1
|
El Ahmar A, Schnell S, Ansari SA, Abdalla RN, Vali A, Aristova M, Markl M, Winter P, Marlevi D. Non-invasive quantification of pressure drops in stenotic intracranial vessels: using deep learning-enhanced 4D flow MRI to characterize the regional haemodynamics of the pulsing brain. Interface Focus 2025; 15:20240040. [PMID: 40191027 PMCID: PMC11969193 DOI: 10.1098/rsfs.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 01/29/2025] [Indexed: 04/09/2025] Open
Abstract
Stenosis of major intracranial arteries is a significant cause of stroke, with assessment of trans-stenotic pressure drops being a key marker of functional stenosis severity. Non-invasive methods for quantifying intracranial pressure changes are hence crucial; however, the narrow and tortuous cerebrovascular network poses challenges to traditional assessment methods such as transcranial Doppler. This study investigates the use of novel deep learning-enhanced super-resolution (SR) four-dimensional (4D) flow magnetic resonance imaging (MRI) in combination with a physics-informed virtual work-energy relative pressure technique to quantify pressure drops across stenotic intracranial arteries. Performance was validated in intracranial-mimicking in vitro experiments using pulsatile flow before being transferred into an in vivo cohort of patients with intracranial atherosclerotic disease. Conversion into sub-millimetre SR imaging significantly improved the accuracy of regional relative pressure estimations in the pulsing brain arteries, mitigating biases observed at >1 mm resolution imaging, and agreeing strongly with reference catheter-based invasive measurements across both moderate and severe stenoses. The in vivo analysis also revealed a significant increase in pressure drops when converting into sub-millimetre SR data, underlining the importance of apparent image resolution in a clinical setting. The results highlight the potential of SR 4D flow MRI for non-invasive quantification of cerebrovascular pressure changes in pulsing intracranial arteries across stenotic vessel segments.
Collapse
Affiliation(s)
- Ali El Ahmar
- Department of Medical Physics, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Susanne Schnell
- Department of Medical Physics, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sameer A. Ansari
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology and Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ramez N. Abdalla
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Maria Aristova
- Department of Neurology and Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Patrick Winter
- Department of Medical Physics, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Lin BZ, Fan AC, Wang Y, Lowerison MR, Dong Z, You Q, Sekaran NVC, Llano D, Borden M, Song P. Combined Nanodrops Imaging and Ultrasound Localization Microscopy for Detecting Intracerebral Hemorrhage. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:707-714. [PMID: 39837748 DOI: 10.1016/j.ultrasmedbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Advanced imaging methods are crucial for understanding stroke mechanisms and discovering effective treatments to reduce bleeding and enhance recovery. In pre-clinical in vivo stroke imaging, MRI, CT and optical imaging are commonly used to evaluate stroke outcomes in rodent models. However, MRI and CT have limited spatial resolution for rodent brains, and optical imaging is hindered by limited imaging depth of penetration. Here we introduce a novel contrast-enhanced ultrasound imaging method to overcome these challenges and characterize intracerebral hemorrhage with unique insights. METHODS We combined microbubble-based ultrasound localization microscopy (ULM) and nanodrop (ND)-based vessel leakage imaging to achieve simultaneous microvascular imaging and hemorrhage detection. ULM maps brain-wide cerebral vasculature with high spatial resolution and identifies microvascular impairments around hemorrhagic areas. NDs are sub-micron liquid-core particles that can extravasate due to blood-brain barrier breakdown, serving as positive contrast agents to detect hemorrhage sites. RESULTS Our findings demonstrate that NDs could effectively accumulate in the hemorrhagic site and reveal the location of the bleeding areas upon activation by focused ultrasound beams. ULM further reveals the microvascular damage manifested in the form of reduced vascularity and decreased blood flow velocity across areas affected by the hemorrhagic stroke. CONCLUSION The results demonstrate that sequential ULM combined with ND imaging is a useful imaging tool for basic in vivo research in stroke with rodent models where brain-wide detection of active bleeding and microvascular impairment are essential.
Collapse
Affiliation(s)
- Bing-Ze Lin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Yike Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qi You
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Coudert A, Denis L, Chavignon A, Bodard S, Naveau M, Sistiaga PP, Saulnier R, Orset C, Vivien D, Chappard C, Couture O. 3-D Transcranial Ultrasound Localization Microscopy Reveals Major Arteries in the Sheep Brain. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1666-1676. [PMID: 39052461 DOI: 10.1109/tuffc.2024.3432998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cerebral circulation ensures the proper functioning of the entire human body, and its interruption, i.e., stroke, leads to irreversible damage. However, tools for observing cerebral circulation are still lacking. Although MRI and computed tomography (CT) scans serve as conventional methods, their accessibility remains a challenge, prompting exploration into alternative, portable, and nonionizing imaging solutions like ultrasound with reduced costs. While ultrasound localization microscopy (ULM) displays potential in high-resolution vessel imaging, its 2-D constraints limit its emergency utility. This study delves into the feasibility of 3-D ULM with multiplexed probe for transcranial vessel imaging in sheep brains, emulating human skull characteristics. Three sheep underwent 3-D ULM imaging, compared with angiographic MRI, while skull characterization was conducted in vivo using ultrashort bone MRI sequences and ex vivo via micro-CT. The study showcased 3-D ULM's ability to highlight vessels, down to the circle of Willis, yet within a confined 3-D field of view. Future enhancements in signal, aberration correction, and human trials hold promise for a portable, volumetric, transcranial ultrasound angiography system.
Collapse
|
4
|
Smalley ZS, Derrico NP, Clark P, Winter K, Wilkinson JH, Hemphill TR, Uschmann H, Washington CW. Intrathecal Nicardipine as Treatment for Severe Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage: A Retrospective Clinical Study. Cureus 2024; 16:e71165. [PMID: 39525099 PMCID: PMC11550094 DOI: 10.7759/cureus.71165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Vasospasm and delayed cerebral ischemia (DCI) are complications of aneurysmal subarachnoid hemorrhage (aSAH) and contribute up to 23% of the disability and deaths from aSAH. The use of intrathecal nicardipine (ITN) as a possible treatment for DCI has been explored with mixed results. We present a retrospective series comparing standard post-aSAH care to standard care plus ITN therapy. The primary objective of this study was to assess for any difference in functional outcome in terms of modified Rankin scale (mRS) score between the standard therapy group and ITN group at discharge and one month after discharge. Methods The Institutional Review Board (IRB) approval was obtained for a retrospective chart review of patients with aSAH who were treated at the University of Mississippi Medical Center between January 2012 and June 2019. The inclusion criteria included sufficient available medical documentation, aSAH with documentation of an intracranial aneurysm, and age ≥ 18. The exclusion criteria included non-aSAH, patients with insufficient medical records, and mycotic aneurysms. The decision to treat with ITN was based on the individual practice of a single neuro-intensivist in collaboration with the neurosurgical staff. Results A total of 385 patients were included in the study with 31 patients receiving ITN. Those within the nicardipine group presented with significantly worse Hunt and Hess grades and experienced significantly worse cerebral vasospasm, higher transcranial Doppler (TCD) velocities, higher rates of DCI, and higher rates of hydrocephalus. When controlling for placement of an external ventricular drain, the patients in the ITN group experienced higher rates of ventriculitis (10.0% vs. 2.0%, p < 0.05). There was no significant difference between the two groups in the intensive care unit (ICU) stay, hospital stay, mRS at discharge, or mRS at one-month follow-up. Conclusion In our series, ITN therapy did not significantly alter outcomes in terms of mRS at discharge or at one month after discharge. However, there was a significant increase in ventriculitis among patients who received this therapy.
Collapse
Affiliation(s)
- Zachary S Smalley
- Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | | | - Paul Clark
- Neurosurgery, St. Vincent's Medical Center, Birmingham, USA
| | - Kenneth Winter
- Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | - John H Wilkinson
- Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | - Thomas R Hemphill
- Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | - Hartmut Uschmann
- Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | - Chad W Washington
- Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| |
Collapse
|
5
|
Carbonara M, Ferrari E, Birg T, Punzi V, Bichi F, Lazzari B, Palmaverdi V, Bottino N, Ortolano F, Zoerle T, Conte G, Stocchetti N, Zanier ER, The UOC Terapia Intensiva Presidio Temporaneo Fiera Milano investigators group. Suspected intracranial hypertension in COVID-19 patients with severe respiratory failure. PLoS One 2024; 19:e0310077. [PMID: 39298371 PMCID: PMC11412631 DOI: 10.1371/journal.pone.0310077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND COVID-19 patients may exhibit neurological symptoms due to direct viral damage, systemic inflammatory syndrome, or treatment side effects. Mechanical ventilation in patients with severe respiratory failure often requires sedation and neuromuscular blockade, hindering thorough clinical examinations. This study aimed to investigate neurological involvement through clinical and noninvasive techniques and to detect signs of intracranial hypertension in these patients. METHOD We conducted a prospective observational study on mechanically ventilated COVID-19 adult patients admitted to our ICU, following standard of care protocols for ventilation and permissive hypercapnia. Data were collected at three time points: admission day (T1), day seven (T7), and day fourteen (T14). At each time point, patients underwent multimodal noninvasive neurological monitoring, including clinical examination, pupillary reactivity, transcranial color doppler of the middle cerebral artery (MCA), and optic nerve sheath diameter (ONSD) assessed via ultrasound (US). Head computer tomography (CT) was performed at T1 and T14. A limited subset of patients had a follow-up examination six months after ICU discharge. RESULTS Seventy-nine patients were recruited; most were under deep sedation and neuromuscular blockade at T1. Pupillary size, symmetry, and reactivity were normal, as was the MCA mean velocity. However, ONSD, assessed by both US and CT, appeared enlarged, suggesting raised intracranial pressure (ICP). In a subgroup of 12 patients, increased minute ventilation was associated with a significant decrease in US-ONSD, corresponding to a drop in paCO2. At follow-up, twelve patients showed no long-term neurological sequelae, and US-ONSD was decreased in all of them. DISCUSSION AND CONCLUSIONS In this cohort, enlarged ONSD was detected during non-invasive neurological monitoring, suggesting a raised ICP, with hypercapnia playing a prominent role. Further studies are needed to explore ONSD behavior in other samples of mechanically ventilated, hypercapnic patients.
