1
|
Kwon MS, Chung HK, Xiao L, Yu TX, Sharma S, Cairns CM, Chen T, Chae S, Turner DJ, Wang JY. Interaction between microRNA-195 and HuR regulates Paneth cell function in the intestinal epithelium by altering SOX9 translation. Am J Physiol Cell Physiol 2024; 327:C817-C829. [PMID: 39099425 PMCID: PMC11427006 DOI: 10.1152/ajpcell.00325.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Paneth cells at the bottom of small intestinal crypts secrete antimicrobial peptides, enzymes, and growth factors and contribute to pathogen clearance and maintenance of the stem cell niche. Loss of Paneth cells and their dysfunction occur commonly in various pathologies, but the mechanism underlying the control of Paneth cell function remains largely unknown. Here, we identified microRNA-195 (miR-195) as a repressor of Paneth cell development and activity by altering SOX9 translation via interaction with RNA-binding protein HuR. Tissue-specific transgenic expression of miR-195 (miR195-Tg) in the intestinal epithelium decreased the levels of mucosal SOX9 and reduced the numbers of lysozyme-positive (Paneth) cells in mice. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restored Paneth cell development ex vivo. miR-195 did not bind to Sox9 mRNA but it directly interacted with HuR and prevented HuR binding to Sox9 mRNA, thus inhibiting SOX9 translation. Intestinal mucosa from mice that harbored both Sox9 transgene and ablation of the HuR locus exhibited lower levels of SOX9 protein and Paneth cell numbers than those observed in miR-195-Tg mice. Inhibition of miR-195 activity by its specific antagomir improved Paneth cell function in HuR-deficient intestinal organoids. These results indicate that interaction of miR-195 with HuR regulates Paneth cell function by altering SOX9 translation in the small intestinal epithelium.NEW & NOTEWORTHY Our results indicate that intestinal epithelial tissue-specific transgenic miR-195 expression decreases the levels of SOX9 expression, along with reduced numbers of Paneth cells. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restores Paneth cell development ex vivo. miR-195 inhibits SOX9 translation by preventing binding of HuR to Sox9 mRNA. These findings suggest that interaction between miR-195 and HuR controls Paneth cell function via SOX9 in the intestinal epithelium.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Shweta Sharma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra M Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Ting Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Songah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Wang SR, Mallard CG, Cairns CA, Chung HK, Yoo D, Jaladanki SK, Xiao L, Wang JY. Stabilization of Cx43 mRNA via RNA-binding protein HuR regulated by polyamines enhances intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2023; 325:G518-G527. [PMID: 37788332 PMCID: PMC10894663 DOI: 10.1152/ajpgi.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra A Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dongyoon Yoo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Ben Dhaou C, Terrié E, Déliot N, Harnois T, Cousin L, Arnault P, Constantin B, Moyse E, Coronas V. Neural stem cell self-renewal stimulation by store-operated calcium entries in adult mouse area postrema: influence of leptin. Front Cell Neurosci 2023; 17:1200360. [PMID: 37361995 PMCID: PMC10287973 DOI: 10.3389/fncel.2023.1200360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Neural stem cells (NSCs) persist in specific brain germinative niches and sustain neurogenesis throughout life in adult mammals. In addition to the two major stem cell niches in the subventricular zone and the hippocampal dentate gyrus, the area postrema located in the brainstem has been identified as a neurogenic zone as well. NSCs are regulated by signals from the microenvironment that adjust stem cell response to the needs of the organism. Evidence accumulated over the past decade indicates that Ca2+ channels play pivotal functions in NSC maintenance. In this study, we explored in area postrema NSCs the presence and roles of a subset of Ca2+ channels, the store-operated Ca2+ channels (SOCs) that have the capacity to transduce extracellular signals into Ca2+ signals. Our data show that NSCs derived from the area postrema express TRPC1 and Orai1, known to form SOCs, as well as their activator STIM1. Ca2+ imaging indicated that NSCs exhibit store-operated Ca2+ entries (SOCEs). Pharmacological blockade of SOCEs with SKF-96365, YM-58483 (also known as BTP2) or GSK-7975A resulted in decreased NSC proliferation and self-renewal, indicating a major role for SOCs in maintaining NSC activity within the area postrema. Furthermore, our results show that leptin, an adipose tissue-derived hormone whose ability to control energy homeostasis is dependent on the area postrema, decreased SOCEs and reduced self-renewal of NSCs in the area postrema. As aberrant SOC function has been linked to an increasing number of diseases, including brain disorders, our study opens new perspectives for NSCs in brain pathophysiology.
