1
|
Nabaes Jodar MS, Llorenç V, Figueras-Roca M, Sainz de-la-Maza M, Adán A, Molins B. C-reactive protein conformations and their association with the IL-1β/IL-6 pathway in ocular inflammatory conditions. Front Immunol 2025; 16:1601145. [PMID: 40421028 PMCID: PMC12104070 DOI: 10.3389/fimmu.2025.1601145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction C-reactive protein (CRP) plays a critical role in the innate immune system and serves as a biomarker for various inflammatory conditions. CRP is a dynamic protein undergoing conformational changes between pentameric (pCRP) and monomeric (mCRP) conformations. pCRP is the well-established systemic marker of inflammation, while mCRP is associated with localized tissue inflammation. Methods This study aimed to evaluate systemic levels of pCRP, mCRP, interleukin-6 (IL-6), and interleukin-1β (IL-1β) in patients with a variety of intraocular inflammatory conditions, including diabetic macular edema (DME) and non-infectious uveitis such as Behçet's disease (BD), Birdshot retinochoroidopathy (BSRC), HLA-B27-associated uveitis, and undifferentiated uveitis (UU). Results A total of 77 subjects were included. mCRP levels were significantly elevated in BD, DME, and UU compared to controls (p = 0.014, p = 0.036, and p = 0.031, respectively). The mCRP/pCRP ratio was also significantly higher in DME and UU (p = 0.035 and p = 0.011, respectively). In addition, a strong positive correlation was observed between IL-6 and IL-1β (ρ = 0.638, p <0.0001). No significant differences in serum levels of pCRP, IL-6, or IL-1β were observed among the groups. Conclusions These findings suggest that mCRP, rather than pCRP, may be a more specific systemic biomarker for certain intraocular inflammatory conditions. The involvement of the CRP axis and the strong correlation between IL-6 and IL-1β underscore the interaction of these key inflammatory mediators, providing further insight into the targeting of CRP axis for therapeutic purposes.
Collapse
Affiliation(s)
- Mercedes S. Nabaes Jodar
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Víctor Llorenç
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marc Figueras-Roca
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maite Sainz de-la-Maza
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Blanca Molins
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Chen C, Lan Y, Yan W, Zhang X, Li T, Han J. Exploring Therapeutic Targets for Age-Related Macular Degeneration From Circulating Proteins to Plasma Metabolites in the European Population. Transl Vis Sci Technol 2025; 14:8. [PMID: 40327005 PMCID: PMC12063708 DOI: 10.1167/tvst.14.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025] Open
Abstract
Purpose To explore the causal associations among circulating proteins, plasma metabolites, and age-related macular degeneration (AMD). Methods We employed Mendelian randomization (MR) analysis and colocalization analysis to discern the causal relationship between proteomes and AMD. This investigation utilized data from protein quantitative trait loci (pQTL) studies in deCODE and the UK Biobank. Additionally, plasma metabolite-related genome-wide association studies (GWAS) data and AMD-related GWAS data were incorporated. Results Our findings confirmed a potential causal relationship between cytoplasmic tryptophanyl-tRNA synthetase 1 (WARS1) and a higher risk of AMD. The observed causal impact of WARS1 on the two subtypes of AMD (dry and wet) align consistently with the aforementioned outcomes. Three plasma metabolites-N-acetyl-kynurenine, N-acetyltyrosine, and caproate (6:0)-were identified as mediators of the causal effect of WARS1 on AMD, and subgroup analysis revealed that N-acetyltyrosine is a specific negative metabolite associated with WARS1 and dry AMD, whereas X-16580 is a specific positive metabolite linked to WARS1 and wet AMD. Conclusions The outcomes of this study suggest a potential causal role of specific circulating proteins in AMD and identified the mediating role of plasma metabolites between WARS1 and AMD by integrating multiple genetic analyses. Nevertheless, further research is essential to validate and strengthen these conclusions. Translational Relevance This study establishes the causal role of specific circulating proteins in AMD and identified the mediating role of plasma metabolites between WARS1 and AMD.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, China
| | - Xiaohong Zhang
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, China
| | - Tian Li
- Tianjin Medical University, Tianjin, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
4
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
5
|
