhanced components was noted (κ = 0.44), while there was only a fair agreement about the presence of calcifications (κ = 0.87). CONCLUSION MDCT can be considered almost equivalent to MRI with MRCP in the evaluation of worrisome features and high-risk stigmata, offering detailed morphologic features helpful for their characterization. IMPLICATIONS FOR PRACTICE Even if MRI is considered the reference standard in pancreatic cystic lesions characterization, CT can be considered a useful tool as a first-line imaging technique to identify worrisome features and high-risk stigmata.
Collapse
Affiliation(s)
- D Ippolito
- Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - C Maino
- Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy.
| | - A Pecorelli
- Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - A De Vito
- Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - L Riva
- Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - C Talei Franzesi
- Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33, 20900, Monza, MB, Italy
| | - S Sironi
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Piazza OMS 1, 24127, Bergamo, BG, Italy
| |
Collapse
|
30
|
Abstract
Dual-energy CT (DECT) overcomes several limitations of conventional single-energy CT (SECT) for the evaluation of gastrointestinal diseases. This article provides an overview of practical aspects of the DECT technology and acquisition protocols, reviews existing clinical applications, discusses current challenges, and describes future directions, with a focus on gastrointestinal imaging. A head-to-head comparison of technical specifications among DECT scanner implementations is provided. Energy- and material-specific DECT image reconstructions enable retrospective (i.e., after examination acquisition) image quality adjustments that are not possible using SECT. Such adjustments may, for example, correct insufficient contrast bolus or metal artifacts, thereby potentially avoiding patient recalls. A combination of low-energy monochromatic images, iodine maps, and virtual unenhanced images can be included in protocols to improve lesion detection and disease characterization. Relevant literature is reviewed regarding use of DECT for evaluation of the liver, gallbladder, pancreas, and bowel. Challenges involving cost, workflow, body habitus, and variability in DECT measurements are considered. Artificial intelligence and machine-learning image reconstruction algorithms, PACS integration, photon-counting hardware, and novel contrast agents are expected to expand the multienergy capability of DECT and further augment its value.
Collapse
|
31
|
A Universal Protocol for Abdominal CT Examinations Performed on a Photon-Counting Detector CT System: A Feasibility Study. Invest Radiol 2020; 55:226-232. [PMID: 32049691 DOI: 10.1097/rli.0000000000000634] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aims of this study were to investigate the feasibility of using a universal abdominal acquisition protocol on a photon-counting detector computed tomography (PCD-CT) system and to compare its performance to that of single-energy (SE) and dual-energy (DE) CT using energy-integrating detectors (EIDs). METHODS Iodine inserts of various concentrations and sizes were embedded into different sizes of adult abdominal phantoms. Phantoms were scanned on a research PCD-CT and a clinical EID-CT with SE and DE modes. Virtual monoenergetic images (VMIs) were generated from PCD-CT and DE mode of EID-CT. For each image type and phantom size, contrast-to-noise ratio (CNR) was measured for each iodine insert and the area under the receiver operating characteristic curve (AUC) for iodine detectability was calculated using a channelized Hotelling observer. The optimal energy (in kiloelectrovolt) of VMIs was determined separately as the one with highest CNR and the one with the highest AUC. The PCD-CT VMIs at the optimal energy were then compared with DE VMIs and SE images in terms of CNR and AUC. RESULTS Virtual monoenergetic image at 50 keV had both the highest CNR and highest AUC for PCD-CT and DECT. For 1.0 mg I/mL iodine and 35 cm phantom, the CNRs of 50 keV VMIs from PCD-CT (2.01 ± 0.67) and DE (1.96 ± 0.52) were significantly higher (P < 0.001, Wilcoxon signed-rank test) than SE images (1.11 ± 0.35). The AUC of PCD-CT (0.98 ± 0.01) was comparable to SE (0.98 ± 0.01), and both were slightly lower than DE (0.99 ± 0.01, P < 0.01, Wilcoxon signed-rank test). A similar trend was observed for other phantom sizes and iodine concentrations. CONCLUSIONS Virtual monoenergetic images at a fixed energy from a universal acquisition protocol on PCD-CT demonstrated higher iodine CNR and comparable iodine detectability than SECT images, and similar performance compared with DE VMIs.