Collapse
Affiliation(s)
- Cyrine Ben Dhaou
- University of Tours, INRAe Centre Val-de-Loire UMR-85, CNRS UMR-1247, Physiologie de la Reproduction et Comportements, Nouzilly, France
| | - Elodie Terrié
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Nadine Déliot
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Thomas Harnois
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Laetitia Cousin
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Patricia Arnault
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Bruno Constantin
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| | - Emmanuel Moyse
- University of Tours, INRAe Centre Val-de-Loire UMR-85, CNRS UMR-1247, Physiologie de la Reproduction et Comportements, Nouzilly, France
| | - Valérie Coronas
- 4CS, Laboratory Channels and Connexins in Cancers and Cell Stemness, CNRS UMR 6041, University of Poitiers, Poitiers, France
| |
Collapse
|
4
|
Mo W, Liu G, Wu C, Jia G, Zhao H, Chen X, Wang J. STIM1 promotes IPEC-J2 porcine epithelial cell restitution by TRPC1 signaling. Anim Biotechnol 2022; 33:1492-1503. [PMID: 33866928 DOI: 10.1080/10495398.2021.1910044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal epithelial restitution is partly dependent on cell migration, which reseals superficial wounding after injury. Here, we tested the hypothesis that stromal interaction molecule 1(STIM1) regulates porcine intestinal epithelial cell migration by activating transient receptor potential canonical 1 (TRPC1) signaling. Results showed that the knockdown of STIM1 repressed cell migration after wounding, reduced the protein concentration of STIM1 and TRPC1, and decreased the inositol trisphosphate (IP3) content in IPEC-J2 cells (p < 0.05). However, overexpression of STIM1 obtained opposite results (p < 0.05). The inhibition of TRPC1 activity by treatment with SKF96365 in cells overexpressing wild-type and mutant STIM1 attenuated the STIM1 overexpression-induced increase of cell migration, STIM1, TRPC1 and IP3 (p < 0.05). In addition, polyamine depletion caused by α-difluoromethylornithine (DFMO) resulted in the decrease of above-mentioned parameters, and exogenous polyamine could attenuate the negative effects of DFMO on IPEC-J2 cells (p < 0.05). Moreover, the overexpression of STIM1 could rescue cell migration, the protein level of STIM1 and TRPC1, and IP3 content in polyamine-deficient IPEC-J2 cells (p < 0.05). These results indicated that STIM1 could enhance porcine intestinal epithelial cell migration via the TRPC1 signaling pathway. Inhibition of cell migration by polyamine depletion resulted from the reduction of STIM1 activity.
Collapse
Affiliation(s)
- Weiwei Mo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Rathor N, Chung HK, Song JL, Wang SR, Wang JY, Rao JN. TRPC1-mediated Ca 2+ signaling enhances intestinal epithelial restitution by increasing α4 association with PP2Ac after wounding. Physiol Rep 2021; 9:e14864. [PMID: 33991460 PMCID: PMC8123541 DOI: 10.14814/phy2.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
Gut epithelial restitution after superficial wounding is an important repair modality regulated by numerous factors including Ca2+ signaling and cellular polyamines. Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs) and its activation increases epithelial restitution by inducing Ca2+ influx after acute injury. α4 is a multiple functional protein and implicated in many aspects of cell functions by modulating protein phosphatase 2A (PP2A) stability and activity. Here we show that the clonal populations of IECs stably expressing TRPC1 (IEC-TRPC1) exhibited increased levels of α4 and PP2A catalytic subunit (PP2Ac) and that TRPC1 promoted intestinal epithelial restitution by increasing α4/PP2Ac association. The levels of α4 and PP2Ac proteins increased significantly in stable IEC-TRPC1 cells and this induction in α4/PP2Ac complexes was accompanied by an increase in IEC migration after wounding. α4 silencing by transfection with siRNA targeting α4 (siα4) or PP2Ac silencing destabilized α4/PP2Ac complexes in stable IEC-TRPC1 cells and repressed cell migration over the wounded area. Increasing the levels of cellular polyamines by stable transfection with the Odc gene stimulated α4 and PP2Ac expression and enhanced their association, thus also promoting epithelial restitution after wounding. In contrast, depletion of cellular polyamines by treatment with α-difluoromethylornithine reduced α4/PP2Ac complexes and repressed cell migration. Ectopic overexpression of α4 partially rescued rapid epithelial repair in polyamine-deficient cells. These results indicate that activation of TRPC1-mediated Ca2+ signaling enhances cell migration primarily by increasing α4/PP2Ac associations after wounding and this pathway is tightly regulated by cellular polyamines.
Collapse
Affiliation(s)
- Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jia-Le Song
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
6
|
Kwon MS, Chung HK, Xiao L, Yu TX, Wang SR, Piao JJ, Rao JN, Gorospe M, Wang JY. MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. Am J Physiol Cell Physiol 2021; 320:C1042-C1054. [PMID: 33788631 DOI: 10.1152/ajpcell.00597.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jun-Jie Piao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
7
|
Shan W, Hu Y, Ding J, Yang X, Lou J, Du Q, Liao Q, Luo L, Xu J, Xie R. Advances in Ca 2+ modulation of gastrointestinal anion secretion and its dysregulation in digestive disorders (Review). Exp Ther Med 2020; 20:8. [PMID: 32934673 PMCID: PMC7471861 DOI: 10.3892/etm.2020.9136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/22/2020] [Indexed: 11/29/2022] Open
Abstract
Intracellular calcium (Ca2+) is a critical cell signaling component in gastrointestinal (GI) physiology. Cytosolic calcium ([Ca2+]cyt), as a secondary messenger, controls GI epithelial fluid and ion transport, mucus and neuropeptide secretion, as well as synaptic transmission and motility. The key roles of Ca2+ signaling in other types of secretory cell (including those in the airways and salivary glands) are well known. However, its action in GI epithelial secretion and the underlying molecular mechanisms have remained to be fully elucidated. The present review focused on the role of [Ca2+]cyt in GI epithelial anion secretion. Ca2+ signaling regulates the activities of ion channels and transporters involved in GI epithelial ion and fluid transport, including Cl- channels, Ca2+-activated K+ channels, cystic fibrosis (CF) transmembrane conductance regulator and anion/HCO3- exchangers. Previous studies by the current researchers have focused on this field over several years, providing solid evidence that Ca2+ signaling has an important role in the regulation of GI epithelial anion secretion and uncovering underlying molecular mechanisms. The present review is largely based on previous studies by the current researchers and provides an overview of the currently known molecular mechanisms of GI epithelial anion secretion with an emphasis on Ca2+-mediated ion secretion and its dysregulation in GI disorders. In addition, previous studies by the current researchers demonstrated that different regulatory mechanisms are in place for GI epithelial HCO3- and Cl- secretion. An increased understanding of the roles of Ca2+ signaling and its targets in GI anion secretion may lead to the development of novel strategies to inhibit GI diseases, including the enhancement of fluid secretion in CF and protection of the GI mucosa in ulcer diseases.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yanxia Hu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jianhong Ding