Pastorello Y, Russo AP, Bănescu C, Caprio V, Gáll Z, Potempa L, Cordoș B, Di Napoli M, Slevin M. Brain Vascular Expression of Monomeric C-Reactive Protein Is Blocked by C10M Following Intraperitoneal Injection in an ApoE-/- Murine Model of Dyslipidemia: An Immunohistochemical Analysis. Cureus 2024; 16:e60682. [PMID: 38899254 PMCID: PMC11186519 DOI: 10.7759/cureus.60682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction The neurovascular unit (NVU), comprising vascular and glial cells along with neurons, is vital for maintaining the blood-brain barrier (BBB) and cerebral homeostasis. Dysfunction of the NVU is implicated in key neurodegenerative disorders such as Alzheimer's disease (AD). Monomeric C-reactive protein (mCRP), the dissociated form of native, pentameric C-reactive protein (pCRP), is associated with enhanced pro-inflammatory responses in the vascular system, leading to increased permeability and potential NVU disruption. Methods This study utilized ApoE-/- mice receiving a high-fat diet which were injected intraperitoneally with either mCRP or mCRP together with a small molecule inhibitor (C10M) and investigated the deposition of mCRP and CD105 expression in the brain parenchyma and its localization within the microvasculature. Results Histological analysis revealed significant mCRP deposition in brain microvessels and neurons, indicating potential disruption of the BBB and neuronal damage. Moreover, co-administration of C10M effectively blocked mCRP accumulation in the brain parenchyma, suggesting its potential as a therapeutic agent for effectively inhibiting inflammation-associated degenerative changes. Immunohistochemical staining demonstrated co-localization of mCRP with CD105, indicating potential angiogenic activation and increased susceptibility to inflammatory insult. Discussion These findings provide evidence supporting the potential role of mCRP as a contributor to neuroinflammation in individuals with chronic systemic inflammation. Conclusion Further studies in human subjects should help validate the efficacy of C10M in preventing or halting neurodegeneration in conditions such as AD and stroke-associated dementia.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Aurelio Pio Russo
- Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Vittorio Caprio
- Department of Life Sciences, Manchester Metropolitan University, Manchester, GBR
| | - Zsolt Gáll
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, USA
| | - Bogdan Cordoș
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Veterinary Experimental Base, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Mario Di Napoli
- Department of Neurological Service, SS. Annunziata Hospital, Sulmona, ITA
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Department of Life Sciences, Manchester Metropolitan University, Manchester, GBR
| |
Collapse
|
6
|
Giralt L, Figueras-Roca M, Eguileor BDL, Romero B, Zarranz-Ventura J, Alforja S, Santiago F, Bolaños J, Lozano F, Dotti-Boada M, Sala-Puigdollers A, Dura P, Izquierdo-Serra J, Valero O, Adan A, Fonollosa A, Molins B. C-reactive protein-complement factor H axis as a biomarker of activity in early and intermediate age-related macular degeneration. Front Immunol 2024; 15:1330913. [PMID: 38633250 PMCID: PMC11021604 DOI: 10.3389/fimmu.2024.1330913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To determine and compare the serum levels of complement Factor H (FH), monomeric C-Reactive Protein (mCRP) and pentameric C-Reactive protein (pCRP) in patients with age-related macular degeneration (AMD) and to correlate them with clinical, structural and functional parameters. Methods Cross-sectional observational study. One hundred thirty-nine individuals (88 patients and 51 healthy controls) from two referral centers were included and classified into three groups: early or intermediate AMD (n=33), advanced AMD (n=55), and age and sex matched healthy controls (n=51). Serum levels of FH, mCRP, and pCRP were determined and correlated with clinical and imaging parameters. Results Patients with intermediate AMD presented FH levels significantly lower than controls [186.5 (72.1-931.8) µg/mL vs 415.2 (106.1-1962.2) µg/mL; p=0.039] and FH levels <200 µg/mL were associated with the presence of drusen and pigmentary changes in the fundoscopy (p=0.002). While no differences were observed in pCRP and mCRP levels, and mCRP was only detected in less than 15% of the included participants, women had a significantly higher detection rate of mCRP than men (21.0% vs. 3.8%, p=0.045). In addition, the ratio mCRP/FH (log) was significantly lower in the control group compared to intermediate AMD (p=0.031). Visual acuity (p<0.001), macular volume (p<0.001), and foveal thickness (p=0.034) were significantly lower in the advanced AMD group, and choroidal thickness was significantly lower in advanced AMD compared to early/intermediate AMD (p=0.023). Conclusion Intermediate AMD was associated in our cohort with decreased serum FH levels together with increased serum mCRP/FH ratio. All these objective serum biomarkers may suggest an underlying systemic inflammatory process in early/intermediate AMD patients.