Collapse
Affiliation(s)
- Marco Carbonara
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Ferrari
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tatiana Birg
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | - Nicola Bottino
- Department of Anesthesia and Critical Care, General Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabrizio Ortolano
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Zoerle
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Giorgio Conte
- University of Milan, Milan, Italy
- Department of Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nino Stocchetti
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | |
Collapse
|
6
|
van der Harst JJ, Elting JWJ, Hijlkema J, Veeger NJGM, van Donkelaar CE, van Dijk JMC, Uyttenboogaart M. Diagnostic value of transcranial doppler to predict delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage : To predict delayed cerebral ischemia. Acta Neurochir (Wien) 2024; 166:278. [PMID: 38949680 PMCID: PMC11217085 DOI: 10.1007/s00701-024-06164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Transcranial Doppler (TCD) is a technique to assess blood flow velocity in the cerebral arteries. TCD is frequently used to monitor aneurysmal subarachnoid hemorrhage (aSAH) patients. This study compares TCD-criteria for vasospasm and its association with Delayed Cerebral Ischemia (DCI). An overall score based on flow velocities of various intracranial arteries was developed and evaluated. METHODS A retrospective diagnostic accuracy study was conducted between 1998 and 2017 with 621 patients included. Mean flow velocity (MFV) of the cerebral artery was measured between 2-5 days and between 6-9 days after ictus. Cutoff values from the literature, new cutoff values, and a new composite score (Combined Severity Score) were used to predict DCI. Sensitivity, specificity, and area under the curve (AUC) were determined, and logistic regression analysis was performed. RESULTS The Combined Severity Score showed an AUC 0.64 (95%CI 0.56-.71) at days 2-5, with sensitivity 0.53 and specificity 0.74. The Combined Severity Score had an adjusted Odds Ratio of 3.41 (95CI 1.86-6.32) for DCI. MCA-measurements yielded the highest AUC to detect DCI at day 2-5: AUC 0.65 (95%CI 0.58-0.73). Optimal cutoff MFV of 83 cm/s for MCA resulted in sensitivity 0.73 and specificity 0.50 at days 2-5. CONCLUSION TCD-monitoring of aSAH patients may be a valuable strategy for DCI risk stratification. Lower cutoff values can be used in the early phase after the ictus (day 2-5) than are commonly used now. The Combined Severity Score incorporating all major cerebral arteries may provide a meaningful contribution to interpreting TCD measurements.
Collapse
Affiliation(s)
- J Joep van der Harst
- Departments of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Jan Willem J Elting
- Departments of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johanna Hijlkema
- Departments of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nic J G M Veeger
- Department of Epidemiology, Uversity of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carlina E van Donkelaar
- Department of Neurosurger, Uversity of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurger, Uversity of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten Uyttenboogaart
- Departments of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Hakim M, Kawnayn G, Hassan MS, Uddin MN, Hasan M, Huq MR. Transcranial Doppler in the Detection of Cerebral Vasospasm After Subarachnoid Hemorrhage. Cureus 2024; 16:e61569. [PMID: 38962631 PMCID: PMC11221191 DOI: 10.7759/cureus.61569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background Transcranial Doppler (TCD) is a simple, noninvasive, nonionizing, portable technique but not widely practiced to detect cerebral vasospasm after subarachnoid hemorrhage (SAH). Objective The aim of this study was to assess the performance of TCD in the detection of cerebral vasospasm in patients with SAH considering CT angiography (CTA) as a gold standard. Methods and material This cross-sectional study included 50 patients with acute SAH admitted to the National Institute of Neurosciences & Hospital (NINS & H), Dhaka, Bangladesh, from February to June 2021. The neurological status, severity of SAH, and initial CT findings were recorded. All patients were screened for cerebral vasospasm with TCD on the 4th, 7th, 10th, and 14th days after the event. Screening of cerebral vasospasm by CTA was done on the 14th day of the event or earlier if TCD suggested vasospasm. Results The mean age of the participants was 51.4 ±13.4 years (mean ± SD), and females were predominant (N=29, 58%). CTA detected cerebral vasospasm in 18 (36%) participants, but TCD could detect it in only 13 (26%) cases. Among the participants who had no vasospasm by CTA, all but one were also found to have no vasospasm by TCD. The agreement between TCD and CTA in detecting cerebral vasospasm was significant (p<0.001, κ=0.726). TCD shows good specificity (96.9%) and positive predictive value (92.8%), but sensitivity (72.2%) and negative predictive value (81.6%) were comparatively lower. Overall, the diagnostic accuracy of TCD in detecting cerebral vasospasm was 88%. Conclusions Although compared to CTA, TCD is a highly specific but less sensitive tool in detecting vasospasm, TCD remains a reliable screening tool for detecting vasospasm following SAH.
Collapse
Affiliation(s)
- Maliha Hakim
- Neurology, National Institute of Neurosciences and Hospital, Dhaka, BGD
| | | | | | | | - Mashfiqul Hasan
- Endocrinology, Diabetes, and Metabolism, National Institute of Neurosciences and Hospital, Dhaka, BGD
| | | |
Collapse
|
8
|
Yang Y, Duan H, Zheng Y. Improved Transcranial Plane-Wave Imaging With Learned Speed-of-Sound Maps. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2191-2201. [PMID: 38271172 DOI: 10.1109/tmi.2024.3358307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Although transcranial ultrasound plane-wave imaging (PWI) has promising clinical application prospects, studies have shown that variable speed-of-sound (SoS) would seriously damage the quality of ultrasound images. The mismatch between the conventional constant velocity assumption and the actual SoS distribution leads to the general blurring of ultrasound images. The optimization scheme for reconstructing transcranial ultrasound image is often solved using iterative methods like full-waveform inversion. These iterative methods are computationally expensive and based on prior magnetic resonance imaging (MRI) or computed tomography (CT) information. In contrast, the multi-stencils fast marching (MSFM) method can produce accurate time travel maps for the skull with heterogeneous acoustic speed. In this study, we first propose a convolutional neural network (CNN) to predict SoS maps of the skull from PWI channel data. Then, use these maps to correct the travel time to reduce transcranial aberration. To validate the performance of the proposed method, numerical, phantom and intact human skull studies were conducted using a linear array transducer (L11-5v, 128 elements, pitch = 0.3 mm). Numerical simulations demonstrate that for point targets, the lateral resolution of MSFM-restored images increased by 65%, and the center position shift decreased by 89%. For the cyst targets, the eccentricity of the fitting ellipse decreased by 75%, and the center position shift decreased by 58%. In the phantom study, the lateral resolution of MSFM-restored images was increased by 49%, and the position shift was reduced by 1.72 mm. This pipeline, termed AutoSoS, thus shows the potential to correct distortions in real-time transcranial ultrasound imaging, as demonstrated by experiments on the intact human skull.
Collapse
|
9
|
Zarader P, Francois Q, Coudert A, Duplat B, Haliyo S, Couture O. Proof of Concept of an Affordable, Compact and Transcranial Submillimeter Accurate Ultrasound-Based Tracking System. IEEE Trans Biomed Eng 2024; 71:893-903. [PMID: 37796674 DOI: 10.1109/tbme.2023.3322302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In neurosurgery, a current challenge is to provide localized therapy in deep and difficult-to-access brain areas with millimeter accuracy. In this prospect, new surgical devices such as microrobots are being developed, which require controlled inbrain navigation to ensure the safety and efficiency of the intervention. In this context, the device tracking technology has to answer a three-sided challenge: invasiveness, performance, and facility of use. Although ultrasound seems appropriate for transcranial tracking, the skull remains an obstacle because of its significant acoustic perturbations. A compact and affordable ultrasound-based tracking system that minimizes skull-related disturbances is proposed here. This system consists of three emitters fixed on the patient's head and a one-millimeter receiver embedded in the surgical device. The 3D position of the receiver is obtained by trilateration based on time of flight measurements. The system demonstrates a submillimeter tracking accuracy through an 8.9 mm thick skull plate phantom. This result opens multiple perspectives in terms of millimeter accurate navigation for a large number of neurobiomedical devices.
Collapse
|
10
|
Abdulazim A, Heilig M, Rinkel G, Etminan N. Diagnosis of Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage and Triggers for Intervention. Neurocrit Care 2023; 39:311-319. [PMID: 37537496 PMCID: PMC10542310 DOI: 10.1007/s12028-023-01812-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Delayed cerebral ischemia (DCI) is a major determinant for poor neurological outcome after aneurysmal subarachnoid hemorrhage (aSAH). Detection and treatment of DCI is a key component in the neurocritical care of patients with aSAH after initial aneurysm repair. METHODS Narrative review of the literature. RESULTS Over the past 2 decades, there has been a paradigm shift away from macrovascular (angiographic) vasospasm as a main diagnostic and therapeutic target. Instead, the pathophysiology of DCI is hypothesized to derive from several proischemic pathomechanisms. Clinical examination remains the most reliable means for monitoring and treatment of DCI, but its value is limited in comatose patients. In such patients, monitoring of DCI is usually based on numerous neurophysiological and/or radiological diagnostic modalities. Catheter angiography remains the gold standard for the detection of macrovascular spasm. Computed tomography (CT) angiography is increasingly used instead of catheter angiography because it is less invasive and may be combined with CT perfusion imaging. CT perfusion permits semiquantitative cerebral blood flow measurements, including the evaluation of the microcirculation. It may be used for prediction, early detection, and diagnosis of DCI, with yet-to-prove benefit on clinical outcome when used as a screening modality. Transcranial Doppler may be considered as an additional noninvasive screening tool for flow velocities in the middle cerebral artery, with limited accuracy in other cerebral arteries. Continuous electroencephalography enables detection of early signs of ischemia at a reversible stage prior to clinical manifestation. However, its widespread use is still limited because of the required infrastructure and expertise in data interpretation. Near-infrared spectroscopy, a noninvasive and continuous modality for evaluation of cerebral blood flow dynamics, has shown conflicting results and needs further validation. Monitoring techniques beyond neurological examinations may help in the detection of DCI, especially in comatose patients. However, these techniques are limited because of their invasive nature and/or restriction of measurements to focal brain areas. CONCLUSION The current literature review underscores the need for incorporating existing modalities and developing new methods to evaluate brain perfusion, brain metabolism, and overall brain function more accurately and more globally.