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jun Lou
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Lihong Luo
- Department of Oncology and Geriatrics, Traditional Chinese Medicine Hospital of Chishui City, Guizhou 564700, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
8
|
Shi Y, Zhu H, Li R, Wang D, Zhu Y, Hu L, Chen W. Effect of polysaccharides from Sijunzi decoction on Ca 2+ related regulators during intestinal mucosal restitution. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152880. [PMID: 30901661 DOI: 10.1016/j.phymed.2019.152880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sijunzi decoction, a representative Chinese herbal formula of reinforcing Qi strengthening spleen, has been widely used for treating patients with gastrointestinal diseases and spleen-deficiency syndrome, however, the exact effects and mechanisms are remained unclear. HYPOTHESIS/PURPOSE The migration of intestinal epithelial (IEC-6) cells has been demonstrated to be one of the major repair modalities during the healing of mucosal wounds. Ca2+ is the key factor in regulating cell migration. Thus, this study aimed to elucidate the potential effects and mechanisms of polysaccharides (SJZDP) extracted from Sijunzi decoction in intestinal mucosal restitution. METHOD Cell migration was detected by scratch method with micropipette tip. Western blotting was adopted to evaluate the expression of STIM1 and STIM2 proteins. Immunofluorescence was carried out to assess the translocation of STIM1 protein. Immunoprecipitation was used to determine the levels of STIM1/TRPC1 and STIM1/STIM2 complexes. A indomethacin-induced intestinal mucosal injury rat model was applied. The content of polyamines in intestinal mucosa was detected by high-performance liquid chromatography. The morphological changes in the intestinal mucosa were observed at the end of animal experiment. RESULTS The results showed that treatment with SJZDP significantly promoted cell migration, enhanced the level of STIM1 protein and STIM1/TRPC1 complexes, reduced the level of STIM2 protein and STIM1/STIM2 complexes. Further more, SJZDP exposure promoted the translocation of STIM1 to the plasma membrane. In vivo experiment results, the administration of SJZDP effectively reduced intestinal mucosal injury. CONCLUSION These results revealed that SJZDP promotes intestinal epithelial restitution after wounding, presumably by regulating cellular levels of STIM1 and STIM2 differentially, stimulating the translocation of STIM1, and inducing STIM1/TRPC1 association as well as decreasing the level of STIM1/STIM2.
Collapse
Affiliation(s)
- Yuxia Shi
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China
| | - Huibin Zhu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China
| | - Ruliu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China.
| | - Dongxu Wang
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China
| | - Yiping Zhu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China
| | - Ling Hu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China
| | - Weiwen Chen
- Pi-wei Institute, Guangzhou University of Chinese Medicine, 12 Jichang road, Guangzhou 510405, PR China
| |
Collapse
|
9
|
Zhang F, Wan H, Yang X, He J, Lu C, Yang S, Tuo B, Dong H. Molecular mechanisms of caffeine-mediated intestinal epithelial ion transports. Br J Pharmacol 2019; 176:1700-1716. [PMID: 30808064 DOI: 10.1111/bph.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE As little is known about the effect of caffeine, one of the most widely consumed substances worldwide, on intestinal function, we aimed to study its action on intestinal anion secretion and the underlying molecular mechanisms. EXPERIMENTAL APPROACH Anion secretion and channel expression were examined in mouse duodenal epithelium by Ussing chambers and immunocytochemistry. Ca2+ imaging was also performed in intestinal epithelial cells (IECs). KEY RESULTS Caffeine (10 mM) markedly increased mouse duodenal short-circuit current (Isc ), which was attenuated by a removal of either Cl- or HCO3 - , Ca2+ -free serosal solutions and selective blockers of store-operated Ca2+ channels (SOC/Ca2+ release-activated Ca2+ channels), and knockdown of Orai1 channels on the serosal side of duodenal tissues. Caffeine induced SOC entry in IEC, which was inhibited by ruthenium red and selective blockers of SOC. Caffeine-stimulated duodenal Isc was inhibited by the endoplasmic reticulum Ca2+ chelator (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), selective blockers (ruthenium red and dantrolene) of ryanodine receptors (RyR), and of Ca2+ -activated Cl- channels (niflumic acid and T16A). There was synergism between cAMP and Ca2+ signalling, in which cAMP/PKA promoted caffeine/Ca2+ -mediated anion secretion. Expression of STIM1 and Orai1 was detected in mouse duodenal mucosa and human IECs. The Orai1 proteins were primarily co-located with the basolateral marker Na+ , K+ -ATPase. CONCLUSIONS AND IMPLICATIONS Caffeine stimulated intestinal anion secretion mainly through the RyR/Orai1/Ca2+ signalling pathway. There is synergism between cAMP/PKA and caffeine/Ca2+ -mediated anion secretion. Our findings suggest that a caffeine-mediated RyR/Orai1/Ca2+ pathway could provide novel potential drug targets to control intestinal anion secretion.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
10
|
Rathor N, Chung HK, Wang SR, Qian M, Turner DJ, Wang JY, Rao JN. β-PIX plays an important role in regulation of intestinal epithelial restitution by interacting with GIT1 and Rac1 after wounding. Am J Physiol Gastrointest Liver Physiol 2018; 314:G399-G407. [PMID: 29191942 PMCID: PMC5899242 DOI: 10.1152/ajpgi.00296.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early gut mucosal restitution is a process by which intestinal epithelial cells (IECs) migrate over the wounded area, and its defective regulation occurs commonly in various critical pathological conditions. This rapid reepithelialization is mediated by different activating small GTP-binding proteins, but the exact mechanism underlying this process remains largely unknown. Recently, it has been reported that interaction between p21-activated kinase-interacting exchange factor (β-PIX) and G protein-coupled receptor kinase-interacting protein 1 (GIT1) activates small GTPases and plays an important role in the regulation of cell motility. Here, we show that induced association of β-PIX with GIT1 is essential for the stimulation of IEC migration after wounding by activating Rac1. Levels of β-PIX and GIT1 proteins and their association in differentiated IECs (line of IEC-Cdx2L1) were much higher than those observed in undifferentiated IECs (line of IEC-6), which was associated with an increase in IEC migration after wounding. Decreased