1
|
Goldberg D, Bentwich I, Haran Y, Getter T. Design and Synthesis of Novel Di-Boronic Acid-Based Chemical Glucose Sensors. ACS OMEGA 2025; 10:10812-10825. [PMID: 40160773 PMCID: PMC11947836 DOI: 10.1021/acsomega.4c06237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Chemical-based fluorescent sensors with the capability of long-term stability and low cost are promising agents in clinical diagnosis and medical research. Measuring glucose levels inside cells and their surroundings provides insight into cellular metabolic homeostasis and may be employed as an indicator for potential pathological conditions. Anthracene-based diboronic acid (BA) derivatives offer a reversible and covalent binding mechanism for glucose recognition, which enables robust and continuous glucose monitoring. To improve its poor solubility and biological applicability, a diboronic acid chemical structure design was explored. To date, several anthracene-based ortho-amino methylphenyl boronic acid glucose-sensors have been developed. Most recently, the structure of Mc-CDBA (((((2-(methoxycarbonyl) anthracene-9,10-diyl) bis (methylene)) bis(methylazanediyl)) bis(methylene)) bis(4-cyano-2,1-phenylene)) diboronic acid was disclosed. Mc-CDBA exhibits suitable water-solubility and sensitivity toward glucose, with limited modification sites and suitability to extra-cellular applications. Here, we present a palette of Mc-CDBA derivatives: carboxylic (BA), amid (BA 5) and acryl (BA 21)-based Mc-CDBA sensors for extra- and intracellular glucose monitoring, respectively. The developed chemical glucose sensors were designed to obtain a final product with fewer synthetic steps, allowing easier scale-up capacity. Moreover, we showed that ortho-amino site modifications do not interfere with the sensor activity, allowing alternative water solubility solutions without chemically modifying the chromophore/aromatic subunits within the molecule. Among these probes, we also developed an extracellular hydrogel-embedded sensor (BA 21) to monitor extracellular glucose levels under persistent solution flow, a feature that is lacking in other glucose sensors. The synthesized derivatives could serve as diverse fluorescent sensors for glucose monitoring in medical applications.
Collapse
Affiliation(s)
- Doron Goldberg
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo, 6701033, Israel
| | - Isaac Bentwich
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo, 6701033, Israel
| | - Yossi Haran
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo, 6701033, Israel
| | - Tamar Getter
- BioAI Drug Safety Prediction
Platform, Quris, HaNatsiv St 6, Tel Aviv-Yafo, 6701033, Israel
| |
Collapse
|
2
|
Mowla M, Gorji-Bahri G, Moghimi HR, Hashemi A. Enhancement effect of urea toward electroporation-mediated plasmid transfection efficiency in the HEK-293 cell line. Res Pharm Sci 2024; 19:766-773. [PMID: 39911892 PMCID: PMC11792712 DOI: 10.4103/rps.rps_185_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Intracellular delivery is crucial in biological and medical studies. Although many molecular tools have been created for cell-based gene therapies, it remains challenging to introduce external molecules into cells. As one of the most popular non-viral transfection methods, electroporation induces transient pores in the cell membrane by applying an external electric field. Unsatisfactory transfection efficiency and low cell viability are the major drawbacks of electroporation. To overcome these issues, the current study investigated the effect of urea on electroporation-mediated transfection efficiency. Experimental approach Three voltages of electroporation, including 100, 120, and 140 V, and 3 concentrations of urea buffer, including 0.25%, 0.5%, and 1% W/V, were considered as variables in this study. The HEK-293 cell line was used for transfection, and green fluorescent protein (GFP) expression was evaluated using flow cytometry and fluorescence microscopy. Findings/Results The results showed that the combination of electroporation and urea increased electroporation efficacy, but the effect depended on voltage and urea concentration. When different concentrations of urea were added to HEK-293 cells at a voltage of 100 V, the number of cells transfected by pEGFP-N1 increased (from 12.3 ± 0.2% in untreated cells to 17.35 ± 0.55%, 23.3 ± 0.3%, and 14 ± 0.1% at urea concentrations of 0.25%, 0.5%, and 1% W/V, respectively). The electroporation buffer containing 0.5% W/V urea showed the highest EGFP expression (23.3 ± 0.3%) and high cell viability (over 90%). Conclusion and implications This research offers a new perspective for improving gene transfection efficiency once electroporation is utilized.