Collapse
|
32
|
Zhao C, Martin T, Shao X, Alger JR, Duddalwar V, Wang DJJ. Low Dose CT Perfusion With K-Space Weighted Image Average (KWIA). IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3879-3890. [PMID: 32746131 PMCID: PMC7704693 DOI: 10.1109/tmi.2020.3006461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CTP (Computed Tomography Perfusion) is widely used in clinical practice for the evaluation of cerebrovascular disorders. However, CTP involves high radiation dose (≥~200mGy) as the X-ray source remains continuously on during the passage of contrast media. The purpose of this study is to present a low dose CTP technique termed K-space Weighted Image Average (KWIA) using a novel projection view-shared averaging algorithm with reduced tube current. KWIA takes advantage of k-space signal property that the image contrast is primarily determined by the k-space center with low spatial frequencies and oversampled projections. KWIA divides each 2D Fourier transform (FT) or k-space CTP data into multiple rings. The outer rings are averaged with neighboring time frames to achieve adequate signal-to-noise ratio (SNR), while the center region of k-space remains unchanged to preserve high temporal resolution. Reduced dose sinogram data were simulated by adding Poisson distributed noise with zero mean on digital phantom and clinical CTP scans. A physical CTP phantom study was also performed with different X-ray tube currents. The sinogram data with simulated and real low doses were then reconstructed with KWIA, and compared with those reconstructed by standard filtered back projection (FBP) and simultaneous algebraic reconstruction with regularization of total variation (SART-TV). Evaluation of image quality and perfusion metrics using parameters including SNR, CNR (contrast-to-noise ratio), AUC (area-under-the-curve), and CBF (cerebral blood flow) demonstrated that KWIA is able to preserve the image quality, spatial and temporal resolution, as well as the accuracy of perfusion quantification of CTP scans with considerable (50-75%) dose-savings.
Collapse
|
33
|
Park S, Park SH, Hwang JH, Kim JH, Lee KH, Park SH, Shin JH, Pak SY, Kang JM. Low-dose CT angiography of the lower extremities: a comparison study of image quality and radiation dose. Clin Radiol 2020; 76:156.e19-156.e26. [PMID: 33256975 DOI: 10.1016/j.crad.2020.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 01/22/2023]
Abstract
AIM To investigate the image quality and radiation dose of ultralow-dose (ULD) and low-dose (LD) lower-extremity computed tomography (CT) angiography (LE-CTA) using the advanced modelled iterative reconstruction (ADMIRE) algorithm to detect peripheral arterial disease (PAD) in comparison with standard-dose (SD) CT. MATERIALS AND METHODS One hundred and seven consecutive patients were examined using LE-CTA at 70 kVp and a dual-source scanner to achieve three image sets using 30% (ULD), 70% (LD), and 100% (SD) tube loads. Qualitative analysis was conducted by examining the three image sets for overall quality. The image quality of arterial segments was analysed by two independent readers. In addition, the CT dose index (CTDIvol) was measured in the three image sets. RESULTS The mean overall quality scores were 3.4±0.6 for ULD CT, 3.9±0.3 for LD CT, and 3.9±0.2 for SD CT. Both readers scored the arterial segments as 2-4 (adequate-excellent) in the three image sets. In addition, 89.4% (93/104) and 54.8% (57/104) segments of PAD with calcified plaques were scored 4 between SD and LD CT and between SD and ULD CT, respectively, and 45.2% (47/104) segments had a lower score by one point in ULD CT compared with SD CT. The mean CTDIvol was 4.1±1.1 mGy for SD CT, 2.9±0.8 mGy for LD CT, and 1.2±0.3 mGy for ULD CT. CONCLUSIONS LD/ULD CT at 70 kVp using ADMIRE reconstruction enables a reduction in the radiation dose while enabling adequate evaluation or follow-up of PAD based on LE-CTA.
Collapse
Affiliation(s)
- S Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, Republic of Korea
| | - S H Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, Republic of Korea
| | - J H Hwang
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, Republic of Korea.
| | - J H Kim
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, Republic of Korea
| | - K H Lee
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, Republic of Korea
| | - S H Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J H Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S Y Pak
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J M Kang
- Department of Surgery, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, Republic of Korea
| |
Collapse
|
34
|
Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, Fujigaki Y, Yasuda H, Sato T, Fujikura T, Kuwatsuru R, Toei H, Murakami R, Saito Y, Hirayama A, Murohara T, Sato A, Ishii H, Takayama T, Watanabe M, Awai K, Oda S, Murakami T, Yagyu Y, Joki N, Komatsu Y, Miyauchi T, Ito Y, Miyazawa R, Kanno Y, Ogawa T, Hayashi H, Koshi E, Kosugi T, Yasuda Y. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Clin Exp Nephrol 2020; 24:1-44. [PMID: 31709463 PMCID: PMC6949208 DOI: 10.1007/s10157-019-01750-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromitsu Hayashi
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Aonuma