Collapse
Affiliation(s)
- Lena Giralt
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Marc Figueras-Roca
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz De Luis Eguileor
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Barbara Romero
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Javier Zarranz-Ventura
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Socorro Alforja
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Santiago
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jennifer Bolaños
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
- Group of Immunoreceptors of the Innate and Adaptive Systems, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Marina Dotti-Boada
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Anna Sala-Puigdollers
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Dura
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | | | - Oliver Valero
- Servei d’Estadística, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfredo Adan
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Fonollosa
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
- Department of Retina, Instituto Oftalmológico Bilbao, Bilbao, Spain
| | - Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
7
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
8
|
Molins B, Figueras-Roca M, Valero O, Llorenç V, Romero-Vázquez S, Sibila O, Adán A, García-Vidal C, Soriano A. C-reactive protein isoforms as prognostic markers of COVID-19 severity. Front Immunol 2023; 13:1105343. [PMID: 36741367 PMCID: PMC9893772 DOI: 10.3389/fimmu.2022.1105343] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023] Open
Abstract
C-reactive protein (CRP), an active regulator of the innate immune system, has been related to COVID-19 severity. CRP is a dynamic protein undergoing conformational changes upon activation in inflammatory microenvironments between pentameric and monomeric isoforms. Although pentameric CRP is the circulating isoform routinely tested for clinical purposes, monomeric CRP shows more proinflammatory properties. Therefore, we aimed to determine the potential of monomeric CRP in serum as a biomarker of disease severity in COVID-19 patients (admission to intensive care unit [ICU] and/or in-hospital mortality). We retrospectively determined clinical and biological features as well as pentameric and monomeric CRP levels in a cohort of 97 COVID-19 patients within 72h of hospital admission. Patients with severe disease had higher levels of both pentameric and monomeric CRP. However, multivariate analysis showed increased mCRP but not pCRP to be independently associated to disease severity. Notably, mCRP levels higher than 4000 ng/mL (OR: 4.551, 95% CI: 1.329-15.58), together with number of co-morbidities, low lymphocyte count, and procalcitonin levels were independent predictors of disease severity in the multivariate model. Our results show the potential of mCRP levels as a marker of clinical severity in COVID-19 disease.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Figueras-Roca
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Oliver Valero
- Statistical Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Llorenç
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Sara Romero-Vázquez
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic of Barcelona-IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Carolina García-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
- CIBERINF, Barcelona, Spain
| |
Collapse
|
9
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
10
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
11
|
Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases. Chin Med J (Engl) 2021; 133:2586-2594. [PMID: 32852382 PMCID: PMC7722606 DOI: 10.1097/cm9.0000000000001015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clinical ophthalmologists consider each retinal disease as a completely unique entity. However, various retinal diseases, such as uveitis, age-related macular degeneration, diabetic retinopathy, and primary open-angle glaucoma, share a number of common pathogenetic pathways. Whether a retinal disease initiates from direct injury to the blood-retinal barrier (BRB) or a defect/injury to retinal neurons or glia that impairs the BRB secondarily, the BRB is a pivotal point in determining the prognosis as self-limiting and recovering, or developing and progressing to a clinical phenotype. The present review summarizes our current knowledge on the physiology and cellular and molecular pathology of the BRB, which underlies its pivotal role in the initiation and development of common retinal diseases.