Collapse
Affiliation(s)
- Mahshid Mowla
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
3
|
Kumar A, Nahak BK, Gupta P, Santra TS, Tseng FG. Laser-Induced Intracellular Delivery: Exploiting Gold-Coated Spiky Polymeric Nanoparticles and Gold Nanorods under Near-Infrared Pulses for Single-Cell Nano-Photon-Poration. MICROMACHINES 2024; 15:168. [PMID: 38398898 PMCID: PMC10890628 DOI: 10.3390/mi15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
This study explores the potential of laser-induced nano-photon-poration as a non-invasive technique for the intracellular delivery of micro/macromolecules at the single-cell level. This research proposes the utilization of gold-coated spiky polymeric nanoparticles (Au-PNPs) and gold nanorods (GNRs) to achieve efficient intracellular micro/macromolecule delivery at the single-cell level. By shifting the operating wavelength towards the near-infrared (NIR) range, the intracellular delivery efficiency and viability of Au-PNP-mediated photon-poration are compared to those using GNR-mediated intracellular delivery. Employing Au-PNPs as mediators in conjunction with nanosecond-pulsed lasers, a highly efficient intracellular delivery, while preserving high cell viability, is demonstrated. Laser pulses directed at Au-PNPs generate over a hundred hot spots per particle through plasmon resonance, facilitating the formation of photothermal vapor nanobubbles (PVNBs). These PVNBs create transient pores, enabling the gentle transfer of cargo from the extracellular to the intracellular milieu, without inducing deleterious effects in the cells. The optimization of wavelengths in the NIR region, coupled with low laser fluence (27 mJ/cm2) and nanoparticle concentrations (34 µg/mL), achieves outstanding delivery efficiencies (96%) and maintains high cell viability (up to 99%) across the various cell types, including cancer and neuronal cells. Importantly, sustained high cell viability (90-95%) is observed even 48 h post laser exposure. This innovative development holds considerable promise for diverse applications, encompassing drug delivery, gene therapy, and regenerative medicine. This study underscores the efficiency and versatility of the proposed technique, positioning it as a valuable tool for advancing intracellular delivery strategies in biomedical applications.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan; (A.K.)
| | - Bishal Kumar Nahak
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan; (A.K.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan; (A.K.)
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
5
|
Shao G, Himmelfarb J, Hinds BJ. Strategies for optimizing urea removal to enable portable kidney dialysis: A reappraisal. Artif Organs 2022; 46:997-1011. [PMID: 35383963 DOI: 10.1111/aor.14185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Portable hemodialysis has the potential to improve health outcomes and quality of life for patients with kidney failure at reduced costs. Urea removal, required for dialysate regeneration, is a central function of any existing/potential portable dialysis device. Urea in the spent dialysate coexists with non-urea uremic toxins, nutrients, and electrolytes, all of which will interfere with the urea removal efficiency, regardless of whether the underlying urea removal mechanism is based on urease conversion, direct urea adsorption, or oxidation. The aim of the current review is to identify the amount of the most prevalent chemicals being removed during a single dialysis session and evaluate the potential benefits of an urea-selective membrane for portable dialysis. METHODS We have performed a literature search using Web of Science and PubMed databases to find available articles reporting (or be able to calculate from blood plasma concentration) > 5 mg of individually quantified solutes removed during thrice-weekly hemodialysis sessions. If multiple reports of the same solute were available, the reported values were averaged, and the geometric mean of standard deviations was taken. Further critical literature analysis of reported dialysate regeneration methods was performed using Web of Science and PubMed databases. RESULTS On average, 46.0 g uremic retention solutes are removed in a single conventional dialysis session, out of which urea is only 23.6 g. For both urease- and sorbent-based urea removal mechanisms, amino acids, with 7.7 g removal per session, could potentially interfere with urea removal efficiency. Additionally for the oxidation-based urea removal system, plentiful nutrients such as glucose (24.0 g) will interfere with urea removal by competition. Using a nanofiltration membrane between dialysate and oxidation unit with a molecular weight cutoff (MWCO) of ~200 Da, 67.6 g of non-electrolyte species will be removed in a single dialysis session, out of which 44.0 g are non-urea molecules. If the membrane MWCO is further decreased to 120 Da, the mass of non-electrolyte non-urea species will drop to 9.3 g. Reverse osmosis membranes have been shown to be both effective at blocking the transport of non-urea species (creatinine for example with ~90% rejection ratio), and permissive for urea transport (~20% rejection ratio), making them a promising urea selective membrane to increase the efficiency of the oxidative urea removal system. CONCLUSIONS Compiled are quantified solute removal amounts greater than 5 mg per session during conventional hemodialysis treatments, to act as a guide for portable dialysis system design. Analysis shows that multiple chemical species in the dialysate interfere with all proposed portable urea removal systems. This suggests the need for an additional protective dialysate loop coupled to urea removal system and an urea-selective membrane.