- Cardiology Department, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | | | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Taichi Sato
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoyuki Fujikura
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryohei Kuwatsuru
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Toei
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryusuke Murakami
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tadateru Takayama
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yukinobu Yagyu
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Nobuhiko Joki
- Division of Nephrology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yasuhiro Komatsu
- Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yugo Ito
- Department of Nephrology, St. Luke's International Hospital, Tokyo, Japan
| | - Ryo Miyazawa
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Tomonari Ogawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
| | - Eri Koshi
- Department of Nephrology, Komaki City Hospital, Aichi, Japan
| | - Tomoki Kosugi
- Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshinari Yasuda
- Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
35
|
Hosogoshi S, Tada K, Iijima J, Kajitani T, Yoshida R, Kitagaki H. Double Dose Reduction in the Equilibrium Phase of Chest-Pelvic CT With Low Tube Voltage and Forward-Projected Model-Based Iterative Reconstruction Solution. Cureus 2020; 12:e10545. [PMID: 33101793 PMCID: PMC7575314 DOI: 10.7759/cureus.10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives This study aimed to examine whether a new imaging method (80-kV forward-projected model-based iterative reconstruction solution [FIRST] protocol) that uses a combination of low tube voltage and FIRST can reduce radiation dose and contrast medium volume by comparing the quality of the resulting image with that of the image obtained by 120-kV adaptive iterative dose reduction 3D protocol in the equilibrium phase of chest-pelvic computed tomography (CT). Subjects and methods Twenty-seven patients underwent CT by both protocols on different days. Two radiologists subjectively assessed image quality by scoring axial images for sharpness, contrast enhancement, noise, artifacts, and overall quality. The mean CT values, standard deviations, contrast-to-noise ratios, and signal-to-noise ratios in the liver, aorta, and erector spinae muscles were used for objective assessment. Radiation dose parameters included the CT dose index volume, dose-length product, effective dose, and size-specific dose estimate. Results were compared for different body mass index categories. Results The 80-kV FIRST protocol helped achieve mean reductions of 36.3%, 35.7%, and 36.6% in CT dose index volume, effective dose, and size-specific dose estimate, respectively (p < 0.01). Therefore, this protocol was regarded as comparable to the conventional protocol in image quality, except for visual sharpness. Conclusions The 80-kV FIRST protocol is capable of reducing radiation dose and contrast medium volume compared to the adaptive iterative dose reduction 3D protocol in the equilibrium phase of chest-pelvic CT.
Collapse
|
36
|
Choi SJ, Ahn SJ, Park SH, Park SH, Pak SY, Choi JW, Shim YS, Jeong YM, Kim B. Dual-source abdominopelvic computed tomography: Comparison of image quality and radiation dose of 80 kVp and 80/150 kVp with tin filter. PLoS One 2020; 15:e0231431. [PMID: 32881876 PMCID: PMC7470424 DOI: 10.1371/journal.pone.0231431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/19/2020] [Indexed: 12/05/2022] Open
Abstract
Objective To compare the radiation dose and the objective and subjective image quality of 80 kVp and 80/150 kVp with tin filter (80/Sn150 kVp) computed tomography (CT) in oncology patients. Methods One-hundred-and-forty-five consecutive oncology patients who underwent third-generation dual-source dual-energy CT of the abdomen for evaluation of malignant visceral, peritoneal, extraperitoneal, and bone tumor were retrospectively recruited. Two radiologists independently reviewed each observation in 80 kVp CT and 80/Sn150 kVp CT. Modified line-density profile of the tumor and contrast-to-noise ratio (CNR) were measured. Diagnostic confidence, lesion conspicuity, and subjective image quality were calculated and compared between image sets. The effective dose and size-specific dose estimate (SSDE) were calculated in the image sets. Results Modified line-density profile analysis revealed higher attenuation differences between the tumor and normal tissue in 80 kVp CT than in 80/Sn150 kVp CT (127 vs. 107, P = 0.05). The 80 kVp CT showed increased CNR in the liver (8.0 vs. 7.6) and the aorta (18.9 vs. 16.3) than the 80/Sn150 kVp CT. The 80 kVp CT yielded higher enhancement of organs (4.9 ± 0.2 vs. 4.7 ± 0.4, P<0.001) and lesion conspicuity (4.9 ± 0.3 vs. 4.8 ± 0.5, P = 0.035) than the 80/Sn150 kVp CT; overall image quality and confidence index were comparable. The effective dose was reduced by 45.2% with 80 kVp CT (2.3 mSv ± 0.9) compared to 80/Sn150 kVp CT (4.1 mSv ± 1.5). The SSDE was 7.4 ± 3.8 mGy on 80/Sn150 kVp CT and 4.1 ± 2.2 mGy on 80 kVp CT. Conclusions The 80 kVp CT reduced the radiation dose by 45.2% in oncology patients while showing comparable or superior image quality to that of 80/Sn150 kVp CT for abdominal tumor evaluation.