Collapse
Affiliation(s)
- Amr Abdulazim
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Marina Heilig
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Gabriel Rinkel
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nima Etminan
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
11
|
Kim Y, Mehta A, Nair R, Felbaum DR, Mai JC, Armonda RA, Chang JJ. The TCD hyperemia index to detect vasospasm and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. J Neuroimaging 2023; 33:725-730. [PMID: 37291461 DOI: 10.1111/jon.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Elevated mean flow velocity (MFV) on transcranial Doppler (TCD) is used to predict vasospasm after aneurysmal subarachnoid hemorrhage (SAH). Hyperemia should be considered when observing elevated MFV. Lindegaard ratio (LR) is commonly used but does not enhance predictive values. We introduce a new marker, the hyperemia index (HI), calculated as bilateral extracranial internal carotid artery MFV divided by initial flow velocity. METHODS We evaluated SAH patients hospitalized ≥7 days between December 1, 2016 and June 30, 2022. We excluded patients with nonaneurysmal SAH, inadequate TCD windows, and baseline TCD obtained after 96 hours from onset. Logistic regression was conducted to assess the significant associations of HI, LR, and maximal MFV with vasospasm and delayed cerebral ischemia (DCI). Receiver operating characteristic analyses were employed to find the optimal cutoff value for HI. RESULTS Lower HI (odds ratio [OR] 0.10, 95% confidence interval [CI] 0.01-0.68), higher MFV (OR 1.03, 95% CI 1.01-1.05), and LR (OR 2.02, 95% CI 1.44-2.85) were associated with vasospasm and DCI. Area under the curve (AUC) for predicting vasospasm was 0.70 (95% CI 0.58-0.82) for HI, 0.87 (95% CI 0.81-0.94) for maximal MFV, and 0.87 (95% CI 0.79-0.94) for LR. The optimal cutoff value for HI was 1.2. Combining HI <1.2 with MFV improved positive predictive value without altering the AUC value. CONCLUSIONS Lower HI was associated with a higher likelihood of vasospasm and DCI. HI <1.2 may serve as a useful TCD parameter to indicate vasospasm and DCI when elevated MFV is observed, or when transtemporal windows are inadequate.
Collapse
Affiliation(s)
- Yongwoo Kim
- Comprehensive Stroke Center, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Neurology, Georgetown University School of Medicine and MedStar Georgetown University Hospital, Washington, DC, USA
| | - Amit Mehta
- Department of Neurology, Georgetown University School of Medicine and MedStar Georgetown University Hospital, Washington, DC, USA
| | - Reshmi Nair
- Center for Biostatistics, Informatics and Data Science, MedStar Health Research Institute, Hyattsville, Maryland, USA
| | - Daniel R Felbaum
- Department of Neurosurgery, Georgetown University School of Medicine and MedStar Washington Hospital Center, Washington, DC, USA
| | - Jeffrey C Mai
- Department of Neurosurgery, Georgetown University School of Medicine and MedStar Washington Hospital Center, Washington, DC, USA
| | - Rocco A Armonda
- Department of Neurosurgery, Georgetown University School of Medicine and MedStar Washington Hospital Center, Washington, DC, USA
| | - Jason J Chang
- Department of Neurology, Georgetown University School of Medicine and MedStar Georgetown University Hospital, Washington, DC, USA
- Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
12
|
Riordan K, Mamaril-Davis J, Aguilar-Salinas P, Dumont TM, Weinand ME. Outcomes following therapeutic intervention of post-traumatic vasospasm: A systematic review and meta-analysis. Clin Neurol Neurosurg 2023; 232:107877. [PMID: 37441930 DOI: 10.1016/j.clineuro.2023.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Vasospasm occurrence following traumatic brain injury may impact neurologic and functional recovery of patients, yet treatment of post-traumatic vasospasm (PTV) has not been well documented. This systematic review and meta-analysis aims to assess the current evidence regarding favorable outcome as measured by Glasgow Outcome Scale (GOS) scores following treatment of PTV. METHODS A systematic review of PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Included manuscripts were methodically scrutinized for quality; occurrence of PTV; rate of favorable outcome following each treatment modality; and follow-up duration. Treatments evaluated were calcium channel blockers (CCBs), endovascular intervention, and dopamine-induced hypertension. Outcomes were compared via the random-effects analysis. RESULTS Fourteen studies with 1885 PTV patients were quantitatively analyzed: 982 patients who received tailored therapeutic intervention and 903 patients who did not receive tailored therapy. For patients undergoing treatment, the rate of favorable outcome was 57.3 % (500/872 patients; 95 % CI 54.1 - 60.6 %) following administration of CCBs, 94.1 % (16/17 patients; 95 % CI 82.9 - 100.0 %) following endovascular intervention, and 54.8 % (51/93 patients; 95 % CI 44.7 - 65.0 %) following dopamine-induced hypertension. Of note, the endovascular group had the highest rate of favorable outcome but was also the smallest sample size (n = 17). Patients who received tailored therapeutic intervention for PTV had a higher rate of favorable outcome than patients who did not receive tailored therapy: 57.7 % (567/982 patients; 95 % CI 54.1 - 60.8 %) versus 52.0 % (470/903 patients; 95 % CI 48.8 - 55.3 %), respectively. CONCLUSIONS The available data suggests that tailored therapeutic intervention of PTV results in a favorable outcome. While endovascular intervention of PTV had the highest rate of favorable outcome, both CCB administration and dopamine-induced hypertension had similar lower rates of favorable outcome.
Collapse
Affiliation(s)
- Katherine Riordan
- College of Medicine, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - James Mamaril-Davis
- College of Medicine, University of Arizona College of Medicine - Tucson, Tucson, AZ, United States
| | - Pedro Aguilar-Salinas
- Department of Neurosurgery, Banner University Medical Center / University of Arizona, Tucson, AZ, United States
| | - Travis M Dumont
- Department of Neurosurgery, Banner University Medical Center / University of Arizona, Tucson, AZ, United States
| | - Martin E Weinand
- Department of Neurosurgery, Banner University Medical Center / University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
13
|
AIUM Practice Parameter for the Performance of Transcranial Doppler Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:E36-E44. [PMID: 37132485 DOI: 10.1002/jum.16234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
|
14
|
Liang M, Liu J, Guo C, Zong Y, Wan M. Velocity field estimation in transcranial small vessel using super-resolution ultrasound imaging velocimetry. ULTRASONICS 2023; 132:107016. [PMID: 37094521 DOI: 10.1016/j.ultras.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Based on the diameter and position information of small vessels obtained by transcranial super-resolution imaging using 3 MHz low-frequency chirp plane waves, a Gaussian-like non-linear compression was adopted to compress the blood flow signals in spatiotemporal filtering (STF) data to a precise region, and then estimate the blood flow velocity field inside the region over the adjacent time intervals using ultrasound imaging velocimetry (UIV). Imaging parameters, such as the mechanical index (MI), frame rate, and microbubble (MB) concentration, are critical during the estimation of velocity fields over a short time at high MB contrast agent concentrations. These were optimized through experiments and algorithms, in which dividing the connected domain was proposed to calculate MB cluster spot centroid spacing (SCS) and the spot-to-flow area ratio (SFAR) to determine the suitable MB concentration. The results of the in vitro experiments showed that the estimation of the small vessel flow velocity field was consistent with the theoretical results; the velocity field resolution for vessels with diameters of 0.5 mm and 0.3 mm was 36 μm and 21 μm, and the error between the mean velocity and the theoretical value was 0.7 % and 0.67 %, respectively.
Collapse
Affiliation(s)
- Meiling Liang
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiacheng Liu
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chao Guo
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yujin Zong
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Mingxi Wan
- College of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Wang RL, Gingrich KJ, Vance A, Johnson MD, Welch BG, McDonagh DL. The effects of aneurysmal subarachnoid hemorrhage on cerebral vessel diameter and flow velocity. J Stroke Cerebrovasc Dis 2023; 32:107056. [PMID: 36933521 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Transcranial Doppler flow velocity is used to monitor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Generally, blood flow velocities appear inversely related to the square of vessel diameter representing local fluid dynamics. However, studies of flow velocity-diameter relationships are few, and may identify vessels for which diameter changes are better correlated with Doppler velocity. We therefore studied a large retrospective cohort with concurrent transcranial Doppler velocities and angiographic vessel diameters. METHODS This is a single-site, retrospective, cohort study of adult patients with aneurysmal subarachnoid hemorrhage, approved by the UT Southwestern Medical Center Institutional Review Board. Study inclusion required transcranial Doppler measurements within </= 24 hours of vessel imaging. Vessels assessed were: bilateral anterior, middle, posterior cerebral arteries; internal carotid siphons; vertebral arteries; and basilar artery. Flow velocity-diameter relationships were constructed and fitted with a simple inverse power function. A greater influence of local fluid dynamics is suggested as power factors approach two. RESULTS 98 patients were included. Velocity-diameter relationships are curvilinear, and well fit by a simple inverse power function. Middle cerebral arteries showed the highest power factors (>1.1, R2>0.9). Furthermore, velocity and diameter changed (P<0.033) consistent with the signature time course of cerebral vasospasm. CONCLUSIONS These results suggest that middle cerebral artery velocity-diameter relationships are most influenced by local fluid dynamics, which supports these vessels as preferred endpoints in Doppler detection of cerebral vasospasm. Other vessels showed less influence of local fluid dynamics, pointing to greater role of factors outside the local vessel segment in determining flow velocity.