levels of endogenous β-PIX by its gene-silencing destabilized β-PIX/GIT1 complexes, repressed Rac1 activity and inhibited cell migration over the wounded area. In contrast, ectopic overexpression of β-PIX increased the levels of β-PIX/GIT1 complexes, stimulated Rac1 activity, and enhanced intestinal epithelial restitution. Increased levels of cellular polyamines also stimulated β-PIX/GIT1 association, increased Rac1 activity, and promoted the epithelial restitution. Moreover, polyamine depletion decreased cellular abundances of β-PIX/GIT1 complex and repressed IEC migration after wounding, which was rescued by ectopic overexpression of β-PIX or GIT1. These results indicate that β-PIX/GIT1/Rac1 association is necessary for stimulation of IEC migration after wounding and that this signaling pathway is tightly regulated by cellular polyamines. NEW & NOTEWORTHY Our current study demonstrates that induced association of β-PIX with GIT1 is essential for the stimulation of intestinal epithelial restitution by activating Rac1, and this signaling pathway is tightly regulated by cellular polyamines.
Collapse
Affiliation(s)
- Navneeta Rathor
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R. Wang
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Michael Qian
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J. Turner
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland,3Department of Pathology, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N. Rao
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
11
|
Domenichini F, Terrié E, Arnault P, Harnois T, Magaud C, Bois P, Constantin B, Coronas V. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone. Stem Cells 2018; 36:761-774. [PMID: 29359518 DOI: 10.1002/stem.2786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774.
Collapse
Affiliation(s)
- Florence Domenichini
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Elodie Terrié
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Patricia Arnault
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Thomas Harnois
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Christophe Magaud
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Patrick Bois
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Bruno Constantin
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| | - Valérie Coronas
- Signalisation et Transports Ioniques Membranaires, University of Poitiers, CNRS ERL 7003, Poitiers Cedex 09, France
| |
Collapse
|
12
|
Yang X, Wen G, Tuo B, Zhang F, Wan H, He J, Yang S, Dong H. Molecular mechanisms of calcium signaling in the modulation of small intestinal ion transports and bicarbonate secretion. Oncotarget 2017; 9:3727-3740. [PMID: 29423078 PMCID: PMC5790495 DOI: 10.18632/oncotarget.23197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose: Although Ca2+ signaling may stimulate small intestinal ion secretion, little is known about its critical role and the molecular mechanisms of Ca2+-mediated biological action. Key Results Activation of muscarinic receptors by carbachol(CCh) stimulated mouse duodenal Isc, which was significantly inhibited in Ca2+-free serosal solution and by several selective store-operated Ca2+ channels(SOC) blockers added to the serosal side of duodenal tissues. Furthermore, we found that CRAC/Orai channels may represent the molecular candidate of SOC in intestinal epithelium. CCh increased intracellular Ca2+ but not cAMP, and Ca2+ signaling mediated duodenal Cl- and HCO3- secretion in wild type mice but not in CFTR knockout mice. CCh induced duodenal ion secretion and stimulated PI3K/Akt activity in duodenal epithelium, all of which were inhibited by selective PI3K inhibitors with different structures. CCh-induced Ca2+ signaling also stimulated the phosphorylation of CFTR proteins and their trafficking to the plasma membrane of duodenal epithelial cells, which were inhibited again by selective PI3K inhibitors. Materials and Methods Functional, biochemical and morphological experiments were performed to examine ion secretion, PI3K/Akt and CFTR activity of mouse duodenal epithelium. Ca2+ imaging was performed on HT-29 cells. Conclusions and Implications Ca2+ signaling plays a critical role in intestinal ion secretion via CRAC/Orai-mediated SOCE mechanism on the serosal side of epithelium. We also demonstrated the molecular mechanisms of Ca2+ signaling in CFTR-mediated secretion via novel PI3K/Akt pathway. Our findings suggest new perspectives for drug targets to protect the upper GI tract and control liquid homeostasis in the small intestine.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shiming Yang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA 92093, USA
| |
Collapse
|
13
|
Song HP, Hou XQ, Li RY, Yu R, Li X, Zhou SN, Huang HY, Cai X, Zhou C. Atractylenolide I stimulates intestinal epithelial repair through polyamine-mediated Ca 2+ signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 28:27-35. [PMID: 28478810 DOI: 10.1016/j.phymed.2017.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND An impairment of the integrity of the mucosal epithelial barrier can be observed in the course of various gastrointestinal diseases. The migration and proliferation of the intestinal epithelial (IEC-6) cells are essential repair modalities to the healing of mucosal ulcers and wounds. Atractylenolide I (AT-I), one of the major bioactive components in the rhizome of Atractylodes macrocephala Koidz. (AMR), possesses multiple pharmacological activities. This study was designed to investigate the therapeutic effects and the underlying molecular mechanisms of AT-I on gastrointestinal mucosal injury. METHODS Scratch method with a gel-loading microtip was used to detect IEC-6 cell migration. The real-time cell analyzer (RTCA) system was adopted to evaluate IEC-6 cell proliferation. Intracellular polyamines content was determined using high performance liquid chromatography (HPLC). Flow cytometry was used to measure cytosolic free Ca2+ concentration ([Ca2+]c). mRNA and protein expression of TRPC1 and PLC-γ1 were determined by real-time PCR and Western blotting assay respectively. RESULTS Treatment of IEC-6 cells with AT-I promoted cell migration and proliferation, increased polyamines content, raised cytosolic free Ca2+ concentration ([Ca2+]c), and enhanced TRPC1 and PLC-γ1 mRNA and protein expression. Depletion of cellular polyamines by DL-a-difluoromethylornithine (DFMO, an inhibitor of polyamine synthesis) suppressed cell migration and proliferation, decreased polyamines content, and reduced [Ca2+]c, which was paralleled by a decrease in TRPC1 and PLC-γ1 mRNA and protein expression in IEC-6 cells. AT-I reversed the effects of DFMO on polyamines content, [Ca2+]c, TRPC1 and PLC-γ1 mRNA and protein expression, and restored IEC-6 cell migration and proliferation to near normal levels. CONCLUSION Our data demonstrate that AT-I stimulates intestinal epithelial cell migration and proliferation via the polyamine-mediated Ca2+ signaling pathway. Therefore, AT-I may have the potential to be further developed as a promising therapeutic agent to treat diseases associated with gastrointestinal mucosal injury, such as inflammatory bowel disease and peptic ulcer.