Collapse
Affiliation(s)
- Seung Joon Choi
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Su Joa Ahn
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- * E-mail:
| | - Seong Ho Park
- Division of Abdominal Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Yong Pak
- Imaging and Computer Vision Division, Siemens Healthcare, Seoul, Korea
| | - Jae Won Choi
- Imaging and Computer Vision Division, Siemens Healthcare, Seoul, Korea
| | - Young Sup Shim
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Yu Mi Jeong
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Bohyun Kim
- Department of Radiology, Seoul Saint Mary's Hospital, Seoul, Korea
| |
Collapse
|
37
|
Abdullah KA, McEntee MF, Reed WM, Kench PL. Increasing iterative reconstruction strength at low tube voltage in coronary CT angiography protocols using 3D-printed and Catphan ® 500 phantoms. J Appl Clin Med Phys 2020; 21:209-214. [PMID: 32657493 PMCID: PMC7497920 DOI: 10.1002/acm2.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effect of increasing iterative reconstruction (IR) algorithm strength at different tube voltages in coronary computed tomography angiography (CCTA) protocols using a three‐dimensional (3D)‐printed and Catphan® 500 phantoms. Methods A 3D‐printed cardiac insert and Catphan 500 phantoms were scanned using CCTA protocols at 120 and 100 kVp tube voltages. All CT acquisitions were reconstructed using filtered back projection (FBP) and Adaptive Statistical Iterative Reconstruction (ASIR) algorithm at 40% and 60% strengths. Image quality characteristics such as image noise, signal–noise ratio (SNR), contrast–noise ratio (CNR), high spatial resolution, and low contrast resolution were analyzed. Results There was no significant difference (P > 0.05) between 120 and 100 kVp measures for image noise for FBP vs ASIR 60% (16.6 ± 3.8 vs 16.7 ± 4.8), SNR of ASIR 40% vs ASIR 60% (27.3 ± 5.4 vs 26.4 ± 4.8), and CNR of FBP vs ASIR 40% (31.3 ± 3.9 vs 30.1 ± 4.3), respectively. Based on the Modulation Transfer Function (MTF) analysis, there was a minimal change of image quality for each tube voltage but increases when higher strengths of ASIR were used. The best measure of low contrast detectability was observed at ASIR 60% at 120 kVp. Conclusions Changing the IR strength has yielded different image quality noise characteristics. In this study, the use of 100 kVp and ASIR 60% yielded comparable image quality noise characteristics to the standard CCTA protocols using 120 kVp of ASIR 40%. A combination of 3D‐printed and Catphan® 500 phantoms could be used to perform CT dose optimization protocols.
Collapse
Affiliation(s)
- Kamarul A Abdullah
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Malaysia
| | - Mark F McEntee
- Medical Imaging Optimisation and Perception Group (MIOPeG), Discipline of Medical Imaging Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Warren M Reed
- Medical Imaging Optimisation and Perception Group (MIOPeG), Discipline of Medical Imaging Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Peter L Kench
- Medical Imaging Optimisation and Perception Group (MIOPeG), Discipline of Medical Imaging Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
38
|
Tanaka H, Igami T, Shimoyama Y, Ebata T, Yokoyama Y, Mori K, Nagino M. New method for the assessment of perineural invasion from perihilar cholangiocarcinoma. Surg Today 2020; 51:136-143. [PMID: 32623582 DOI: 10.1007/s00595-020-02071-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Perineural invasion (PN) is often found in perihilar cholangiocarcinoma. New procedure was developed to assess PN around the right hepatic artery (RHA) using dual-energy computed tomography (DECT). METHODS Thirty patients with perihilar cholangiocarcinoma who underwent DECT before biliary drainage were retrospectively reviewed. Mask images, i.e., the periarterial layer (PAL) around the RHA and superior mesenteric artery (SMA), were made from late arterial phase DECT. The mean CT number of the PAL was measured. RESULTS Twenty patients with PN around the RHA were classified into the PN (+) group. The remaining 10 patients without PN and other 26 patients with other diseases that are never accompanied with PN were classified into the PN (-) group. The PAL ratio (the CT number of the PAL around the RHA relative to that around the SMA) was calculated. Both the mean CT number of the PAL around the RHA and the PAL ratio were significantly higher in the PN (+) group than in the PN (-) group. According to an ROC analysis, the predictive ability of the PAL ratio was superior. Using the cutoff value of the PAL ratio 1.009, a diagnosis of PN around the RHA was made with approximately 75% accuracy. CONCLUSIONS Assessment with CT number of the PAL reconstructed from DECT images is an easy and objective method to diagnose PN.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsuyoshi Igami
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yoshie Shimoyama
- Department of Pathology and Clinical Laboratories, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Nagoya, Japan.,Information Strategy Office, Information and Communications, Nagoya University, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
39
|
Yoshida M, Nakaura T, Sentaro T, Tanoue S, Inada H, Utsunomiya D, Sakaino N, Harada K, Yamashita Y. Prospective Comparison of 70-kVp Single-Energy CT versus Dual-Energy CT: Which is More Suitable for CT Angiography with Low Contrast Media Dosage? Acad Radiol 2020; 27:e116-e122. [PMID: 31537504 DOI: 10.1016/j.acra.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES To compare the objective and subjective image qualities between single-energy computed tomography (CT) at 70 kVp and virtual monoenergetic imaging (VMI) of dual-source dual-energy CT for CT angiography with 180 mgI/kg. MATERIALS AND METHODS Total 63 patients scanned with 180 mgI/kg were randomly divided into two groups: Group A (32 patients) underwent CT angiography at 70-kVp, and Group B (31 patients) underwent dual-energy CT. VMI sets were generated at 10-keV increments between 40 and 100 keV. We calculated aortic attenuation, contrast-to-noise-ratio (CNR), signal-to-noise-ratio, figure of merit of CNR, and effective dose for each protocol. Three radiologists scored overall image quality and various arteries' visibility using a four-point scale. Quantitative and qualitative comparisons between 70 kVp and VMI with the highest CNR were performed with the two-tailed t test or Kruskal-Wallis test. RESULTS The 40-keV images offered the highest CNR among VMIs. Aortic attenuation at 70 kVp was significantly lower than that at 40 keV (p < 0.001). However, the signal-to-noise-ratio, CNR, and figure of merit of CNR were significantly higher at 70 kVp than those at 40-keV (p < 0.001, p < 0.05, and p < 0.05, respectively). The effective dose of each group was almost equal. The qualitative visibility scores for various arteries, except the ascending and upper-abdominal aorta, were also better at 70 kVp than those at 40 keV. CONCLUSION Aortic attenuation at 70 kVp with 180 mg I/kg was lower than that of VMI at 40 keV, and the objective and subjective image qualities were higher at 70 kVp than those at 40 keV.