Collapse
|
12
|
Al-Baradie RS, Pu S, Liu D, Zeinolabediny Y, Ferris G, Sanfeli C, Corpas R, Garcia-Lara E, Alsagaby SA, Alshehri BM, Abdel-Hadi AM, Ahmad F, Moatari P, Heidari N, Slevin M. Monomeric C-Reactive Protein Localized in the Cerebral Tissue of Damaged Vascular Brain Regions Is Associated With Neuro-Inflammation and Neurodegeneration-An Immunohistochemical Study. Front Immunol 2021; 12:644213. [PMID: 33796111 PMCID: PMC8007856 DOI: 10.3389/fimmu.2021.644213] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Monomeric C-reactive protein (mCRP) is now accepted as having a key role in modulating inflammation and in particular, has been strongly associated with atherosclerotic arterial plaque progression and instability and neuroinflammation after stroke where a build-up of the mCRP protein within the brain parenchyma appears to be connected to vascular damage, neurodegenerative pathophysiology and possibly Alzheimer's Disease (AD) and dementia. Here, using immunohistochemical analysis, we wanted to confirm mCRP localization and overall distribution within a cohort of AD patients showing evidence of previous infarction and then focus on its co-localization with inflammatory active regions in order to provide further evidence of its functional and direct impact. We showed that mCRP was particularly seen in large amounts within brain vessels of all sizes and that the immediate micro-environment surrounding these had become laden with mCRP positive cells and extra cellular matrix. This suggested possible leakage and transport into the local tissue. The mCRP-positive regions were almost always associated with neurodegenerative, damaged tissue as hallmarked by co-positivity with pTau and β-amyloid staining. Where this occurred, cells with the morphology of neurons, macrophages and glia, as well as smaller microvessels became mCRP-positive in regions staining for the inflammatory markers CD68 (macrophage), interleukin-1 beta (IL-1β) and nuclear factor kappa B (NFκB), showing evidence of a perpetuation of inflammation. Positive staining for mCRP was seen even in distant hypothalamic regions. In conclusion, brain injury or inflammatory neurodegenerative processes are strongly associated with mCRP localization within the tissue and given our knowledge of its biological properties, it is likely that this protein plays a direct role in promoting tissue damage and supporting progression of AD after injury.
Collapse
Affiliation(s)
- Raid S Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Shuang Pu
- National Natural Science foundation of China, Beijing, China.,School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Donghui Liu
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Yasmin Zeinolabediny
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Glenn Ferris
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Manchester, United Kingdom
| | - Coral Sanfeli
- Instituto De Investigaciones Biomedicas De Barcelona, CSIC, Barcelona, Spain
| | - Ruben Corpas
- Instituto De Investigaciones Biomedicas De Barcelona, CSIC, Barcelona, Spain
| | - Elisa Garcia-Lara
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Bader M Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Ahmed M Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Fuzail Ahmad
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Psalm Moatari
- Salford Royal NHS Foundation Trust, Manchester, United Kingdom
| | | | - Mark Slevin
- National Natural Science foundation of China, Beijing, China.,University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| |
Collapse
|
13
|
Exosomes from Placenta-Derived Mesenchymal Stem Cells Are Involved in Liver Regeneration in Hepatic Failure Induced by Bile Duct Ligation. Stem Cells Int 2020; 2020:5485738. [PMID: 33133194 PMCID: PMC7568818 DOI: 10.1155/2020/5485738] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Although the liver has a regenerative capacity, hepatic failure is a severe and irreversible chronic disease. Placenta-derived mesenchymal stem cells (PD-MSCs) have distinctive features, such as recycling of the placenta waste after birth, ease of accessibility, abundant cell numbers, and strong immunosuppressive properties. Previously, we reported that PD-MSCs can regenerate the liver in hepatic failure through antifibrotic and autophagic mechanisms. Many reports have investigated whether exosomes, which are formed by the budding of vesicular bodies and are emitted into the blood, from stem cells have therapeutic potential in various diseases. C-reactive protein (CRP) is produced in hepatocytes and secreted via vessels. Therefore, the objectives of this study were to compare the expression of CRP in exosomes of a hepatic failure rat model (bile duct ligation, BDL) and to evaluate the therapeutic effect by their correlation between CRP and angiogenesis depending on PD-MSC transplantation. The exosomes were analyzed in a BDL rat model with transplantation of PD-MSCs through LC-MS analysis and precipitation solution. The exosomes, CRP, and factors related to these molecules were evaluated and quantified in exosomes as well as investigated by real-time PCR, Western blot, and immunofluorescence (IF) in vivo and in vitro. CRP was present in exosomes from serum of a rat model and increased by PD-MSC transplantation. In the exosomes, CRP upregulated the factors related to the Wnt signaling pathway and angiogenesis in the BDL rat liver-transplanted PD-MSCs. Also, CRP regulated the Wnt pathway and vascularization in rat hepatocytes by interacting with endothelial cells. Therefore, our findings indicate that CRP in exosomes excreted by PD-MSCs functions in angiogenesis via the Wnt signaling pathway.