Collapse
Affiliation(s)
- Hou-Pan Song
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical College, Taian, Shandong 271000, China
| | - Ru-Yi Li
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Rong Yu
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Sai-Nan Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Hui-Yong Huang
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Cai
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
14
|
Wang PY, Wang SR, Xiao L, Chen J, Wang JY, Rao JN. c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-γ1 transcription. Am J Physiol Cell Physiol 2017; 312:C367-C375. [PMID: 28100486 DOI: 10.1152/ajpcell.00330.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/06/2023]
Abstract
c-Jun is an activating protein 1 (AP-1) transcription factor and implicated in many aspects of cellular functions, but its exact role in the regulation of early intestinal epithelial restitution after injury remains largely unknown. Phospholipase C-γ1 (PLCγ1) catalyzes hydrolysis of phosphatidylinositol 4,5 biphosphate into the second messenger diacylglycerol and inositol 1,4,5 triphosphate, coordinates Ca2+ store mobilization, and regulates cell migration and proliferation in response to stress. Here we reported that c-Jun upregulates PLCγ1 expression and enhances PLCγ1-induced Ca2+ signaling, thus promoting intestinal epithelial restitution after wounding. Ectopically expressed c-Jun increased PLCγ1 expression at the transcription level, and this stimulation is mediated by directly interacting with AP-1 and CCAAT-enhancer-binding protein (C/EBP) binding sites that are located at the proximal region of the rat PLCγ1 promoter. Increased levels of PLCγ1 by c-Jun elevated cytosolic free Ca2+ concentration and stimulated intestinal epithelial cell migration over the denuded area after wounding. The c-Jun-mediated PLCγ1/Ca2+ signal also plays an important role in polyamine-induced cell migration after wounding because increased c-Jun rescued Ca2+ influx and cell migration in polyamine-deficient cells. These findings indicate that c-Jun induces PLCγ1 expression transcriptionally and enhances rapid epithelial restitution after injury by activating Ca2+ signal.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
15
|
Wang JY, Xiao L, Wang JY. Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27704722 DOI: 10.1002/wrna.1399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Maintenance of the gut epithelial integrity under stressful environments requires epithelial cells to rapidly elicit changes in gene expression patterns to regulate their survival, adapt to stress, and keep epithelial homeostasis. Disruption of the intestinal epithelial integrity occurs commonly in patients with various critical illnesses, leading to the translocation of luminal toxic substances and bacteria to the blood stream. Recently, noncoding RNAs (ncRNAs) have emerged as a novel class of master regulators of gene expression and are fundamentally involved in many aspects of gut mucosal regeneration, protection, and epithelial barrier function. Here, we highlight the roles of several intestinal epithelial tissue-specific microRNAs, including miR-222, miR-29b, miR-503, and miR-195, and long ncRNAs such as H19 and SPRY4-IT1 in the regulation of cell proliferation, apoptosis, migration, and cell-to-cell interactions and also further analyze the mechanisms through which ncRNAs and their interactions with RNA-binding proteins modulate the stability and translation of target mRNAs. WIREs RNA 2017, 8:e1399. doi: 10.1002/wrna.1399 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun-Yao Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Hansraj NZ, Xiao L, Wu J, Chen G, Turner DJ, Wang JY, Rao JN. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding. Physiol Rep 2016; 4:4/13/e12858. [PMID: 27401462 PMCID: PMC4945840 DOI: 10.14814/phy2.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/18/2016] [Indexed: 12/14/2022] Open
Abstract
The 14‐3‐3ζ is a member of the family of 14‐3‐3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14‐3‐3ζ expression is tightly regulated at the posttranscription level by RNA‐binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14‐3‐3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3′ untranslated region (UTR) of the 14‐3‐3ζ mRNA was bound to HuR, and this association enhanced 14‐3‐3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14‐3‐3ζ protein in the intestinal mucosa. Silencing 14‐3‐3ζ by transfection with specific siRNA targeting the 14‐3‐3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild‐type 14‐3‐3ζ promoted cell migration. These results indicate that HuR induces 14‐3‐3ζ translation via interaction with its 3′ UTR and that 14‐3‐3ζ is necessary for stimulation of IEC migration after wounding.