Collapse
|
40
|
Flatten V, Friedrich A, Engenhart-Cabillic R, Zink K. A phantom based evaluation of the dose prediction and effects in treatment plans, when calculating on a direct density CT reconstruction. J Appl Clin Med Phys 2020; 21:52-61. [PMID: 32176455 PMCID: PMC7075385 DOI: 10.1002/acm2.12824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
In radiation therapy, a Computed Tomography (CT) image is needed for an accurate dose calculation. To allow such a calculation, the CT image values have to be converted into relative electron densities. Thus, standard procedure is to calibrate the CT numbers to relative electron density (RED) by using a phantom with known composition inserts. This calibration curve is energy and CT dependent, therefore most radiotherapy CT acquisitions are obtained with 120 kVp, as each tube voltage needs an additional calibration curve. The commercially available DirectDensityTM (DD) reconstruction algorithm presents a reconstruction implementation without any dependence on the tube voltage. In comparison, it allows a calibration curve that is directly proportional to the RED, reducing the need of more than one calibration curve. This could potentially optimize CT acquisitions and reducing the dose given to the patient. Three different phantoms were used to evaluate the DirectDensityTM algorithm in simple and anthropomorphic geometries, as well as setups with metal implants. Scans with the DD algorithm were performed for 80, 100, 120, and 140 kVp. As reference a scan with the standard 120 kVp scan was used. Radiotherapy photon plans were optimized and calculated on the reference image and then transferred to the DD images, where they were recalculated. The dose distributions obtained this way were compared to the reference dose. Differences were found mainly in pure air and high density materials such as bones. The difference of the mean dose was below 0.7%, in most cases below 0.4%. No indication was found that the algorithm is corrupted by metal inserts, enabling the application for all clinical cases. This algorithm offers more variability in CT parameters for radiation therapy and thus a more personalized image acquisition with a high image quality and a lower dose exposure at a robust clinical workflow.
Collapse
Affiliation(s)
- Veronika Flatten
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany.,Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
| | - Alexandra Friedrich
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany.,Department of Radiotherapy, RNS Gemeinschaftspraxis, Wiesbaden, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany.,MIT, Marburg Ion Beam Therapy Center, Marburg, Germany
| | - Klemens Zink
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany.,Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany.,MIT, Marburg Ion Beam Therapy Center, Marburg, Germany
| |
Collapse
|
41
|
Meng D, Cui X, Bai C, Yu Z, Xin L, Fu Y, Wang S, Du Y, Gao Z, Ye Z. Application of low-concentration contrast agents and low-tube-voltage computed tomography to chest enhancement examinations: A multicenter prospective study. Sci Prog 2020; 103:36850419892193. [PMID: 31791209 PMCID: PMC10358470 DOI: 10.1177/0036850419892193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To evaluate the influence of low-concentration contrast agents and low-tube-voltage computed tomography on chest enhancement examinations, we conducted a multicenter prospective study. A total of 216 inpatients enrolled from 12 different hospitals were randomly divided into four groups: A: voltage, 120 kVp; iohexol, 350 mgI/mL; B: voltage, 100 kVp, iohexol, 350 mgI/mL; C: voltage, 120 kVp, iodixanol, 270 mgI/mL; and D: voltage, 100 kVp, iodixanol, 270 mgI/mL. Subjective image quality was assessed by two radiologists and compared by weighted kappa test. The objective image scores, scanning radiation doses, and pathological coincidence rates were analyzed. There were no significant differences in gender, age, height, weight, and body mass index between the four groups (p > 0.05). The consistency of the radiologists' ratings were good, with kappa value ranging from 0.736 (95% confidence interval: 0.54-0.933) to 0.809 (95% confidence interval: 0.65-0.968), and there was no difference in subjective image score between the four groups. The computed tomography value of group D had no difference with group A. The volume computed tomography dose index, dose length product, and effective dose of group D (6.93 ± 3.03, 241.55 ± 104.75, and 3.38 ± 1.47, respectively) were all significantly lower than those of group A (10.30 ± 4.37, 359.70 ± 152.65, and 5.04 ± 2.14, respectively). There was no significant difference in the imaging diagnosis accuracy rate between the four groups (p > 0.05). The results indicated that low-concentration contrast agents (270 mgI/mL) and low-tube-voltage (100 kVp) computed tomography can not only decrease radiation dose but also guarantee the image quality and meet the needs of imaging diagnosis in chest enhancement examinations, which make it possible for its generalization and application.