Collapse
Affiliation(s)
- Richard L Wang
- Department of Anesthesiology and Pain Management; The University of Texas Southwestern, Dallas, Texas, USA; Department of Radiology, University of Miami Miller School of Medicine.
| | - Kevin J Gingrich
- Department of Anesthesiology and Pain Management; The University of Texas Southwestern, Dallas, Texas, USA; Department of Anesthesiology and Pain Management, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390 USA.
| | - Awais Vance
- Department of Neurological Surgery; The University of Texas Southwestern, Dallas, Texas, USA; Departments of Radiology; The University of Texas Southwestern, Dallas, Texas, USA; Department of Neurosurgery, Baylor Scott & White Medical Center.
| | - Mark D Johnson
- Department of Neurology; The University of Texas Southwestern, Dallas, Texas, USA; Department of Neurology, Univ. of Texas Southwestern Medical Center.
| | - Babu G Welch
- Department of Neurological Surgery; The University of Texas Southwestern, Dallas, Texas, USA; Departments of Radiology; The University of Texas Southwestern, Dallas, Texas, USA; Departments of Neurological Surgery & Radiology, Univ. of Texas Southwestern Medical Center.
| | - David L McDonagh
- Department of Anesthesiology and Pain Management; The University of Texas Southwestern, Dallas, Texas, USA; Department of Neurological Surgery; The University of Texas Southwestern, Dallas, Texas, USA; Department of Neurology; The University of Texas Southwestern, Dallas, Texas, USA; Departments of Anesthesiology and Pain Management, Neurology, and Neurological Surgery; Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390 USA.
| |
Collapse
|
16
|
Harrar DB, Sun LR, Segal JB, Lee S, Sansevere AJ. Neuromonitoring in Children with Cerebrovascular Disorders. Neurocrit Care 2023; 38:486-503. [PMID: 36828980 DOI: 10.1007/s12028-023-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Cerebrovascular disorders are an important cause of morbidity and mortality in children. The acute care of a child with an ischemic or hemorrhagic stroke or cerebral sinus venous thrombosis focuses on stabilizing the patient, determining the cause of the insult, and preventing secondary injury. Here, we review the use of both invasive and noninvasive neuromonitoring modalities in the care of pediatric patients with arterial ischemic stroke, nontraumatic intracranial hemorrhage, and cerebral sinus venous thrombosis. METHODS Narrative review of the literature on neuromonitoring in children with cerebrovascular disorders. RESULTS Neuroimaging, near-infrared spectroscopy, transcranial Doppler ultrasonography, continuous and quantitative electroencephalography, invasive intracranial pressure monitoring, and multimodal neuromonitoring may augment the acute care of children with cerebrovascular disorders. Neuromonitoring can play an essential role in the early identification of evolving injury in the aftermath of arterial ischemic stroke, intracranial hemorrhage, or sinus venous thrombosis, including recurrent infarction or infarct expansion, new or recurrent hemorrhage, vasospasm and delayed cerebral ischemia, status epilepticus, and intracranial hypertension, among others, and this, is turn, can facilitate real-time adjustments to treatment plans. CONCLUSIONS Our understanding of pediatric cerebrovascular disorders has increased dramatically over the past several years, in part due to advances in the neuromonitoring modalities that allow us to better understand these conditions. We are now poised, as a field, to take advantage of advances in neuromonitoring capabilities to determine how best to manage and treat acute cerebrovascular disorders in children.
Collapse
Affiliation(s)
- Dana B Harrar
- Division of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA.
| | - Lisa R Sun
- Divisions of Pediatric Neurology and Vascular Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Bradley Segal
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Arnold J Sansevere
- Division of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
17
|
Schiro B, Hasan M, Bryce Y, Peña C. Intracranial and Extracranial Evaluation. Tech Vasc Interv Radiol 2022; 25:100862. [PMID: 36404067 PMCID: PMC10315184 DOI: 10.1016/j.tvir.2022.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vascular lab is an essential tool in diagnosing intracranial and extracranial disease including vasospasm from subarachnoid hemorrhage and carotid artery stenosis in the setting of stroke or transient ischemic attack. This article discusses the indications, protocol, and diagnostic criteria for transcranial doppler (TCD) and carotid artery duplex ultrasound. Intracranial and extracranial arterial testing by way of TCD and carotid imaging carries enormous implications and can provide life or death information. The learning curve for these techniques is steep but can be mastered with repetition and precise technique.
Collapse
Affiliation(s)
- Brian Schiro
- Department of Radiology, Miami Cardiac and Vascular Institute, Miami, FL
| | - Muhammad Hasan
- Department of Radiology, Miami Cardiac and Vascular Institute, Miami, FL
| | - Yolanda Bryce
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Costantino Peña
- Department of Radiology, Miami Cardiac and Vascular Institute, Miami, FL
| |
Collapse
|
18
|
Kotwal A, Ramalingaiah AH, Shukla D, Radhakrishnan M, Konar SK, Srinivasaiah B, Chakrabarti D, Sundaram M. Role of Nimodipine and Milrinone in Delayed Cerebral Ischemia. World Neurosurg 2022; 166:e285-e293. [PMID: 35843579 DOI: 10.1016/j.wneu.2022.06.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The role of nimodipine and milrinone in the management of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (SAH) was studied using clinical and TCD (transcranial Doppler) parameters. METHODS In this prospective observational study, patients with DCI after aneurysmal SAH presenting between November 2020 and June 2021 who were treated by either intra-arterial nimodipine (IAN) or intravenous milrinone (IVM) were included after excluding patients in whom both IAN and IVM had been given or mechanical angioplasty was performed. Twelve-hourly TCD was performed during the course of the therapy. Clinical improvement and the development of new brain infarcts were also assessed. A P value <0.05 was considered statistically significant. RESULTS Thirty-four patients fulfilled the inclusion criteria (IVM, 13/34 [38%]; IAN, 21/34 [62%]); patients in the IVM group (vs. IAN group) had poorer median Glasgow Coma Scale score (12 vs. 13), poorer motor response (<M6 response, 5/13 [38%] vs. 5/21 [24%]; P = 0.36) and higher grades (modified Fisher grade ≥3) of SAH (12/13 [92%] vs. 8/21 [86%]; P = 0.56). More patients in the IAN group (vs. IVM group) showed clinical improvement (17/21 [81%] vs. 10/13 [77%]; P = 0.77), development of new infarcts (15/21 [71%] vs. 7/13 [54%]; P = 0.29] and discharged to home (13/21 [62%] vs. 6/13 [46%]; P = 0.36) with less mortality (1/21 [9%] vs. 4/13 [23%]; P = 0.037). On TCD analysis, both IAN and IVM protocols showed similar effects in middle cerebral artery vasospasm; however, IAN proved better over time. In group-effect analysis, the IAN protocol was significantly better in anterior cerebral artery and posterior cerebral artery vasospasm compared with IVM protocol. CONCLUSIONS In this single-center small study, patients in the IAN group had significantly less mortality compared with the IVM group in the management of DCI after aneurysmal SAH.
Collapse
Affiliation(s)
- Abhishek Kotwal
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Arvinda Hanumanthapura Ramalingaiah
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India.
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Muthuchellappan Radhakrishnan
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Subhas Kanti Konar
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Bharath Srinivasaiah
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Dhritiman Chakrabarti
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Mouleeswaran Sundaram
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| |
Collapse
|
19
|
Mozaffarzadeh M, Verschuur DJE, Verweij MD, de Jong N, Renaud G. Accelerated 2-D Real-Time Refraction-Corrected Transcranial Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2599-2610. [PMID: 35797321 DOI: 10.1109/tuffc.2022.3189600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In a recent study, we proposed a technique to correct aberration caused by the skull and reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. Given a sound speed map, the arrival times were calculated using a fast marching technique (FMT), which solves the Eikonal equation and, therefore, is computationally expensive for real-time imaging. In this article, we introduce a two-point ray tracing method, based on Fermat's principle, for fast calculation of the travel times in the presence of a layered aberrator in front of the ultrasound probe. The ray tracing method along with the reconstruction technique is implemented on a graphical processing unite (GPU). The point spread function (PSF) in a wire phantom image reconstructed with the FMT and the GPU implementation was studied with numerical synthetic data and experiments with a bone-mimicking plate and a sagittally cut human skull. The numerical analysis showed that the error on travel times is less than 10% of the ultrasound temporal period at 2.5 MHz. As a result, the lateral resolution was not significantly degraded compared with images reconstructed with FMT-calculated travel times. The results using the synthetic, bone-mimicking plate, and skull dataset showed that the GPU implementation causes a lateral/axial localization error of 0.10/0.20, 0.15/0.13, and 0.26/0.32 mm compared with a reference measurement (no aberrator in front of the ultrasound probe), respectively. For an imaging depth of 70 mm, the proposed GPU implementation allows reconstructing 19 frames/s with full synthetic aperture (96 transmission events) and 32 frames/s with multiangle plane wave imaging schemes (with 11 steering angles) for a pixel size of [Formula: see text]. Finally, refraction-corrected power Doppler imaging is demonstrated with a string phantom and a bone-mimicking plate placed between the probe and the moving string. The proposed approach achieves a suitable frame rate for clinical scanning while maintaining the image quality.
Collapse
|
20
|
Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12:14607. [PMID: 36028542 PMCID: PMC9418177 DOI: 10.1038/s41598-022-18025-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis is a critical part of the emergency care of cerebral hemorrhages and ischemia. A rapid and accurate diagnosis of strokes reduces the delays to appropriate treatments and a better functional recovery. Currently, CTscan and MRI are the gold standards with constraints of accessibility, availability, and possibly some contraindications. The development of Ultrasound Localization Microscopy (ULM) has enabled new perspectives to conventional transcranial ultrasound imaging with increased sensitivity, penetration depth, and resolution. The possibility of volumetric imaging has increased the field-of-view and provided a more precise description of the microvascularisation. In this study, rats (n = 9) were subjected to thromboembolic ischemic stroke or intracerebral hemorrhages prior to volumetric ULM at the early phases after onsets. Although the volumetric ULM performed in the early phase of ischemic stroke revealed a large hypoperfused area in the cortical area of the occluded artery, it showed a more diffused hypoperfusion in the hemorrhagic model. Respective computations of a Microvascular Diffusion Index highlighted different patterns of perfusion loss during the first 24 h of these two strokes’ subtypes. Our study provides the first proof that this methodology should allow early discrimination between ischemic and hemorrhagic stroke with a potential toward diagnosis and monitoring in clinic.
Collapse
Affiliation(s)
- Arthur Chavignon
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France.
| | - Vincent Hingot
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cyrille Orset
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France
| | - Denis Vivien
- UNICAEN, Inserm U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, CHU Caen, Avenue de la Côte de Nacre, Caen, France
| | - Olivier Couture
- Sorbonne Université, UMR 7371 CNRS, Inserm U1146, Laboratoire d'Imagerie Biomédicale, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| |
Collapse
|
21
|
Mozaffarzadeh M, Verschuur E, Verweij MD, Daeichin V, De Jong N, Renaud G. Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1191-1203. [PMID: 35100111 DOI: 10.1109/tuffc.2022.3148121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.