Collapse
Affiliation(s)
- Guozheng Shao
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington, USA.,Center for Dialysis Innovation, University of Washington, Seattle, Washington, USA
| | - Jonathan Himmelfarb
- Center for Dialysis Innovation, University of Washington, Seattle, Washington, USA.,Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bruce J Hinds
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington, USA.,Center for Dialysis Innovation, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Toepfer ET, Rott J, Bartosova M, Kolevica A, Machuca-Gayet I, Heuser A, Rabe M, Shroff R, Bacchetta J, Zarogiannis SG, Eisenhauer A, Schmitt CP. Calcium isotope fractionation by osteoblasts and osteoclasts, across endothelial and epithelial cell barriers, and with binding to proteins. Am J Physiol Regul Integr Comp Physiol 2021; 321:R29-R40. [PMID: 33978493 DOI: 10.1152/ajpregu.00334.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Timely and accurate diagnosis of osteoporosis is essential for adequate therapy. Calcium isotope ratio (δ44/42Ca) determination has been suggested as a sensitive, noninvasive, and radiation-free biomarker for the diagnosis of osteoporosis, reflecting bone calcium balance. The quantitative diagnostic is based on the calculation of the δ44/42Ca difference between blood, urine, and bone. The underlying cellular processes, however, have not been studied systematically. We quantified calcium transport and δ44/42Ca fractionation during in vitro bone formation and resorption by osteoblasts and osteoclasts and across renal proximal tubular epithelial cells (HK-2), human vein umbilical endothelial cells (HUVECs), and enterocytes (Caco-2) in transwell systems and determined transepithelial electrical resistance characteristics. δ44/42Ca fractionation was furthermore quantified with calcium binding to albumin and collagen. Calcified matrix formed by osteoblasts was isotopically lighter than culture medium by -0.27 ± 0.03‰ within 5 days, while a consistent effect of activated osteoclasts on δ44/42Ca could not be demonstrated. A transient increase in δ44/42Ca in the apical compartment by 0.26‰ occured across HK-2 cells, while δ44/42Ca fractionation was small across the HUVEC barrier and absent with Caco-2 enterocytes, and with binding of calcium to albumin and collagen. In conclusion, δ44/42Ca fractionation follows similar universal principles as during inorganic mineral precipitation; osteoblast activity results in δ44/42Ca fractionation. δ44/42Ca fractionation also occurs across the proximal tubular cell barrier and needs to be considered for in vivo bone mineralization modeling. In contrast, the effect of calcium transport across endothelial and enterocyte barriers on blood δ44/42Ca should be low and is absent with physiochemical binding of calcium to proteins.