Collapse
Affiliation(s)
- Donghua Meng
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiaonan Cui
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Changsen Bai
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhongwen Yu
- Department of Radiology, China Resources Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Lei Xin
- Department of Radiology, Shanxi Cancer Hospital, Taiyuan, China
| | - Yufei Fu
- Department of Radiology, Edong Medical Group Central Hospital, Huangshi, China
| | | | - Yu Du
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhipeng Gao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
42
|
Cheng K, Cassidy F, Aganovic L, Taddonio M, Vahdat N. CT urography: how to optimize the technique. Abdom Radiol (NY) 2019; 44:3786-3799. [PMID: 31317210 DOI: 10.1007/s00261-019-02111-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Computed tomography urography (CTU) has emerged as the modality of choice for imaging the urinary tract within the past few decades. It is a powerful tool that enables detailed anatomic evaluation of the urinary tract in order to identify primary urothelial malignancies, benign urinary tract conditions, and associated abdominopelvic pathologies. As such, there have been extensive efforts to optimize CTU protocol. METHODS This article reviews the published literature on CTU protocol optimization, including contrast bolus timing, dose reduction, reconstruction algorithms, and ancillary practices. CONCLUSION There have been many advances in CTU techniques, which allow for imaging diagnosis of a wide spectrum of diseases while minimizing radiation dose and maximizing urinary tract distension and opacification.
Collapse
Affiliation(s)
- Karen Cheng
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Fiona Cassidy
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Lejla Aganovic
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Michael Taddonio
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Noushin Vahdat
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA.
- Department of Radiology, VA Medical Center, San Diego, 3350 La Jolla Village Drive, Mail Code: 114, San Diego, CA, 92161, USA.
| |
Collapse
|
43
|
Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, Fujigaki Y, Yasuda H, Sato T, Fujikura T, Kuwatsuru R, Toei H, Murakami R, Saito Y, Hirayama A, Murohara T, Sato A, Ishii H, Takayama T, Watanabe M, Awai K, Oda S, Murakami T, Yagyu Y, Joki N, Komatsu Y, Miyauchi T, Ito Y, Miyazawa R, Kanno Y, Ogawa T, Hayashi H, Koshi E, Kosugi T, Yasuda Y. Guideline on the Use of Iodinated Contrast Media in Patients With Kidney Disease 2018. Circ J 2019; 83:2572-2607. [PMID: 31708511 DOI: 10.1253/circj.cj-19-0783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshitaka Isaka
- Japanese Society of Nephrology.,Department of Nephrology, Osaka University Graduate School of Medicine
| | - Hiromitsu Hayashi
- Japan Radiological Society.,Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School
| | - Kazutaka Aonuma
- the Japanese Circulation Society.,Cardiology Department, Institute of Clinical Medicine, University of Tsukuba
| | - Masaru Horio
- Japanese Society of Nephrology.,Kansai Medical Hospital
| | - Yoshio Terada
- Japanese Society of Nephrology.,Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University
| | - Kent Doi
- Japanese Society of Nephrology.,Department of Acute Medicine, The University of Tokyo
| | - Yoshihide Fujigaki
- Japanese Society of Nephrology.,Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine
| | - Hideo Yasuda
- Japanese Society of Nephrology.,First Department of Medicine, Hamamatsu University School of Medicine
| | - Taichi Sato
- Japanese Society of Nephrology.,First Department of Medicine, Hamamatsu University School of Medicine
| | - Tomoyuki Fujikura
- Japanese Society of Nephrology.,First Department of Medicine, Hamamatsu University School of Medicine
| | - Ryohei Kuwatsuru
- Japan Radiological Society.,Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Hiroshi Toei
- Japan Radiological Society.,Department of Radiology, Graduate School of Medicine, Juntendo University
| | - Ryusuke Murakami
- Japan Radiological Society.,Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School
| | - Yoshihiko Saito
- the Japanese Circulation Society.,Department of Cardiovascular Medicine, Nara Medical University
| | - Atsushi Hirayama
- the Japanese Circulation Society.,Department of Cardiology, Osaka Police Hospital
| | - Toyoaki Murohara
- the Japanese Circulation Society.,Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Akira Sato
- the Japanese Circulation Society.,Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Hideki Ishii
- the Japanese Circulation Society.,Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Tadateru Takayama
- the Japanese Circulation Society.,Division of General Medicine, Department of Medicine, Nihon University School of Medicine
| | - Makoto Watanabe
- the Japanese Circulation Society.,Department of Cardiovascular Medicine, Nara Medical University
| | - Kazuo Awai
- Japan Radiological Society.,Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Seitaro Oda
- Japan Radiological Society.,Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Takamichi Murakami
- Japan Radiological Society.,Department of Radiology, Kobe University Graduate School of Medicine
| | - Yukinobu Yagyu
- Japan Radiological Society.,Department of Radiology, Kindai University, Faculty of Medicine
| | - Nobuhiko Joki
- Japanese Society of Nephrology.,Division of Nephrology, Toho University Ohashi Medical Center
| | - Yasuhiro Komatsu
- Japanese Society of Nephrology.,Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine
| | | | - Yugo Ito
- Japanese Society of Nephrology.,Department of Nephrology, St. Luke's International Hospital
| | - Ryo Miyazawa
- Japan Radiological Society.,Department of Radiology, St. Luke's International Hospital
| | - Yoshihiko Kanno
- Japanese Society of Nephrology.,Department of Nephrology, Tokyo Medical University
| | - Tomonari Ogawa