Collapse
Affiliation(s)
- Natasha Z Hansraj
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gang Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
17
|
Albarran L, Lopez JJ, Salido GM, Rosado JA. Historical Overview of Store-Operated Ca(2+) Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:3-24. [PMID: 27161222 DOI: 10.1007/978-3-319-26974-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca(2+) entry pathways: Ca(2+) release from intracellular Ca(2+) stores, signaled by IP3, leads to the activation of store-operated Ca(2+) entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca(2+) sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
18
|
Chung HK, Rathor N, Wang SR, Wang JY, Rao JN. RhoA enhances store-operated Ca2+ entry and intestinal epithelial restitution by interacting with TRPC1 after wounding. Am J Physiol Gastrointest Liver Physiol 2015; 309:G759-67. [PMID: 26336927 PMCID: PMC4628965 DOI: 10.1152/ajpgi.00185.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial wounds after injury. Our previous studies show that canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca(2+) channel (SOC) in intestinal epithelial cells (IECs) and plays an important role in early epithelial restitution by increasing Ca(2+) influx. Here we further reported that RhoA, a small GTP-binding protein, interacts with and regulates TRPC1, thus enhancing SOC-mediated Ca(2+) entry (SOCE) and epithelial restitution after wounding. RhoA physically associated with TRPC1 and formed the RhoA/TRPC1 complexes, and this interaction increased in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1). Inactivation of RhoA by treating IEC-TRPC1 cells with exoenzyme C3 transferase (C3) or ectopic expression of dominant negative RhoA (DNMRhoA) reduced RhoA/TRPC1 complexes and inhibited Ca(2+) influx after store depletion, which was paralleled by an inhibition of cell migration over the wounded area. In contrast, ectopic expression of wild-type (WT)-RhoA increased the levels of RhoA/TRPC1 complexes, induced Ca(2+) influx through activation of SOCE, and promoted cell migration after wounding. TRPC1 silencing by transfecting stable WT RhoA-transfected cells with siRNA targeting TRPC1 (siTRPC1) reduced SOCE and repressed epithelial restitution. Moreover, ectopic overexpression of WT-RhoA in polyamine-deficient cells rescued the inhibition of Ca(2+) influx and cell migration induced by polyamine depletion. These findings indicate that RhoA interacts with and activates TRPC1 and thus stimulates rapid epithelial restitution after injury by inducing Ca(2+) signaling.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Navneeta Rathor
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
19
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
20
|
Mrkonjić S, Garcia-Elias A, Pardo-Pastor C, Bazellières E, Trepat X, Vriens J, Ghosh D, Voets T, Vicente R, Valverde MA. TRPV4 participates in the establishment of trailing adhesions and directional persistence of migrating cells. Pflugers Arch 2015; 467:2107-19. [PMID: 25559845 DOI: 10.1007/s00424-014-1679-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022]
Abstract
Calcium signaling participates in different cellular processes leading to cell migration. TRPV4, a non-selective cation channel that responds to mechano-osmotic stimulation and heat, is also involved in cell migration. However, the mechanistic involvement of TRPV4 in cell migration is currently unknown. We now report that expression of the mutant channel TRPV4-(121)AAWAA (lacking the phosphoinositide-binding site (121)KRWRK(125) and the response to physiological stimuli) altered HEK293 cell migration. Altered migration patterns included periods of fast and persistent motion followed by periods of stalling and turning, and the extension of multiple long cellular protrusions. TRPV4-WT overexpressing cells showed almost complete loss of directionality with frequent turns, no progression, and absence of long protrusions. Traction microscopy revealed higher tractions forces in the tail of TRPV4-(121)AAWAA than in TRPV4-WT expressing cells. These results are consistent with a defective and augmented tail retraction in TRPV4-(121)AAWAA- and TRPV4-WT-expressing cells, respectively. The activity of calpain, a protease implicated in focal adhesion (FA) disassembly, was decreased in TRPV4-(121)AAWAA compared with TRPV4-WT-expressing cells. Consistently, larger focal adhesions were seen in TRPV4-(121)AAWAA compared with TRPV4-WT-expressing HEK293 cells, a result that was also reproduced in T47D and U87 cells. Similarly, overexpression of the pore-dead mutant TRPV4-M680D resumed the TRPV4-(121)AAWAA phenotype presenting larger FA. The migratory phenotype obtained in HEK293 cells overexpressing TRPV4-(121)AAWAA was mimicked by knocking-down TRPC1, a cationic channel that participates in cell migration. Together, our results point to the participation of TRPV4 in the dynamics of trailing adhesions, a function that may require the interplay of TRPV4 with other cation channels or proteins present at the FA sites.