Collapse
|
22
|
Meini S, Andreini R, Cozza S. Detection of a pituitary macroadenoma with transcranial ultrasonography: Principles and potential clinical applications. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:411-414. [PMID: 35166392 DOI: 10.1002/jcu.23156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcranial color-coded duplex sonography (TCCS) allows to study intracranial vessels through the intact skull, but the visualization of normal and pathologic brain structures in adults is often suboptimal due to inadequate acoustic window. The full potential of TCCS for clinical practice remains unfulfilled. Here, we describe the ability of TCCS to detect a non-functioning pituitary macroadenoma in a 58-year-old man affected by headache. The macroadenoma was visualized as a roundish, well-defined mass, mildly hyperechogenic compared to the hypoechogenic mesencephalic brainstem but mainly hypoechogenic compared to the surrounding intracranial structures. Intracranial vessels represented useful landmarks. Using tissue harmonic imaging mode, the borders of the macroadenoma were visualized more clearly. Macroadenoma characteristics were confirmed by magnetic resonance imaging. Neurosonologists should be aware of the possibility to incidentally find, during routinary TCCS, pituitary macroadenomas or other brain tumors (as incidentalomas), worthy to be recognized and referred for further investigations.
Collapse
Affiliation(s)
- Simone Meini
- Internal Medicine Unit, Felice Lotti Hospital of Pontedera, Azienda Unità Sanitaria Locale Toscana Nord-Ovest, Pisa, Italy
| | - Roberto Andreini
- Internal Medicine Unit, Felice Lotti Hospital of Pontedera, Azienda Unità Sanitaria Locale Toscana Nord-Ovest, Pisa, Italy
| | - Sabino Cozza
- Radiology Department, Azienda Unità Sanitaria Locale Toscana Nord-Ovest, Pisa, Italy
| |
Collapse
|
23
|
ÇINAR HG, UCAN B. Basilar artery flow characteristics and color Doppler sonography findings in healthy infants. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1008452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Marlevi D, Schollenberger J, Aristova M, Ferdian E, Ma Y, Young AA, Edelman ER, Schnell S, Figueroa CA, Nordsletten DA. Noninvasive quantification of cerebrovascular pressure changes using 4D Flow MRI. Magn Reson Med 2021; 86:3096-3110. [PMID: 34431550 PMCID: PMC11421438 DOI: 10.1002/mrm.28928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE Hemodynamic alterations are indicative of cerebrovascular disease. However, the narrow and tortuous cerebrovasculature complicates image-based assessment, especially when quantifying relative pressure. Here, we present a systematic evaluation of image-based cerebrovascular relative pressure mapping, investigating the accuracy of the routinely used reduced Bernoulli (RB), the extended unsteady Bernoulli (UB), and the full-field virtual work-energy relative pressure ( ν WERP) method. METHODS Patient-specific in silico models were used to generate synthetic cerebrovascular 4D Flow MRI, with RB, UB, and ν WERP performance quantified as a function of spatiotemporal sampling and image noise. Cerebrovascular relative pressures were also derived in 4D Flow MRI from healthy volunteers ( n = 8 ), acquired at two spatial resolutions (dx = 1.1 and 0.8 mm). RESULTS The in silico analysis indicate that accurate relative pressure estimations are inherently coupled to spatial sampling: at dx = 1.0 mm high errors are reported for all methods; at dx = 0.5 mm ν WERP recovers relative pressures at a mean error of 0.02 ± 0.25 mm Hg, while errors remain higher for RB and UB (mean error of -2.18 ± 1.91 and -2.18 ± 1.87 mm Hg, respectively). The dependence on spatial sampling is also indicated in vivo, albeit with higher correlative dependence between resolutions using ν WERP (k = 0.64, R2 = 0.81 for dx = 1.1 vs. 0.8 mm) than with RB or UB (k = 0.04, R2 = 0.03, and k = 0.07, R2 = 0.07, respectively). CONCLUSION Image-based full-field methods such as ν WERP enable cerebrovascular relative pressure mapping; however, accuracy is directly dependent on utilized spatial resolution.
Collapse
Affiliation(s)
- David Marlevi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonas Schollenberger
- Department of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Maria Aristova
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Edward Ferdian
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Yue Ma
- Department of Radiology, Northwestern University, Chicago, IL, USA
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- School of Biomedical Engineering and Imaging Sciences, The Rayne Institute, King’s College London, London, UK
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susanne Schnell
- Department of Radiology, Northwestern University, Chicago, IL, USA
- Department of Medical Physics, Institute of Physics, University of Greifswald, Greifswald, Germany
| | - C. Alberto Figueroa
- Department of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David A. Nordsletten
- Department of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- School of Biomedical Engineering and Imaging Sciences, The Rayne Institute, King’s College London, London, UK
| |
Collapse
|
25
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|
26
|
Wang WX, Springer JE, Xie K, Fardo DW, Hatton KW. A Highly Predictive MicroRNA Panel for Determining Delayed Cerebral Vasospasm Risk Following Aneurysmal Subarachnoid Hemorrhage. Front Mol Biosci 2021; 8:657258. [PMID: 34055880 PMCID: PMC8163224 DOI: 10.3389/fmolb.2021.657258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Approximately one-third of aneurysmal subarachnoid hemorrhage (aSAH) patients develop delayed cerebral vasospasm (DCV) 3-10 days after aneurysm rupture resulting in additional, permanent neurologic disability. Currently, no validated biomarker is available to determine the risk of DCV in aSAH patients. MicroRNAs (miRNAs) have been implicated in virtually all human diseases, including aSAH, and are found in extracellular biofluids including plasma and cerebrospinal fluid (CSF). We used a custom designed TaqMan Low Density Array miRNA panel to examine the levels of 47 selected brain and vasculature injury related miRNAs in CSF and plasma specimens collected from 31 patients with or without DCV at 3 and 7 days after aSAH, as well as from eight healthy controls. The analysis of the first 18-patient cohort revealed a striking differential expression pattern of the selected miRNAs in CSF and plasma of aSAH patients with DCV from those without DCV. Importantly, this differential expression was observed at the early time point (3 days after aSAH), before DCV event occurs. Seven miRNAs were identified as reliable DCV risk predictors along with a prediction model constructed based on an array of additional 19 miRNAs on the panel. These chosen miRNAs were then used to predict the risk of DCV in a separate, testing cohort of 15 patients. The accuracy of DCV risk prediction in the testing cohort reached 87%. The study demonstrates that our novel designed miRNA panel is an effective predictor of DCV risk and has strong applications in clinical management of aSAH patients.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, United States
| | - Joe E Springer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kevin Xie
- Biostatistics, University of Kentucky, Lexington, KY, United States
| | - David W Fardo
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Kevin W Hatton
- Anesthesiology Critical Care Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
27
|
Ivanidze J, Sanelli PC. Vasospasm: Role of Imaging in Detection and Monitoring Treatment. Neuroimaging Clin N Am 2021; 31:147-155. [PMID: 33902870 DOI: 10.1016/j.nic.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cerebral vasospasm (VS) and delayed cerebral ischemia (DCI) are important complications of aneurysmal subarachnoid hemorrhage (ASAH). Imaging approaches to VS monitoring include noninvasive bedside assessment with transcranial Doppler ultrasonography, angiographic evaluation with digital subtraction angiography, and computed tomography (CT) angiography. DCI is a clinical diagnosis and is not fully explained by the presence of angiographic VS. CT perfusion has shown clinical utility and implications for future research in the evaluation of DCI in patients with ASAH. This review article discusses the common approaches to diagnosis and monitoring of VS and DCI, current treatment strategies, and future research directions.
Collapse
Affiliation(s)
- Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10021, USA.
| | - Pina C Sanelli
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 300 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
28
|
Sun LR, Ziai W, Brown P, Torriente AG, Cooper S, Gottesman RF, Felling RJ. Intrathecal chemotherapy-associated cerebral vasospasm in children with hematologic malignancies. Pediatr Res 2021; 89:858-862. [PMID: 32544924 DOI: 10.1038/s41390-020-1008-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Mechanisms of chemotherapy-associated neurotoxicity are poorly understood, and therefore, prevention strategies have not been developed. We hypothesized that a subgroup of children receiving intrathecal cytarabine develops subclinical vasospasm, which may contribute to long-term neurocognitive sequelae of cancer. METHODS We used transcranial Doppler ultrasound to serially evaluate cerebral blood flow velocities in participants ≤25 years old receiving intrathecal cytarabine for hematologic malignancies. RESULTS Four of 18 participants (22%) met the criteria for subclinical vasospasm within 4 days of intrathecal cytarabine administration. The distribution of oncologic diagnoses differed between the vasospasm and non-vasospasm groups (p = 0.02). Acute myeloid leukemia was identified as a potential risk factor for vasospasm. Children with vasospasm were more likely to have received intravenous cytarabine (75% versus 0%, p = 0.01) and less likely to have received steroids (25% versus 100%, p = 0.01). CONCLUSIONS A subpopulation of children with hematologic malignancies develops subclinical vasospasm after intrathecal cytarabine treatment. Future research is needed to determine the long-term clinical consequences of cerebral vasospasm in this population. IMPACT A subset of children with hematologic malignancies who receive intrathecal cytarabine experience subclinical cerebral vasospasm, as measured by transcranial Doppler ultrasound. Of children receiving intrathecal cytarabine, those who develop cerebral vasospasm are more likely to have diagnosis of acute myeloid leukemia, more likely to receive concurrent intravenous cytarabine, and less likely to receive steroids as part of their chemotherapy regimen, as compared with children without vasospasm. Future research is needed to determine if vasospasm during chemotherapy is associated with higher rates of neurocognitive dysfunction, and if so, to focus on prevention of these long-term sequelae of childhood cancer.