- Japanese Society of Nephrology.,Department of Nephrology & Hypertension, Saitama Medical Center
| | - Hiroki Hayashi
- Japanese Society of Nephrology.,Department of Nephrology, Fujita Health University School of Medicine
| | - Eri Koshi
- Japanese Society of Nephrology.,Department of Nephrology, Komaki City Hospital
| | - Tomoki Kosugi
- Japanese Society of Nephrology.,Nephrology, Nagoya University Graduate School of Medicine
| | - Yoshinari Yasuda
- Japanese Society of Nephrology.,Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine
| | | | | | | |
Collapse
|
44
|
Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, Fujigaki Y, Yasuda H, Sato T, Fujikura T, Kuwatsuru R, Toei H, Murakami R, Saito Y, Hirayama A, Murohara T, Sato A, Ishii H, Takayama T, Watanabe M, Awai K, Oda S, Murakami T, Yagyu Y, Joki N, Komatsu Y, Miyauchi T, Ito Y, Miyazawa R, Kanno Y, Ogawa T, Hayashi H, Koshi E, Kosugi T, Yasuda Y. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Jpn J Radiol 2019; 38:3-46. [PMID: 31709498 DOI: 10.1007/s11604-019-00850-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromitsu Hayashi
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Aonuma
- Cardiology Department, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | | | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideo Yasuda
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Taichi Sato
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoyuki Fujikura
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryohei Kuwatsuru
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Toei
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryusuke Murakami
- Department of Clinical Radiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tadateru Takayama
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Nara, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yukinobu Yagyu
- Department of Radiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Nobuhiko Joki
- Division of Nephrology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Yasuhiro Komatsu
- Department of Healthcare Quality and Safety, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Yugo Ito
- Department of Nephrology, St. Luke's International Hospital, Tokyo, Japan
| | - Ryo Miyazawa
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Tomonari Ogawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
| | - Eri Koshi
- Department of Nephrology, Komaki City Hospital, Aichi, Japan
| | - Tomoki Kosugi
- Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshinari Yasuda
- Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
45
|
Park HJ, Son JH, Kim TB, Kang MK, Han K, Kim EH, Kim AY, Park SH. Relationship between Lower Dose and Injection Speed of Iodinated Contrast Material for CT and Acute Hypersensitivity Reactions: An Observational Study. Radiology 2019; 293:565-572. [PMID: 31617789 DOI: 10.1148/radiol.2019190829] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BackgroundThere are few data on the relationship between acute hypersensitivity reactions and the dose and injection rate of iodinated contrast material for CT.PurposeTo determine the relationship between lower dose and injection speed of iodinated contrast material for CT and the rate of acute hypersensitivity reactions.Materials and MethodsThis retrospective study included adults (age ≥18 years) undergoing nonionic iodinated contrast material-enhanced abdominal CT between August 2016 and January 2017 (control period) and between August 2017 and January 2018 (intervention period); all examinations were conducted in an outpatient setting. Compared with CT during the control period, CT during the intervention period involved a reduced dose of contrast material achieved by lowering the CT tube voltage. CT examinations in the control period were performed with 120 kVp, a contrast material dose of 2 mL/kg (maximum, 150 mL), and an injection speed of 3 or 4 mL/sec. CT examinations in the intervention period were performed with 100 kVp, a contrast material dose of 1.5 mL/kg (maximum, 130 mL), and an injection speed of 2.5 or 3 mL/sec. Per-examination rates of acute hypersensitivity reactions to iodinated contrast material were compared between the control and intervention periods with use of a multivariable Poisson regression model, the parameters of which were estimated by using generalized estimating equations with an independence correlation structure.ResultsA total of 21947 adults (mean age ± standard deviation, 59 years ± 12; 8797 women [40%]) underwent 25119 CT examinations during the control period; 23019 adults (mean age, 59 years ± 12; 9538 women [41%]) underwent 26491 CT examinations during the intervention period. The rate of acute hypersensitivity reactions was 1.42% (376 of 26491 examinations; 95% confidence interval [CI]: 1.28%, 1.57%) in the intervention period and 1.86% (468 of 25119 examinations; 95% CI: 1.70%, 2.04%) in the control period, with a multivariable-adjusted relative risk of 0.85 (95% CI: 0.74, 0.99; P = .03).ConclusionReduction in the dose and injection speed of iodinated contrast material for CT was associated with a lower rate of acute hypersensitivity reactions to iodinated contrast material.© RSNA, 2019Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Hyo Jung Park
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Jung Hee Son
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Tae-Bum Kim
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Min Kyoung Kang
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Kyunghwa Han
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Eun Hye Kim
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Ah Young Kim
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| | - Seong Ho Park
- From the Department of Radiology and Research Institute of Radiology (H.J.P., J.H.S., E.H.K., A.Y.K., S.H.P.) and Department of Allergy and Clinical Immunology (T.B.K., M.K.K.), University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; and Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.)