Collapse
Affiliation(s)
- Sanela Mrkonjić
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Anna Garcia-Elias
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Elsa Bazellières
- Institute for Bioengineering of Catalonia, Barcelona, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, and Ciber Enfermedades Respiratorias, Barcelona, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, and Ciber Enfermedades Respiratorias, Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Barcelona, Spain
| | - Joris Vriens
- Laboratory of Ion Channels and TRP Research Platform Leuven, KU Leuven, Leuven, Belgium
| | - Debapriya Ghosh
- Laboratory of Ion Channels and TRP Research Platform Leuven, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channels and TRP Research Platform Leuven, KU Leuven, Leuven, Belgium
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
21
|
Rathor N, Chung HK, Wang SR, Wang JY, Turner DJ, Rao JN. Caveolin-1 enhances rapid mucosal restitution by activating TRPC1-mediated Ca2+ signaling. Physiol Rep 2014; 2:2/11/e12193. [PMID: 25367694 PMCID: PMC4255804 DOI: 10.14814/phy2.12193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Early rapid mucosal restitution occurs as a consequence of epithelial cell migration to reseal superficial wounds, a process independent of cell proliferation. Our previous studies revealed that the canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca(2+) channel (SOCs) in intestinal epithelial cells (IECs) and regulates epithelial restitution after wounding, but the exact mechanism underlying TRPC1 activation remains elusive. Caveolin-1 (Cav1) is a major component protein that is associated with caveolar lipid rafts in the plasma membrane and was recently identified as a regulator of store-operated Ca(2+) entry (SOCE). Here, we showed that Cav1 plays an important role in the regulation of mucosal restitution by activating TRPC1-mediated Ca(2+) signaling. Target deletion of Cav1 delayed gastric mucosal repair after exposure to hypertonic NaCl in mice, although it did not affect total levels of TRPC1 protein. In cultured IECs, Cav1 directly interacted with TRPC1 and formed Cav1/TRPC1 complex as measured by immunoprecipitation assays. Cav1 silencing in stable TRPC1-transfected cells by transfection with siCav1 reduced SOCE without effect on the level of resting [Ca(2+)]cyt. Inhibition of Cav1 expression by siCav1 and subsequent decrease in Ca(2+) influx repressed epithelial restitution, as indicated by a decrease in cell migration over the wounded area, whereas stable ectopic overexpression of Cav1 increased Cav1/TRPC1 complex, induced SOCE, and enhanced cell migration after wounding. These results indicate that Cav1 physically interacts with and activates TRPC1, thus stimulating TRPC1-mediated Ca(2+) signaling and rapid mucosal restitution after injury.
Collapse
Affiliation(s)
- Navneeta Rathor
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| | - Hee K Chung
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| | - Shelley R Wang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Douglas J Turner
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| | - Jaladanki N Rao
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Rathor N, Zhuang R, Wang JY, Donahue JM, Turner DJ, Rao JN. Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca(2+) influx after wounding. Am J Physiol Gastrointest Liver Physiol 2014; 306:G650-8. [PMID: 24557763 PMCID: PMC3989706 DOI: 10.1152/ajpgi.00003.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Early mucosal restitution occurs as a consequence of intestinal epithelial cell (IEC) migration to reseal superficial wounds, but its exact mechanism remains largely unknown. Caveolin-1 (Cav1), a major component associated with caveolar lipid rafts in the plasma membrane, is implicated in many aspects of cellular functions. This study determined if c-Src kinase (Src)-induced Cav1 phosphorylation promotes intestinal epithelial restitution after wounding by activating Cav1-mediated Ca(2+) signaling. Src directly interacted with Cav1, formed Cav1-Src complexes, and phosphorylated Cav1 in IECs. Inhibition of Src activity by its chemical inhibitor PP2 or suppression of the functional caveolin scaffolding domain by caveolin-scaffolding domain peptides prevented Cav1-Src interaction, reduced Cav1 phosphorylation, decreased Ca(2+) influx, and inhibited cell migration after wounding. Disruption of caveolar lipid raft microdomains by methyl-β-cyclodextrin reduced Cav1-mediated Ca(2+) influx and repressed epithelial restitution. Moreover, Src silencing prevented subcellular redistribution of phosphorylated Cav1 in migrating IECs. These results indicate that Src-induced Cav1 phosphorylation stimulates epithelial restitution by increasing Cav1-mediated Ca(2+) signaling after wounding, thus contributing to the maintenance of gut mucosal integrity under various pathological conditions.
Collapse
Affiliation(s)
- Navneeta Rathor
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland; ,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and
| | - Ran Zhuang
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland; ,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and
| | - Jian-Ying Wang
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland; ,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and ,3Department of Pathology, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland
| | - James M. Donahue
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland; ,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and
| | - Douglas J. Turner
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland; ,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and
| | - Jaladanki N. Rao
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland; ,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; and
| |
Collapse
|
23
|
Yang H, Rao JN, Wang JY. Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs. Tissue Barriers 2014; 2:e28320. [PMID: 24843843 PMCID: PMC4022605 DOI: 10.4161/tisb.28320] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial tight junctions (TJs) are a specialized structure that determines the cell polarity and prevents the diffusion of toxins, allergens, and pathogens from the lumen into the tissue. TJs are highly dynamic and its constituent protein complexes undergo continuously remodeling and turnover under tight regulation by numerous extracellular and intracellular factors. RNA-binding proteins (RBPs) and microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in many aspects of cellular physiology. An increasing body of evidence indicates that RBPs including HuR and CUG-binding protein 1 and miRNAs such as miR-192 modulate the stability and translation of mRNAs encoding TJ proteins and play an important role in the control of intestinal epithelial TJ barrier function. In this mini-review article, we highlight the changes in TJ expression and intestinal epithelial TJ barrier function after activation or inactivation of RBPs and miRNAs and further analyze in some detail the mechanisms through which the stability and translation of TJ mRNAs are regulated by RBPs and miRNAs.