Collapse
Affiliation(s)
- Lisa R Sun
- Division of Pediatric Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Division of Cerebrovascular Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Wendy Ziai
- Division of Neurocritical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Stacy Cooper
- Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Division of Cerebrovascular Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ryan J Felling
- Division of Pediatric Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Division of Cerebrovascular Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Quinn A, Rigamonti A. Windows and the Practical Approach: The MOTOr. ECHOGRAPHY AND DOPPLER OF THE BRAIN 2021:21-32. [DOI: 10.1007/978-3-030-48202-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Youn SW, Lee J. From 2D to 4D Phase-Contrast MRI in the Neurovascular System: Will It Be a Quantum Jump or a Fancy Decoration? J Magn Reson Imaging 2020; 55:347-372. [PMID: 33236488 DOI: 10.1002/jmri.27430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Considering the crosstalk between the flow and vessel wall, hemodynamic assessment of the neurovascular system may offer a well-integrated solution for both diagnosis and management by adding prognostic significance to the standard CT/MR angiography. 4D flow MRI or time-resolved 3D velocity-encoded phase-contrast MRI has long been promising for the hemodynamic evaluation of the great vessels, but challenged in clinical studies for assessing intracranial vessels with small diameter due to long scan times and low spatiotemporal resolution. Current accelerated MRI techniques, including parallel imaging with compressed sensing and radial k-space undersampling acquisitions, have decreased scan times dramatically while preserving spatial resolution. 4D flow MRI visualized and measured 3D complex flow of neurovascular diseases such as aneurysm, arteriovenous shunts, and atherosclerotic stenosis using parameters including flow volume, velocity vector, pressure gradients, and wall shear stress. In addition to the noninvasiveness of the phase contrast technique and retrospective flow measurement through the wanted windows of the analysis plane, 4D flow MRI has shown several advantages over Doppler ultrasound or computational fluid dynamics. The evaluation of the flow status and vessel wall can be performed simultaneously in the same imaging modality. This article is an overview of the recent advances in neurovascular 4D flow MRI techniques and their potential clinical applications in neurovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jongmin Lee
- Department of Radiology and Biomedical Engineering, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
31
|
Li X, Gachagan A, Murray P. Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5370. [PMID: 32961726 PMCID: PMC7570994 DOI: 10.3390/s20185370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/01/2023]
Abstract
Aperiodic sparse 2D ultrasonic array configurations, including random array, log spiral array, and sunflower array, have been considered for their potential as conformable transducers able to image within a focal range of 30-80 mm, at an operating frequency of 2 MHz. Optimisation of the imaging performance of potential array patterns has been undertaken based on their simulated far field directivity functions. Two evaluation criteria, peak sidelobe level (PSL) and integrated sidelobe ratio (ISLR), are used to access the performance of each array configuration. Subsequently, a log spiral array pattern with -19.33 dB PSL and 2.71 dB ISLR has been selected as the overall optimal design. Two prototype transducers with the selected log spiral array pattern have been fabricated and characterised, one using a fibre composite element composite array transducer (CECAT) structure, the other using a conventional 1-3 composite (C1-3) structure. The CECAT device demonstrates improved coupling coefficient (0.64 to 0.59), reduced mechanical cross-talk between neighbouring array elements (by 10 dB) and improved operational bandwidth (by 16.5%), while the C1-3 device performs better in terms of sensitivity (~50%). Image processing algorithms, such as Hough transform and morphological opening, have been implemented to automatically detect and dimension particles located within a fluid-filled tube structure, in a variety of experimental scenarios, including bespoke phantoms using tissue mimicking material. Experiments using the fabricated CECAT log spiral 2D array transducer demonstrated that this algorithmic approach was able to detect the walls of the tube structure and stationary anomalies within the tube with a precision of ~0.1 mm.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK; (A.G.); (P.M.)
| | | | | |
Collapse
|
32
|
Stember JN, Terilli KL, Perez E, Megjhani M, Cooper CA, Jambawalikar S, Park S. Surface Point Cloud Ultrasound with Transcranial Doppler: Coregistration of Surface Point Cloud Ultrasound with Magnetic Resonance Angiography for Improved Reproducibility, Visualization, and Navigation in Transcranial Doppler Ultrasound. J Digit Imaging 2020; 33:930-936. [PMID: 32076925 PMCID: PMC7522153 DOI: 10.1007/s10278-020-00328-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcranial Doppler (TCD) ultrasound is a standard tool used in the setting of recent sub-arachnoid hemorrhage (SAH). By tracking velocity in the circle-of-Willis vessels, vasospasm can be detected as interval velocity increase. For this disease process, repeated TCD velocity measurements over many days is the basis for its usefulness. However, a key limitation to TCD is its user dependence, which is itself largely due to the fact that exact information about probe positioning is lost between subsequent scans. Surface point cloud ultrasound (SPC-US) was recently introduced as a general approach combining ultrasound and three-dimensional surface imaging of patient + probe. In the present proof-of-principle demonstration, we have applied SPC-US to TCD and co-registered the skin surface with that from MRA images to provide a roadmap of the vasculature in 3D space for better speed, accuracy, reproducibility, and potential semi-automation of TCD. Collating the acronyms, we call the combined approach SPC-US-TCD. TCD of the M1 was obtained while three-dimensional photographic images were obtained with the Structure Sensor camera. MRA imaging was also obtained. SPC-US-TCD and corresponding MRA 3D reconstruction images were co-registered in MeshMixer using the skin surfaces for alignment. A cylinder the width of the TCD probe was placed over the fused images and aligned with the direction and orientation of the TCD probe to demonstrate the acoustic beam. In the fused images, the acoustic beam intersects the right M1 segment of the middle cerebral artery (MCA). The angle of insonation is well demonstrated and measurable in various planes. Distance measurements made in Blender localized the TCD probe position based on three skin surface landmarks, and tabulated orientation based on three angles along the corresponding directions. SPC-US-TCD provides valuable information that is otherwise not present in TCD studies. By co-registering SPC-US-TCD data with that from cross sectional vessel imaging, precise probe location relative to external skin surface landmarks as well as 3D vessel location relative to TCD probe placement offers the potential to provide a roadmap that improves exam reproducibility, speed of acquisition, and accuracy. The goal of future work is to demonstrate this improvement statistically by application to multiple patients and scans.
Collapse
Affiliation(s)
- J N Stember
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States.
| | - K L Terilli
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - E Perez
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - M Megjhani
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - C A Cooper
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - S Jambawalikar
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - S Park
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
33
|
Manwar R, Kratkiewicz K, Avanaki K. Investigation of the Effect of the Skull in Transcranial Photoacoustic Imaging: A Preliminary Ex Vivo Study. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4189. [PMID: 32731449 PMCID: PMC7435985 DOI: 10.3390/s20154189] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/17/2023]
Abstract
Although transcranial photoacoustic imaging (TCPAI) has been used in small animal brain imaging, in animals with thicker skull bones or in humans both light illumination and ultrasound propagation paths are affected. Hence, the PA image is largely degraded and in some cases completely distorted. This study aims to investigate and determine the maximum thickness of the skull through which photoacoustic imaging is feasible in terms of retaining the imaging target structure without incorporating any post processing. We identify the effect of the skull on both the illumination path and acoustic propagation path separately and combined. In the experimental phase, the distorting effect of ex vivo sheep skull bones with thicknesses in the range of 0.7~1.3 mm are explored. We believe that the findings in this study facilitate the clinical translation of TCPAI.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
34
|
Samora M, Vianna LC, Carmo JC, Macedo V, Dawes M, Phillips AA, Paton JFR, Fisher JP. Neurovascular coupling is not influenced by lower body negative pressure in humans. Am J Physiol Heart Circ Physiol 2020; 319:H22-H31. [PMID: 32442032 DOI: 10.1152/ajpheart.00076.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral blood flow is tightly coupled with local neuronal activation and metabolism, i.e., neurovascular coupling (NVC). Studies suggest a role of sympathetic nervous system in the regulation of cerebral blood flow. However, this is controversial, and the sympathetic regulation of NVC in humans remains unclear. Since impaired NVC has been identified in several chronic diseases associated with a heightened sympathetic activity, we aimed to determine whether reflex-mediated sympathetic activation via lower body negative pressure (LBNP) attenuates NVC in humans. NVC was assessed using a visual stimulation protocol (5 cycles of 30 s eyes closed and 30 s of reading) in 11 healthy participants (aged 24 ± 3 yr). NVC assessments were made under control conditions and during LBNP at -20 and -40 mmHg. Posterior (PCA) and middle (MCA) cerebral artery mean blood velocity (Vmean) and vertebral artery blood flow (VAflow) were simultaneously determined with cardiorespiratory variables. Under control conditions, the visual stimulation evoked a robust increase in PCAVmean (∆18.0 ± 4.5%), a moderate rise in VAflow (∆9.6 ± 4.3%), and a modest increase in MCAVmean (∆3.0 ± 1.9%). The magnitude of NVC response was not affected by mild-to-moderate LBNP (all P > 0.05 for repeated-measures ANOVA). Given the small change that occurred in partial pressure of end-tidal CO2 during LBNP, this hypocapnia condition was matched via voluntary hyperventilation in absence of LBNP in a subgroup of participants (n = 8). The mild hypocapnia during LBNP did not exert a confounding influence on the NVC response. These findings indicate that the NVC is not influenced by LBNP or mild hypocapnia in humans.NEW & NOTEWORTHY Visual stimulation evoked a robust increase in posterior cerebral artery velocity and a modest increase in vertebral artery blood flow, i.e., neurovascular coupling (NVC), which was unaffected by lower body negative pressure (LBNP) in humans. In addition, although LBNP induced a mild hypocapnia, this degree of hypocapnia in the absence of LBNP failed to modify the NVC response.
Collapse
Affiliation(s)
- Milena Samora
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Jake C Carmo
- Biomechanics and Biological Signal Processing Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Victor Macedo
- Biomechanics and Biological Signal Processing Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Matthew Dawes
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Aaron A Phillips
- Departments of Physiology, Pharmacology, and Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Oran I. Flow-diverting stent and delayed intracranial bleeding: the case for discussing acquired von Willebrand disease. Platelets 2020; 32:432-435. [PMID: 32406779 DOI: 10.1080/09537104.2020.1754379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A unique feature of the flow-diverting stent (FDS) has rendered it useful in the endovascular treatment of selected intracranial aneurysms for the last decade. Delayed aneurysmal rupture and intracranial parenchymal bleeding are two leading hemorrhagic complications after FDS. It has recently been shown for the first time that there is a relationship between FDS and reduced level of vWF activity in patients undergoing endovascular cerebral aneurysm treatment. Here, the current literature is reviewed in the context of this novel finding to propose an illustrative scenario that conceptually links implantation of FDS to delayed intracranial bleeding, through the mechanism of shear-induced activation of vWF. In this scenario, after FDS implantation, sustained release of activated vWF in association with platelets plays a pivotal role in the mechanisms of delayed intracranial hemorrhages.