| |
Collapse
|
46
|
Laghi A. Low-Voltage Abdominal CT: Is It Time to Reduce the Dose of Oral Contrast Medium? Radiology 2019; 291:630-631. [DOI: 10.1148/radiol.2019190540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea Laghi
- From the Department of Surgical and Medical Sciences and Translational Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; and Radiology Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| |
Collapse
|
47
|
Smith P, Blackmore CC, Sicuro P. An Institutional CT Radiation Dose Reduction Quality Improvement Project. J Am Coll Radiol 2019; 16:1577-1581. [PMID: 31125542 DOI: 10.1016/j.jacr.2019.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Philip Smith
- Virginia Mason Medical Center, Seattle, Washington
| | | | - Paul Sicuro
- Virginia Mason Medical Center, Seattle, Washington
| |
Collapse
|
48
|
Parakh A, Negreros-Osuna AA, Patino M, McNulty F, Kambadakone A, Sahani DV. Low-keV and Low-kVp CT for Positive Oral Contrast Media in Patients with Cancer: A Randomized Clinical Trial. Radiology 2019; 291:620-629. [PMID: 30964423 DOI: 10.1148/radiol.2019182393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Substantial gain in the attenuation of iodine on low-kVp and dual-energy CT processed low-keV virtual monochromatic images provides an opportunity for customization of positive oral contrast media administration. Purpose To perform an intrapatient comparison of bowel labeling, opacification, and taste preference with iodinated oral contrast medium (ICM) in standard (sICM) and 25%-reduced (rICM) concentrations at low tube voltage (100 kVp) or on low-energy (50-70 keV) virtual monochromatic images compared with barium-based oral contrast medium (BCM) at 120 kVp. Materials and Methods In this prospective clinical trial, 200 adults (97 men, 103 women; mean age, 63 years ± 13 [standard deviation]) who weighed less than 113 kg and who were undergoing oncologic surveillance (from April 2017 to July 2018) and who had previously undergone 120-kVp abdominopelvic CT with BCM randomly received sICM (7.2 g iodine) or rICM (5.4 g iodine) and underwent 100-kVp CT or dual-energy CT (80/140 kVp) scans to be in one of four groups (n = 50 each): sICM/100 kVp, rICM/100 kVp, sICM/dual-energy CT, and rICM/dual-energy CT. Qualitative analysis was performed for image quality (with a five-point scale), extent of bowel labeling, and homogeneity of opacification (with a four-point scale). Intraluminal attenuation of opacified small bowel was measured. A post-CT patient survey was performed to indicate contrast medium preference, taste of ICM (with a five-point scale), and adverse effects. Data were analyzed with analogs of analysis of variance. Results All CT studies were of diagnostic image quality (3.4 ± 0.3), with no difference in the degree of bowel opacification between sICM and rICM (P > .05). Compared with BCM/120 kVp (282 HU ± 73), mean attenuation was 78% higher with sICM/100 kVp (459 HU ± 282) and 26%-121% higher at sICM/50-65 keV (50 keV = 626 HU ± 285; 65 keV = 356 HU ± 171). With rICM, attenuation was 46% higher for 100 kVp (385 HU ± 215) and 19%-108% higher for 50-65 keV (50 keV = 567 HU ± 270; 65 keV = 325 HU ± 156) compared with BCM (P < .05). A total of 171 of 200 study participants preferred ICM to BCM, with no taste differences between sICM and rICM (3.9 ± 0.6). Fifteen participants had diarrhea with BCM, but none had diarrhea with ICM. Conclusion A 25%-reduced concentration of iodinated oral contrast medium resulted in acceptable bowel labeling while yielding substantially higher luminal attenuation at low-kVp and low-keV CT examinations with improved preference in patients undergoing treatment for cancer. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Laghi in this issue.
Collapse
Affiliation(s)
- Anushri Parakh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Adrian Antonio Negreros-Osuna
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Manuel Patino
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Fredrick McNulty
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Avinash Kambadakone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Dushyant V Sahani
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| |
Collapse
|
49
|
Abdominal CT Imaging Applications of Low Kilovoltage Peak Techniques. J Am Coll Radiol 2019; 16:482-484. [DOI: 10.1016/j.jacr.2018.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/29/2018] [Indexed: 11/24/2022]
|
50
|
CT Dose Management: Our Experience in Implementing a Program With an Education-Focused Approach. AJR Am J Roentgenol 2019; 212:W111. [DOI: 10.2214/ajr.18.20671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|