Collapse
Affiliation(s)
- Eva Teresa Toepfer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jeremy Rott
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ana Kolevica
- GEOMAR, Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | | | | | - Michael Rabe
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Rukshana Shroff
- Renal Unit, University College of London Great Ormond Street Hospital for Children National Health Service Foundation Trust and Institute of Child Health, London, United Kingdom
| | | | - Sotirios G Zarogiannis
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Goodman BE. Advances in Physiology Education: My Journal and Yours Too? ADVANCES IN PHYSIOLOGY EDUCATION 2020; 44:60-61. [PMID: 31898915 DOI: 10.1152/advan.00138.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Barbara E Goodman
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
8
|
Qiu K, Chen Y, Rees TW, Ji L, Chao H. Organelle-targeting metal complexes: From molecular design to bio-applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Chan CYL, Hiong KC, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK. Light exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium. J Exp Biol 2018; 221:jeb176313. [PMID: 29540461 DOI: 10.1242/jeb.176313] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Giant clams live in nutrient-poor reef waters of the Indo-Pacific and rely on symbiotic dinoflagellates (Symbiodinium spp., also known as zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, the host clam has to absorb exogenous nitrogen and supply it to them. This study aimed to demonstrate light-enhanced urea absorption in the fluted giant clam, Tridacna squamosa, and to clone and characterize the urea active transporter DUR3-like from its ctenidium (gill). The results indicate that T. squamosa absorbs exogenous urea, and the rate of urea uptake in the light was significantly higher than that in darkness. The DUR3-like coding sequence obtained from its ctenidium comprised 2346 bp, encoding a protein of 782 amino acids and 87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer mantle and kidney. Twelve hours of exposure to light had no significant effect on the transcript level of ctenidial DUR3-like However, between 3 and 12 h of light exposure, DUR3-like protein abundance increased progressively in the ctenidium, and became significantly greater than that in the control at 12 h. DUR3-like had an apical localization in the epithelia of the ctenidial filaments and tertiary water channels. Taken together, these results indicate that DUR3-like might participate in light-enhanced urea absorption in the ctenidium of T. squamosa When made available to the symbiotic zooxanthellae that are known to possess urease, the absorbed urea can be metabolized to NH3 and CO2 to support amino acid synthesis and photosynthesis, respectively, during insolation.
Collapse
Affiliation(s)
- Christabel Y L Chan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Celine Y L Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
10
|
Indo HP, Hawkins CL, Nakanishi I, Matsumoto KI, Matsui H, Suenaga S, Davies MJ, St Clair DK, Ozawa T, Majima HJ. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. Handb Exp Pharmacol 2017; 240:439-456. [PMID: 28176043 DOI: 10.1007/164_2016_117] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8575, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Daret K St Clair
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Toshihiko Ozawa
- Division of Oxidative Stress Research, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| |
Collapse
|
11
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Wahrnehmung der chemischen Prozesse in einzelnen Organellen mit niedermolekularen Fluoreszenzsonden. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| |
Collapse
|
12
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew Chem Int Ed Engl 2016; 55:13658-13699. [DOI: 10.1002/anie.201510721] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| |
Collapse
|
13
|
Syamaladevi RM, Tang J, Zhong Q. Water Diffusion from a Bacterial Cell in Low-Moisture Foods. J Food Sci 2016; 81:R2129-34. [PMID: 27505687 DOI: 10.1111/1750-3841.13412] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/15/2016] [Accepted: 07/02/2016] [Indexed: 11/30/2022]
Abstract
We used a Fick's unsteady state diffusion equation to estimate the time required for a single spherical shaped bacterium (assuming Enterococcus faecium as the target microorganism) in low-moisture foods to equilibrate with the environment. We generated water sorption isotherms of freeze-dried E. faecium. The water activity of bacterial cells at given water content increased considerably as temperature increased from 20 to 80 °C, as observed in the sorption isotherms of bacterial cells. When the water vapor diffusion coefficient was assumed as between 10(-12) and 10(-10) m(2) /s for bacterial cells, the predicted equilibration times (teq ) ranged from 8.24×10(-4) to 8.24×10(-2) s. Considering a cell membrane barrier with a lower water diffusion coefficient (10(-15) m(2) /s) around the bacterial cell with a water diffusion coefficient of 10(-12) m(2) /s, the teq predicted using COMSOL Multiphysics program was 3.8×10(-1) s. This result suggests that a single bacterium equilibrates rapidly (within seconds) with change in environmental humidity and temperature.
Collapse
Affiliation(s)
- Roopesh M Syamaladevi
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada, T6G 2P5.
| | - Juming Tang
- Biological Systems Engineering Dept, Washington State Univ, P.O Box 646120, Pullman, Wash, 99164-6120, U.S.A.