Collapse
Affiliation(s)
- Ismail Oran
- Section of Interventional Radiology, KENT Hospital, Izmir, Turkey
| |
Collapse
|
36
|
Nassef S, El Shenoufy M, Rawi R, El Demerdash D, Hassan M, Mustafa H, Mattar M, El Husseiny N. Assessment of Atherosclerosis in Peripheral and Central Circulation in Adult β Thalassemia Intermedia Patients by Color Doppler Ultrasound: Egyptian Experience. J Vasc Res 2020; 57:206-212. [PMID: 32396894 DOI: 10.1159/000506518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atherosclerosis has been extensively studied in thalassemia major (TM) and sickle cell disease but not yet in β thalassemia intermedia (TI). Previous studies concerned with TM were performed in children. TI patients usually live longer and, thus, are more prone to complications of atherosclerosis. AIM In our study, we applied color Doppler for the determination of arterial conduit and flow velocities in β TI patients. METHODS For central circulation, we measured right and left middle cerebral arteries (MCAs) and basilar artery (BA) mean flow velocity (MFV), pulsatility index (PI), and peak systolic velocity (PSV) as well as carotid intimal media thickness, and to assess peripheral circulation, we studied ankle/brachial index and posterior and anterior tibial arteries' (ATA, PTA) pressure and PSV. This was applied for 30 adult TI patients and 20 age-, sex-, and ethnic group-matched controls. RESULTS Transcranial Doppler findings among cases and controls showed that the MFV, PSV of MCAs, and PSV, PI, and MFV of the BA were statistically higher in cases than controls. A comparison between splenectomized and nonsplenectomized patients showed that total leukocyte count, platelet count, lactate dehydrogenase, ferritin, PSV and MFV of the left MCA were all statistically higher in splenectomized cases. Differences between males and females with TI with respect to laboratory and Doppler findings were all statistically insignificant except for intima media thickness, PTA pressure, ATA pressure, and PSV. CONCLUSION More than one parameter should be applied to assess atherosclerosis in TI. There is evidence of an increased risk of central ischemia rather than peripheral ischemia in these patients.
Collapse
Affiliation(s)
- Sahar Nassef
- Vascular Medicine Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai El Shenoufy
- Vascular Medicine Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Rawi
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa El Demerdash
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai Hassan
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Mustafa
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat Mattar
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha El Husseiny
- Clinical Hematology Unit, Internal Medicine Department, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt, .,Army Force Faculty of Medicine, Cairo, Egypt,
| |
Collapse
|
37
|
Stuart D, Christian R, Uschmann H, Palokas M. Effectiveness of intrathecal nicardipine on cerebral vasospasm in non-traumatic subarachnoid hemorrhage: a systematic review. ACTA ACUST UNITED AC 2019; 16:2013-2026. [PMID: 30335041 DOI: 10.11124/jbisrir-2017-003493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this review was to determine the effectiveness of intrathecal nicardipine compared to usual care on cerebral vasospasm and its impact on the following outcome measures: mean flow velocities, angiographic and/or clinical vasospasm, and infection rates. INTRODUCTION The results of non-traumatic (aneurysmal) subarachnoid hemorrhage can have devastating effects on patients in terms of functional outcomes. Although other medications have been and continue to be used, Nimodipine is the only Food and Drug Administration-approved medication for treating and improving outcomes following non-traumatic subarachnoid hemorrhage, which may be caused by aneurysmal rupture or arteriovenous malformation. Cerebral vasospasm after non-traumatic subarachnoid hemorrhage is a major concern; cerebral vasospasm refers to the narrowing of the cerebral vessels, which can lead to stroke. Delayed ischemic neurological deficit, as a result of cerebral vasospasm, is the number one reason for death and disability following subarachnoid hemorrhage. This review will determine the effects that intrathecal nicardipine has on cerebral vasospam following non-traumatic subarachnoid hemorrhage. INCLUSION CRITERIA The participants of this review included adult patients (18 years and over) in intensive care units. The patients must have had a subarachnoid hemorrhage without history of trauma as cause of subarachnoid hemorrhage, along with the presence of an external ventricular drain. The intervention was administration of intrathecal nicardipine in patients with cerebral vasospasm as a result of non-traumatic subarachnoid hemorrhage. The comparator was usual care, which does not include use of intrathecal nicardipine as part of the treatment regimen. The current review considered both experimental and quasi-experimental study designs. The primary outcomes measured included presence of cerebral vasospasm (identified by mean flow velocities measured by transcranial Doppler and the presence of angiographic vasospasm identified on angiogram) and clinical/symptomatic vasospasm. Secondarily, infection rates as a result of intrathecal nicardipine administration were evaluated. METHODS The search strategy aimed to find both published and unpublished studies. Seven databases were searched with no date limitations due to the limited amount of research on this topic.Two independent reviewers assessed the methodological validity of the papers prior to inclusion in the review using the standardized critical appraisal instruments from Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI).Quantitative data was extracted from included studies using the standardized data extraction tool from JBI SUMARI.Statistical pooling was not possible; therefore findings were presented in a narrative form. RESULTS Two studies examined the effect that intrathecal nicardipine has on cerebral vasospasm, clinical/symptomatic vasospasm and safety concerns (i.e. infection). The studies indicate that intrathecal nicardipine has shown potential benefits and safety in the treatment of cerebral vasospasm. CONCLUSIONS Although intrathecal nicardipine has shown potential to be effective in treating cerebral vasospasm, variance existed among those who received intrathecal nicardipine. In terms of safety, one study had no occurrences of associated bacterial meningitis and the other study had two reported cases of bacterial meningitis out of 50 among those who received intrathecal nicardipine. Limited studies on the use of intrathecal nicardipine following non-traumatic subarachnoid hemorrhage and lack of pooling of results for this review demonstrate the need for more research in this field.
Collapse
Affiliation(s)
- Daniel Stuart
- School of Nursing, Department of Neurology, University of Mississippi Medical Center, Jackson, USA.,Mississippi Centre of Evidence-Based Practice: a Joanna Briggs Institute Centre of Excellence
| | - Robin Christian
- School of Nursing, University of Mississippi Medical Center, Jackson, USA.,Mississippi Centre of Evidence-Based Practice: a Joanna Briggs Institute Centre of Excellence
| | - Hartmut Uschmann
- School of Nursing, Department of Neurology, University of Mississippi Medical Center, Jackson, USA
| | - Michelle Palokas
- School of Nursing, University of Mississippi Medical Center, Jackson, USA.,Mississippi Centre of Evidence-Based Practice: a Joanna Briggs Institute Centre of Excellence
| |
Collapse
|
38
|
Santos‐Teles AG, Passos RH, Panerai RB, Ramalho C, Farias S, Rosa JG, Gobatto A, Benigno P, Caldas JR. Intravenous administration of Milrinone, as an alternative approach to treat vasospasm in subarachnoid hemorrhage: A case report of transcranial Doppler monitoring. Clin Case Rep 2019; 7:648-652. [PMID: 30997055 PMCID: PMC6452455 DOI: 10.1002/ccr3.2034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
This case illustrates the importance and potential of having TCD monitoring in intensive care. This easy-to-use, safe, low-cost, and bedside tool allows evaluation of the safety and feasibility of an alternative treatment of VSP in SCH and demonstrates the potential to avoid the use of angiography, a high cost, invasive procedure.
Collapse
Affiliation(s)
- Alex Goes Santos‐Teles
- Critical Care UnitHospital São RafaelSalvadorBrazil
- Escola Bahiana de Medicina e Saúde PúblicaSalvadorBrazil
| | | | - Ronney B. Panerai
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUK
| | | | | | - João G Rosa
- Critical Care UnitHospital São RafaelSalvadorBrazil
| | | | | | - Juliana Ribeiro Caldas
- Critical Care UnitHospital São RafaelSalvadorBrazil
- Escola Bahiana de Medicina e Saúde PúblicaSalvadorBrazil
- University of Salvador (UNIFACS)SalvadorBrazil
| |
Collapse
|
39
|
Montrief T, Alerhand S, Jewell C, Scott J. Incorporation of Transcranial Doppler into the ED for the neurocritical care patient. Am J Emerg Med 2019; 37:1144-1152. [PMID: 30894296 DOI: 10.1016/j.ajem.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION In the catastrophic neurologic emergency, a complete neurological exam is not always possible or feasible given the time-sensitive nature of the underlying disease process, or if emergent airway management is indicated. As the neurologic exam may be limited in some patients, the emergency physician is reliant on the assessment of brainstem structures to determine neurological function. Physicians thus routinely depend on advanced imaging modalities to further investigate for potential catastrophic diagnoses. Acquiring these tests introduces the risks of transport as well as delays in managing time-sensitive neurologic processes. A more immediate, non-invasive bedside approach complementing these modalities has evolved: Transcranial Doppler (TCD). OBJECTIVE This narrative review will provide a description of scenarios in which TCD may be applicable. It will summarize the sonographic findings and associated underlying pathophysiology in such neurocritical care patients. An illustrated tutorial, along with pearls and pitfalls, is provided. DISCUSSION Although there are numerous formalized TCD protocols utilizing four views (transtemporal, submandibular, suboccipital, and transorbital), point-of-care TCD is best accomplished through the transtemporal window. The core applications include the evaluation of midline shift, vasospasm after subarachnoid hemorrhage, acute ischemic stroke, and elevated intracranial pressure. An illustrative tutorial is provided. CONCLUSIONS With the wide dissemination of bedside ultrasound within the emergency department, there is a unique opportunity for the emergency physician to utilize TCD for a variety of conditions. While barriers to training exist, emergency physician performance of limited point-of-care TCD is feasible and may provide rapid and reliable clinical information with high temporal resolution.