Collapse
|
14
|
Romero-Vázquez S, Adán A, Figueras-Roca M, Llorenç V, Slevin M, Vilahur G, Badimon L, Dick AD, Molins B. Activation of C-reactive protein proinflammatory phenotype in the blood retinal barrier in vitro: implications for age-related macular degeneration. Aging (Albany NY) 2020; 12:13905-13923. [PMID: 32673285 PMCID: PMC7425453 DOI: 10.18632/aging.103655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The retinal pigment epithelium (RPE) is considered one of the main targets of age-related macular degeneration (AMD), the leading cause of irreversible vision loss among the ageing population worldwide. Persistent low grade inflammation and oxidative stress eventually lead to RPE dysfunction and disruption of the outer blood-retinal barrier (oBRB). Increased levels of circulating pentameric C-reactive protein (pCRP) are associated with higher risk of AMD. The monomeric form (mCRP) has been detected in drusen, the hallmark deposits associated with AMD, and we have found that mCRP induces oBRB disruption. However, it is unknown how mCRP is generated in the subretinal space. Using a Transwell model we found that both pCRP and mCRP can cross choroidal endothelial cells and reach the RPE in vitro and that mCRP, but not pCRP, is able to cross the RPE monolayer in ARPE-19 cells. Alternatively, mCRP can originate from the dissociation of pCRP in the surface of lipopolysaccharide-damaged RPE in both ARPE-19 and primary porcine RPE lines. In addition, we found that the proinflammatory phenotype of mCRP in the RPE depends on its topological localization. Together, our findings further support mCRP contribution to AMD progression enhancing oBRB disruption.
Collapse
Affiliation(s)
- Sara Romero-Vázquez
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marc Figueras-Roca
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Victor Llorenç
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mark Slevin
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Gemma Vilahur
- Cardiovascular Research Center-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Institute Carlos III, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Institute Carlos III, Barcelona, Spain
| | - Andrew D Dick
- Academic Unit of Ophthalmology, School of Clinical Sciences and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Blanca Molins
- Group of Ocular Inflammation, Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Molins B, Mora A, Romero-Vázquez S, Pascual-Méndez A, Rovira S, Figueras-Roca M, Balcells M, Adán A, Martorell J. Shear stress modulates inner blood retinal barrier phenotype. Exp Eye Res 2019; 187:107751. [DOI: 10.1016/j.exer.2019.107751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
16
|
Caceres PS, Rodriguez-Boulan E. Retinal pigment epithelium polarity in health and blinding diseases. Curr Opin Cell Biol 2019; 62:37-45. [PMID: 31518914 DOI: 10.1016/j.ceb.2019.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
The polarized phenotype of the retinal pigment epithelium is crucial for the outer retina-blood barrier and support of photoreceptors and underlying choroid, and its disruption plays a central role in degenerative retinopathies. Although the mechanisms of polarization remain mostly unknown, they are fundamental for homeostasis of the outer retina. Recent research is revealing a growing picture of interconnected tissues in the outer retina, with the retinal pigment epithelium at the center. This review discusses how elements of epithelial polarity relate to emerging apical interactions with the neural retina, basolateral cross-talk with the underlying Bruch's membrane and choriocapillaris, and tight junction biology. An integrated view of outer retina physiology is likely to provide insights into the pathogenesis of blinding diseases.
Collapse
Affiliation(s)
- Paulo S Caceres
- Weill Cornell Medical College, Department of Ophthalmology, Margaret Dyson Vision Research Institute, New York, NY, 10065, USA.
| | - Enrique Rodriguez-Boulan
- Weill Cornell Medical College, Department of Ophthalmology, Margaret Dyson Vision Research Institute, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Fernandez-Robredo P, Recalde S, Hernandez M, Zarranz-Ventura J, Molins B, Casaroli-Marano RP, Adan A, Saenz-de-Viteri M, García-Layana A. Novel Association of High C-Reactive Protein Levels and A69S at Risk Alleles in Wet Age-Related Macular Degeneration Women. Front Immunol 2018; 9:1862. [PMID: 30154790 PMCID: PMC6102554 DOI: 10.3389/fimmu.2018.01862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023] Open
Abstract
Purpose To explore the relationship between plasma C-reactive protein (CRP) levels, the main ARMS2 gene single nucleotide polymorphism (SNP), and gender in patients with neovascular age-related macular degeneration (wet AMD). Methods Our study included 131 patients with wetAMD [age-related eye disease study (AREDS) category 4] and 153 control participants (AREDS category 1) from two Spanish retinal units. CRP levels were determined on blood samples by high-sensitivity ELISA assay. According to their CRP level, subjects were categorized into three well-established CRP categories: low (<1.00 mg/L, L-CRP), moderate (1–2.99 mg/L, M-CRP), and high (>3.00 mg/L, H-CRP). Genomic DNA was extracted from oral swabs using QIAcube (Qiagen, Hilden, Germany) and the A69S; rs10490924 of ARMS2 gene was genotyped by allelic discrimination with validated TaqMan assays (Applied Biosystems, Foster City, CA, USA). Univariate and multivariate logistic regression adjusted for age was used to analyze the genomic frequencies and to calculate odds ratio (OR) using SNPStats software. Results Considering CRP risk categories, H-CRP group showed a significant [OR 4.0 (1.9–8.3)] association with wetAMD compared to L-CRP group. The risk genotypes of A69S (TT) SNPs showed an association with wetAMD risk [OR 14.0 (4.8–40.8)]. Interestingly, the gender stratification of the CRP categories showed a significant increase in CRP levels in wetAMD women compared with control women [OR 6.9 (2.2–22.3)] and with wetAMD men [OR 4.6 (1.3–16.9)]. In addition, the subgroup analysis of CRP within A69S genotype and gender showed a link in women between the A69S and CRP levels in the AMD group compared to controls [OR 4.2 (1.4–12.6)]. Conclusion Our study shows, for the first time, that a different genetic association related with gender could contribute to AMD risk. As a consequence, the risk of female gender in the different CRP levels and A69S SNP frequencies could be taken into consideration to the established risk relationship of high levels of CRP and its association with risk A69S genotype.