| | - QingPing Zhong
- College of Food Science, South China Agricultural Univ, Tianhe, Guangzhou, 510642, P. R. China
| |
Collapse
|
14
|
Roy S, Gruenbaum SM, Skinner JL. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J Chem Phys 2014; 141:18C502. [DOI: 10.1063/1.4895546] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Roy
- Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - S. M. Gruenbaum
- Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J. L. Skinner
- Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
15
|
|
16
|
Saffari M, Tamaddon AM, Shirazi FH, Oghabian MA, Moghimi HR. Improving cellular uptake and in vivo tumor suppression efficacy of liposomal oligonucleotides by urea as a chemical penetration enhancer. J Gene Med 2013; 15:12-9. [PMID: 23281182 DOI: 10.1002/jgm.2688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Liposomes are among the most widely used carriers for the delivery of antisense oligonucleotides (AsODNs) to intracellular targets. Although different strategies have been employed, the question of how to improve liposomal uptake and enhance the release of AsODN into cytoplasm still remains to be answered with respect to the use of a safe, easy and economic method. In the present study, the possibility of enhancing such processes at cellular and animal levels using urea as a penetration enhancer was investigated. METHODS To perform this investigation, a cationic liposome containing an AsODN against protein kinase (PKC)-α was prepared, and the effect of urea on its cellular internalization and the related sequence-specific inhibition of gene expression in human lung adenocarcinoma A549 cells were investigated by flow cytometry and the reverse transcriptase-polymerase chain reaction, respectively. In in vivo studies, a xenograft lung tumor was established in nude mice by A549 cells and the enhancement effect of urea toward the effects of liposomal AsODN on tumor growth was investigated. RESULTS Cellular studies revealed that urea treatment increases liposomal uptake and the release of AsODN into the cytoplasm by approximately 40%. Sequence-specific inhibition of target gene PKC-α expression was also increased by approximately two-fold by urea at 200-300 nM AsODN. In animal studies, urea significantly decreased the tumor volume (approximately 40%) and increased its doubling time from approximately 13 days to 17 days. CONCLUSIONS Urea, and possibly other membrane fluidizers, could be regarded as penetration enhancers for liposomal AsODN delivery and may improve the therapeutic effect of these gene-therapy vectors at both cellular and animal levels.
Collapse
Affiliation(s)
- Mostafa Saffari
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
17
|
Bondarenko O, Dzyuba B, Cosson J, Yamaner G, Prokopchuk G, Psenicka M, Linhart O. Volume changes during the motility period of fish spermatozoa: interspecies differences. Theriogenology 2013; 79:872-81. [PMID: 23394972 DOI: 10.1016/j.theriogenology.2013.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/19/2012] [Accepted: 01/06/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study was to describe spermatozoa volume changes during the motility period of fish species with either osmotic (common carp Cyprinus carpio) or with ionic (sterlet Acipenseri ruthenus and brook trout Salvelinus fontinalis) modes of motility activation. Nephelometry, light microscopy, and spermatocrit methods were used for quantitative assessment of cell volume changes in media of different osmolalities. Significant correlation (R(2) = 0.7341; P < 0.001) between parameter of volume changes measured using nephelometry and light microscopy methods confirmed nephelometry as a sufficiently sensitive method to detect changes of spermatozoa volume. The spermatocrit alteration method resulted in a large proportion of damaged and potentially immotile spermatozoa in media of osmolality less than 150 mOsm/kg in carp and osmolalities from 10 to 300 mOsm/kg in sterlet and brook trout. Therefore, this method is not reliable for assessing spermatozoa swelling in hypotonic solutions, because the integrity of the cells is not fully preserved. Increase in carp spermatozoa (osmotic activation mode) volume occurred during the motility period in hypotonic conditions, but no indications of volume changes were found in sterlet and brook trout spermatozoa (ionic activation mode) associated with environmental osmolality alteration. Accordingly, we conclude that sperm volume changes are differentially involved in the motility activation process. Species-specific differences in spermatozoa volume changes as a response to a hypotonic environment during the motility period are discussed in relation to their potent physiological role.