Collapse
Affiliation(s)
- Tim Montrief
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL 33136, USA.
| | - Stephen Alerhand
- Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Corlin Jewell
- Berbee Walsh Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jeffery Scott
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL 33136, USA
| |
Collapse
|
40
|
Transcranial Doppler Versus CT-Angiography for Detection of Cerebral Vasospasm in Relation to Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Prospective Single-Center Cohort Study: The Transcranial doppler and CT-angiography for Investigating Cerebral vasospasm in Subarachnoid hemorrhage (TACTICS) study. Crit Care Explor 2019; 1:e0001. [PMID: 32166226 DOI: 10.1097/cce.0000000000000001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cerebral vasospasm in the first 2 weeks after aneurysmal subarachnoid hemorrhage is recognized as a major predictor of delayed cerebral ischemia. The routine screening for cerebral vasospasm with either transcranial Doppler or CT angiography has been advocated, although its diagnostic value has not yet been determined. Our study investigated the diagnostic accuracy of detecting vasospasm by transcranial Doppler and CT angiography for the prediction of delayed cerebral ischemia and functional outcome. Additionally, agreement between transcranial Doppler and CT angiography was determined. Design Prospective diagnostic accuracy study. Settings Neurocritical care unit and neurosurgical ward at a tertiary academic medical center. Patients Between 2013 and 2016, 59 consenting patients were included. Intervention Patients undergo both transcranial Doppler and CT angiography for detection of cerebral vasospasm on days 5 and 10 after aneurysmal subarachnoid hemorrhage. Delayed cerebral ischemia was defined as secondary neurologic deterioration, not explained otherwise. Unfavorable outcome was defined modified Rankin Scale > 2 at 6 months. Measurements and Main Results On transcranial Doppler, cerebral vasospasm was observed in 26 patients (45%). On CT angiography, vasospasm was observed in 54 patients (95%). The agreement between transcranial Doppler and CT angiography was 0.47. Delayed cerebral ischemia occurred in 16 patients (27%); unfavorable outcome in 12 patients (20%). Transcranial Doppler predicted delayed cerebral ischemia with a sensitivity of 0.44 (day 5) and 0.50 (day 10), with a specificity of 0.67 (day 5) and 0.57 (day 10). CT angiography predicted delayed cerebral ischemia with a sensitivity of 0.81 (day 5 and 10) and with a specificity of 0.070 (day 5) and 0.00 (day 10). The highest accuracy for predicting unfavorable outcome was on day 5 (0.61 for transcranial Doppler vs 0.27 for CT angiography). Conclusion The diagnostic accuracy of both CT angiography and transcranial Doppler for detection of cerebral vasospasm as well as prediction of delayed cerebral ischemia and functional outcome is limited. The agreement between CT angiography and transcranial Doppler is low.
Collapse
|
41
|
Goyal P, Mangla R, Gupta S, Malhotra A, Almast J, Sapire J, Kolar B. Pediatric Congenital Cerebrovascular Anomalies. J Neuroimaging 2018; 29:165-181. [DOI: 10.1111/jon.12575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Pradeep Goyal
- Department of Radiology; St. Vincent's Medical Center; Bridgeport CT
| | - Rajiv Mangla
- Department of Radiology; SUNY Upstate Medical University; Syracuse NY
| | - Sonali Gupta
- Department of Medicine; St. Vincent's Medical Center; Bridgeport CT
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven CT
| | - Jeevak Almast
- Department of Radiology; University of Rochester Medical Center; Rochester NY
| | - Joshua Sapire
- Department of Radiology; St. Vincent's Medical Center; Bridgeport CT
| | | |
Collapse
|
42
|
The role of cervical color Doppler ultrasound in the diagnosis of brain death. Neuroradiology 2018; 61:137-145. [DOI: 10.1007/s00234-018-2111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
43
|
Schaafsma A. A new method for correcting middle cerebral artery flow velocity for age by calculating Z-scores. J Neurosci Methods 2018; 307:1-7. [DOI: 10.1016/j.jneumeth.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 10/14/2022]
|
44
|
Cerebral Blood Flow in Polytrauma: Transcranial Doppler Analysis in a Nonhuman Primate Shock Model. J Surg Res 2018; 232:146-153. [PMID: 30463710 DOI: 10.1016/j.jss.2018.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/05/2018] [Accepted: 05/24/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND In combat-related trauma, resuscitation goals are to attenuate tissue hypoxia and maintain circulation. During hemorrhagic shock, compensatory and autoregulatory mechanisms are activated to preserve cerebral blood flow. Transcranial Doppler (TCD) ultrasonography may be an ideal noninvasive modality to monitor cerebral hemodynamics. Using a nonhuman primate (NHP) model, we attempted to characterize cerebral hemodynamics during polytraumatic hemorrhagic shock using TCD ultrasonography. MATERIALS AND METHODS The ophthalmic artery was insonated at multiple time points during varying stages of shock. Hemorrhage was controlled and pressure targeted to 20 mmHg to initiate and maintain the shock period. Mean flow velocity (MFV), peak systolic velocity (PSV), end diastolic velocity (EDV), pulsatility index (PI), and resistance index (RI) were recorded. Results represent mean ± standard deviation; statistical significance is P < 0.05; n = 12. RESULTS Compared to baseline, MFV, PSV, EDV, and RI show significant changes after 60 min of hemorrhagic shock, (9.81 ± 3.60 cm/s; P < 0.01), (21.15 ± 8.59 cm/s; P < 0.01), (5.15 ± 0.21 cm/s; P < 0.01), (0.70 ± 0.11; P < 0.05), respectively. PI did not change during hemorrhagic shock. At end of prehospital care (T30), cerebral flow recovers for MFV, PSV, and RI while EDV remained decreased at T30 (6.15 ± 1.13 cm/s; P < 0.01) and 1 h of simulated transport (T90) (5.87 ± 0.62 cm/s; P < 0.01). Changes in PI at T30 and T90 were not significant. MFV diminished (16.45 ± 3.85 cm/s; P < 0.05) at T90. CONCLUSIONS This study establishes baseline and hemorrhagic shock values for NHP cerebral blood flow velocities and cerebrovascular indices. TCD ultrasonography may represent an important area of research for targeted resuscitation investigations using a hemorrhagic shock model in NHPs.
Collapse
|
45
|
Malferrari G, Pulito G, Pizzini AM, Carraro N, Meneghetti G, Sanzaro E, Prati P, Siniscalchi A, Monaco D. MicroV Technology to Improve Transcranial Color Coded Doppler Examinations. J Neuroimaging 2018; 28:350-358. [DOI: 10.1111/jon.12517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giovanni Malferrari
- Stroke Unit, Neurology Unit; Azienda Unità Sanitaria Locale - IRCCS; Reggio Emilia Italy
| | - Giuseppe Pulito
- Department of Anaesthesia and Resuscitation Service - Vito Fazzi Hospital; Lecce Italy
| | | | - Nicola Carraro
- Neurology Clinic; Department of Head and Neck - Integrated University Healthcare Company; Trieste Italy
| | - Giorgio Meneghetti
- Department of Neurosciences; University of Padua School of Medicine; Padova Italy
| | - Enzo Sanzaro
- Stroke Unit; Department of Medicine - Umberto I Hospital; Siracusa Italy
| | | | | | - Daniela Monaco
- Stroke Unit; Department of Medicine - Spirito Santo Hospital; Pescara Italy
| |
Collapse
|
46
|
McKiernan S, Selmes C. Transcranial colour-coded duplex of the intracranial large arteries. SONOGRAPHY 2017. [DOI: 10.1002/sono.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
48
|
Vinciguerra L, Bösel J. Noninvasive Neuromonitoring: Current Utility in Subarachnoid Hemorrhage, Traumatic Brain Injury, and Stroke. Neurocrit Care 2017; 27:122-140. [PMID: 28004334 DOI: 10.1007/s12028-016-0361-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noninvasive neuromonitoring is increasingly being used to monitor the course of primary brain injury and limit secondary brain damage of patients in the neurocritical care unit. Proposed advantages over invasive neuromonitoring methods include a lower risk of infection and bleeding, no need for surgical installation, mobility and portability of some devices, and safety. The question, however, is whether noninvasive neuromonitoring is practical and trustworthy enough already. We searched the recent literature and reviewed English-language studies on noninvasive neuromonitoring in subarachnoid hemorrhage, traumatic brain injury, and ischemic and hemorrhagic stroke between the years 2010 and 2015. We found 88 studies that were eligible for review including the methods transcranial ultrasound, electroencephalography, evoked potentials, near-infrared spectroscopy, bispectral index, and pupillometry. Noninvasive neuromonitoring cannot yet completely replace invasive methods in most situations, but has great potential being complementarily integrated into multimodality monitoring, for guiding management, and for limiting the use of invasive devices and in-hospital transports for imaging.
Collapse
Affiliation(s)
- Luisa Vinciguerra
- Department GF Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Julian Bösel
- Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Blanco P, Blaivas M. Applications of Transcranial Color-Coded Sonography in the Emergency Department. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1251-1266. [PMID: 28240783 DOI: 10.7863/ultra.16.04050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Transcranial color-coded Doppler sonography is a noninvasive bedside ultrasound application that combines both imaging of parenchymal structures and Doppler assessment of intracranial vessels. It may aid in rapid diagnoses and treatment decision making of patients with intracranial emergencies in point-of-care settings. This pictorial essay illustrates the technical aspects and emergency department applications of transcranial color-coded Doppler sonography, and provides some rationale for implementation of this technique into the emergency department practice.
Collapse
Affiliation(s)
- Pablo Blanco
- Intensive Care Unit, Hospital "Dr. Emilio Ferreyra,", Necochea, Argentina
| | - Michael Blaivas
- Department of Emergency Medicine, University of South Carolina School of Medicine, Piedmont Hospital, Newnan, Georgia, USA
| |
Collapse
|
50
|
Cho SY, So WY, Roh HT. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050454. [PMID: 28441325 PMCID: PMC5451905 DOI: 10.3390/ijerph14050454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 11/26/2022]
Abstract
Although regular Taekwondo (TKD) training has been reported to be effective for improving cognitive function in children, the mechanism underlying this improvement remains unclear. The purpose of the present study was to observe changes in neuroplasticity-related growth factors in the blood, assess cerebral blood flow velocity, and verify the resulting changes in children’s cognitive function after TKD training. Thirty healthy elementary school students were randomly assigned to control (n = 15) and TKD (n = 15) groups. The TKD training was conducted for 60 min at a rating of perceived exertion (RPE) of 11–15, 5 times per week, for 16 weeks. Brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) levels were measured by blood sampling before and after the training, and the cerebral blood flow velocities (peak systolic [MCAs], end diastolic [MCAd], mean cerebral blood flow velocities [MCAm], and pulsatility index [PI]) of the middle cerebral artery (MCA) were measured using Doppler ultrasonography. For cognitive function assessment, Stroop Color and Word Tests (Word, Color, and Color-Word) were administered along with other measurements. The serum BDNF, VEGF, and IGF-1 levels and the Color-Word test scores among the sub-factors of the Stroop Color and Word Test scores were significantly higher in the TKD group after the intervention (p < 0.05). On the other hand, no statistically significant differences were found in any factors related to cerebral blood flow velocities, or in the Word test and Color test scores (p > 0.05). Thus, 16-week TKD training did not significantly affect cerebral blood flow velocities, but the training may have been effective in increasing children’s cognitive function by inducing an increase in the levels of neuroplasticity-related growth factors.
Collapse
Affiliation(s)
- Su-Youn Cho
- Department of Taekwondo, Youngsan University, Yangsan-si 50510, Korea.
| | - Wi-Young So
- Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si 27469, Korea.
| | - Hee-Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan 49315, Korea.
| |
Collapse
|