Collapse
Affiliation(s)
- Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maria Hernandez
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Zarranz-Ventura
- Hospital Clínic, Institut Clínic d'Oftalmologia (ICOF), Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Blanca Molins
- Hospital Clínic, Institut Clínic d'Oftalmologia (ICOF), Barcelona, Spain
| | | | - Alfredo Adan
- Hospital Clínic, Institut Clínic d'Oftalmologia (ICOF), Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Saenz-de-Viteri
- Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain.,Royal Eye Infirmary, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Alfredo García-Layana
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
18
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
19
|
Molins B, Romero-Vázquez S, Fuentes-Prior P, Adan A, Dick AD. C-Reactive Protein as a Therapeutic Target in Age-Related Macular Degeneration. Front Immunol 2018; 9:808. [PMID: 29725335 PMCID: PMC5916960 DOI: 10.3389/fimmu.2018.00808] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 01/26/2023] Open
Abstract
Age-related macular degeneration (AMD), a retinal degenerative disease, is the leading cause of central vision loss among the elderly population in developed countries and an increasing global burden. The major risk is aging, compounded by other environmental factors and association with genetic variants for risk of progression. Although the etiology of AMD is not yet clearly understood, several pathogenic pathways have been proposed, including dysfunction of the retinal pigment epithelium, inflammation, and oxidative stress. The identification of AMD susceptibility genes encoding complement factors and the presence of complement and other inflammatory mediators in drusen, the hallmark deposits of AMD, support the concept that local inflammation and immune-mediated processes play a key role in AMD pathogenesis that may be accelerated through systemic immune activation. In this regard, increased levels of circulating C-reactive protein (CRP) have been associated with higher risk of AMD. Besides being a risk marker for AMD, CRP may also play a role in the progression of the disease as it has been identified in drusen, and we have recently found that its monomeric form (mCRP) induces blood retinal barrier disruption in vitro. In this review, we will address recent evidence that links CRP and AMD pathogenesis, which may open new therapeutic opportunities to prevent the progression of AMD.
Collapse
Affiliation(s)
- Blanca Molins
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sara Romero-Vázquez
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfredo Adan
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Andrew D Dick
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.,Academic Unit of Ophthalmology, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital, University College London Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
20
|
Chirco KR, Potempa LA. C-Reactive Protein As a Mediator of Complement Activation and Inflammatory Signaling in Age-Related Macular Degeneration. Front Immunol 2018; 9:539. [PMID: 29599782 PMCID: PMC5862805 DOI: 10.3389/fimmu.2018.00539] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a devastating neurodegenerative disease affecting millions worldwide. Complement activation, inflammation, and the loss of choroidal endothelial cells have been established as key factors in both normal aging and AMD; however, the exact mechanisms for these events have yet to be fully uncovered. Herein, we provide evidence that the prototypic acute phase reactant, C-reactive protein (CRP), contributes to AMD pathogenesis. We discuss serum CRP levels as a risk factor for disease, immunolocalization of distinct forms of CRP in the at-risk and diseased retina, and direct effects of CRP on ocular tissue. Furthermore, we discuss the complement system as it relates to AMD pathophysiology, provide a model for the role of CRP in this disease, and outline current therapies being developed and tested to treat AMD patients.
Collapse
|