Collapse
Affiliation(s)
- Olga Bondarenko
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
18
|
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3:217. [PMID: 22745630 PMCID: PMC3383189 DOI: 10.3389/fphys.2012.00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physiological roles of the different urea transporters. In the kidney, deletion of UT-A1/UT-A3 results in polyuria and a severe urine concentrating defect, indicating that intrarenal recycling of urea plays a crucial role in the overall capacity to concentrate urine. Since UT-B has a wide tissue distribution, multiple phenotypic abnormalities have been found in UT-B null mice, such as defective urine concentration, exacerbated heart blockage with aging, depression-like behavior, and earlier male sexual maturation. This review summarizes the new insights of urea transporter functions in different organs, gleaned from studies of urea transporter knockout mice, and explores some of the potential pharmacological prospects of urea transporters.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education Beijing, China
| | | | | |
Collapse
|
19
|
Belkacemi L, Desai M, Beall MH, Liu Q, Lin JT, Nelson DM, Ross MG. Early compensatory adaptations in maternal undernourished pregnancies in rats: role of the aquaporins. J Matern Fetal Neonatal Med 2010; 24:752-9. [PMID: 20958229 DOI: 10.3109/14767058.2010.521870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effect of maternal undernutrition (MUN) during pregnancy on fetal and placental weight, amniotic fluid (AF) volume, AF osmolality and ion concentrations at gestational ages E16 and E20. We also quantified protein expression of water channels (aquaporins; AQPs). METHODS Pregnant rat dams were fed an ad libitum diet (AdLib; n = 6) or were 50% MUN (n = 6) beginning at E10 of gestation. At E16 and E20, we assessed the effect of MUN on fetal and placental weights, AF volume and osmolality, and placental expression of AQP1, 8 and 9. We focused on two uterine positions (proximal and mid-horns) with the extremes of nutrient/oxygen supply. We also separately studied the basal zone (hormone production) and the labyrinth zone (feto-maternal exchange). RESULTS We showed that at E16, MUN fetal, and placental weights were unchanged and that, similarly, MUN AF volume, osmolality were comparable to AdLib. At E20, however, MUN fetal and placental zonal weights were significantly decreased. Inversely, due to MUN, maternal and fetal plasma osmolality and Na+ concentrations were significantly increased. Further, MUN AF volume was significantly reduced, while AF osmolality and Na+ concentration were increased at E20. CONCLUSION Placental basal zone showed variable changes in AQP expression unrelated to position in the uterus or the gestational age (and thus severity of the fetal/placental growth restriction). In the labyrinth zone, MUN placental AQP1 was significantly decreased, whereas AQP8 and 9 expressions were significantly increased at E16 and E20. Dysregulation of AQPs' expression prior to the occurrence of oligohydramnios may represent a compensatory mechanism under conditions of early MUN.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA and David-Geffen School of Medicine at UCLA, Torrance, CA 90502, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Kylyvnyk KE, Khmars’ka LA, Ksenzek OS. Effect of weak inorganic acids and lower carboxylic acids on the conductivity of bilayer lipid membranes. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Pihl L, Wilander E, Nylander O. Comparative study of the effect of luminal hypotonicity on mucosal permeability in rat upper gastrointestinal tract. Acta Physiol (Oxf) 2008; 193:67-78. [PMID: 18005215 DOI: 10.1111/j.1748-1716.2007.01777.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM To investigate whether the increase in mucosal permeability in the duodenum, induced by luminal hypotonicity, also occurs in the stomach and the jejunum and whether this increase in permeability can be explained by epithelial injury. METHODS The stomach, duodenum or jejunum of the anaesthetized rat were perfused with a hypotonic solution and effects on mucosal permeability (blood-to-lumen clearance of radioactive probes); luminal alkalinization and net fluid flux were determined in the absence and presence of cyclooxygenase inhibition. RESULTS The hypotonicity-induced (50 mM NaCl) increase in duodenal mucosal permeability was markedly larger in cyclooxygenase-2-inhibited animals than in controls and associated with a 20% decrease in luminal alkalinization and increased fluid absorption. Perfusion with 50 mM NaCl increased duodenal mucosal permeability to all probes investigated, i.e. (14)C-urea, (14)C-methyl-D-glucose, (51)Cr-EDTA and (14)C-inulin. The percentage increase in permeability was the greatest for inulin and the lowest for urea. Luminal hypotonicity caused superficial villous tip damage in some but not in all duodenal specimens but there was no difference in morphology between controls and cyclooxygenase-2-inhibited animals. Jejunum, but not the stomach, responded to luminal hypotonicity by increasing net fluid absorption, mucosal permeability (greater than sixfold) and the rate of luminal alkalinization (>100%). CONCLUSIONS The stomach does not respond while the jejunum is more sensitive to hypotonicity-induced increase in mucosal permeability than the duodenum. The hypotonicity-induced increase in duodenal mucosal permeability most probably constitutes a physiological mechanism that entails widening of paracellular pathways, which facilitates the transport of osmolytes into the lumen.
Collapse
Affiliation(s)
- L Pihl
- Department of Neuroscience, Division of Physiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
23
|
Sachs G, Kraut JA, Wen Y, Feng J, Scott DR. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J Membr Biol 2007; 212:71-82. [PMID: 17264989 DOI: 10.1007/s00232-006-0867-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 12/15/2022]
Abstract
Urea transporters in bacteria are relatively rare. There are three classes, the ABC transporters such as those expressed by cyanobacteria and Corynebacterium glutamicum, the Yut protein expressed by Yersinia spp and the UreI expressed by gastric Helicobacter spp. This review focuses largely on the UreI proton-gated channel that is part of the acid acclimation mechanism essential for gastric colonization by the latter. UreI is a six-transmembrane polytopic integral membrane protein, N and C termini periplasmic, and is expressed in all gastric Helicobacter spp that have been studied but also in Helicobacter hepaticus and Streptococcus salivarius. The first two are proton-gated, the latter is pH insensitive. Site-directed mutagenesis and chimeric constructs have identified histidines and dicarboxylic amino acids in the second periplasmic loop of H. pylori and the first loop of H. hepaticus UreI and the C terminus of both as involved in a hydrogen-bonding dependence of proton gating, with the membrane domain in these but not in the UreI of S. salivarius responding to the periplasmic conformational changes. UreI and urease are essential for gastric colonization and urease associates with UreI during acid exposure, facilitating activation of the UreA and UreB apoenzyme complex by Ni2+ insertion by the UreF-UreH and UreE-UreG assembly proteins. Transcriptome analysis of acid responses of H. pylori also identified a cytoplasmic and periplasmic carbonic anhydrase as responding specifically to changes in periplasmic pH and these have been shown to be essential also for acid acclimation. The finding also of upregulation of the two-component histidine kinase HP0165 and its response element HP0166, illustrates the complexity of the acid acclimation processes involved in gastric colonization by this pathogen.
Collapse
Affiliation(s)
- G Sachs
- Department of Physiology, Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
24
|
Siritapetawee J, Prinz H, Samosornsuk W, Ashley RH, Suginta W. Functional reconstitution, gene isolation and topology modelling of porins from Burkholderia pseudomallei and Burkholderia thailandensis. Biochem J 2004; 377:579-87. [PMID: 14567756 PMCID: PMC1223904 DOI: 10.1042/bj20031118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/14/2003] [Accepted: 10/21/2003] [Indexed: 11/17/2022]
Abstract
The sequences for Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis have been deposited in the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under the accession numbers AY312416 and AY312417 respectively. The intracellular pathogen Burkholderia pseudomallei is the causative agent of tropical melioidosis, and Burkholderia thailandensis is a closely-related Gram-negative bacterium that does not cause serious disease. Like other bacteria, the major outer membrane (OM) porins of Burkholderia strains, Bps Omp38 and Bth Omp38 may have roles in antibiotic resistance and immunity. We purified both proteins and found them to be immunologically related, SDS-resistant, heat-sensitive trimers with M (r) of approx. 110000. In functional liposome-swelling assays, both proteins showed similar permeabilities for small sugar molecules, compatible with a pore diameter of between 1.2 and 1.6 nm. Secondary structure analysis by FTIR (Fourier-transform infrared) spectroscopy revealed almost identical spectra with predominantly beta-sheet structures, typical of bacterial porins. MALDI-TOF (matrix-assisted laser-desorption ionization-time of flight) MS and ESI/MS (electrospray ionization MS) analysis of each protein showed extensive sequence similarities to the OpcP1 porin from Burkholderia cepacia (later found to be 76.5% identical). Based on information from the incomplete B. pseudomallei genome-sequencing project, the genes encoding Omp38 were identified and amplified by PCR from B. pseudomallei and B. thailandensis genomic DNA. The nucleotide sequences are 99.7% identical, and the predicted processed proteins are 100% identical. Topology prediction and molecular modelling suggest that this newly-isolated and cloned porin is a 16-stranded beta-barrel and the external loops of the protein could be important determinants of the immune response to infection.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- School of Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | |
Collapse
|