Collapse
Affiliation(s)
- Hong Yang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jaladanki N Rao
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jian-Ying Wang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Department of Pathology; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| |
Collapse
|
24
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
25
|
Yang B, Yang C, Wang P, Li J, Huang H, Ji Q, Liu J, Liu Z. Food allergen--induced mast cell degranulation is dependent on PI3K-mediated reactive oxygen species production and upregulation of store-operated calcium channel subunits. Scand J Immunol 2013; 78:35-43. [PMID: 23672459 DOI: 10.1111/sji.12062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 04/08/2013] [Indexed: 12/18/2022]
Abstract
The importance of Ca(2+) influx via store-operated calcium channels (SOCs) leading to mast cell degranulation is well known in allergic disease. However, the underlying mechanisms are not fully understood. With food-allergic rat model, the morphology of degranulated mast cell was analysed by toluidine blue stain and electron microscope. Ca(2+) influx via SOCs was checked by Ca(2+) imaging confocal microscope. Furthermore, the mRNA and protein expression of SOCs subunits were investigated using qPCR and Western blot. We found that ovalbumin (OVA) challenge significantly increased the levels of Th2 cytokines and OVA-specific IgE in allergic animals. Parallel to mast cell activation, the levels of histamine in serum and supernatant of rat peritoneal lavage solution were remarkably increased after OVA treatment. Moreover, the Ca(2+) entry through SOCs evoked by thapsigargin was increased in OVA-challenged group. The mRNA and protein expressions of SOC subunits, stromal interaction molecule 1 (STIM1) and Orail (calcium-release-activated calcium channel protein 1), were dramatically elevated under food-allergic condition. Administration of Ebselen, a scavenger of reactive oxygen species (ROS), significantly attenuated OVA sensitization-induced intracellular Ca(2+) rise and upregulation of SOCs subunit expressions. Intriguingly, pretreatment with PI3K-specific inhibitor (Wortmannin) partially abolished the production of ROS and subsequent elevation of SOCs activity and their subunit expressions. Taken together, these results imply that enhancement of SOC-mediated Ca(2+) influx induces mast cell activation, contributing to the pathogenesis of OVA-stimulated food allergy. PI3K-dependent ROS generation involves in modulating the activity of SOCs by increasing the expressions of their subunit.
Collapse
Affiliation(s)
- B Yang
- State key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shen Zhen University, Shen Zhen, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhuang R, Rao JN, Zou T, Liu L, Xiao L, Cao S, Hansraj NZ, Gorospe M, Wang JY. miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res 2013; 41:7905-19. [PMID: 23804758 PMCID: PMC3763549 DOI: 10.1093/nar/gkt565] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stromal interaction molecule 1 (Stim1) functions as a sensor of Ca2+ within stores and plays an essential role in the activation of store-operated Ca2+ entry (SOCE). Although lowering Stim1 levels reduces store-operated Ca2+ entry and inhibits intestinal epithelial repair after wounding, the mechanisms that control Stim1 expression remain unknown. Here, we show that cellular Stim1 abundance is controlled posttranscriptionally via factors that associate with 3'-untranslated region (3'-UTR) of stim1 mRNA. MicroRNA-195 (miR-195) and the RNA-binding protein HuR competed for association with the stim1 3'-UTR and regulated stim1 mRNA decay in opposite directions. Interaction of miR-195 with the stim1 3'-UTR destabilized stim1 mRNA, whereas the stability of stim1 mRNA increased with HuR association. Interestingly, ectopic miR-195 overexpression enhanced stim1 mRNA association with argonaute-containing complexes and increased the colocalization of tagged stim1 RNA with processing bodies (P-bodies); the translocation of stim1 mRNA was abolished by HuR overexpression. Moreover, decreased levels of Stim1 by miR-195 overexpression inhibited cell migration over the denuded area after wounding but was rescued by increasing HuR levels. In sum, Stim1 expression is controlled by two factors competing for influence on stim1 mRNA stability: the mRNA-stabilizing protein HuR and the decay-promoting miR-195.
Collapse
Affiliation(s)
- Ran Zhuang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, MD 21201, USA, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA, Department of Pathology, University of Maryland School of Medicine, MD 21201, USA and Laboratory of Genetics, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Onodera K, Pouokam E, Diener M. STIM1-regulated Ca2+ influx across the apical and the basolateral membrane in colonic epithelium. J Membr Biol 2013; 246:271-85. [PMID: 23397206 DOI: 10.1007/s00232-013-9528-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 01/28/2013] [Indexed: 12/17/2022]
Abstract
In nonexcitable cells, store-operated Ca(2+) entry is the most important pathway for influx of extracellular Ca(2+) serving as a second messenger in the cytoplasm. The present study investigated the expression, localization and polar distribution of two key components of store-operated Ca(2+) entry identified, e.g., in lymphocytes or epithelial cell lines-STIM1 (stromal interacting molecule 1), working as a Ca(2+) sensor in the endoplasmic reticulum, and Orai1, working as the (or part of the) store-operated Ca(2+) channel in the plasma membrane-in a native intestinal epithelium, i.e., rat colon. Immunohistochemical investigations revealed expression of STIM1 and Orai1 in the rat colonic epithelium. Ca(2+) store depletion led to a translocation of STIM1 both to the basolateral as well as to the apical cell pole as observed by confocal microscopy. A Ca(2+) depletion/repletion protocol was used in Ussing chamber experiments to investigate the contribution of basolateral and apical store-operated Ca(2+) entry to the induction of anion secretion. These experiments revealed that Ca(2+)-dependent anion secretion was induced not only by basolateral Ca(2+) repletion but also, to a lesser extent, by apical Ca(2+) repletion. Both responses were suppressed by La(3+). The effect of basolateral Ca(2+) repletion was significantly inhibited by brefeldin A, a blocker of vesicular transport from the endoplasmic reticulum to the Golgi apparatus. In a final series of experiments, fura-2-loaded HT29/B6 cells were used. A carbachol-induced increase in the cytosolic Ca(2+) concentration was significantly reduced when cells were pretreated with siRNA against STIM1. In conclusion, these results demonstrate that STIM1 as a key component of intracellular Ca(2+) signaling is expressed by rat colonic epithelium and is involved in the regulation not only of basolateral but also of apical Ca(2+) influx.
Collapse
Affiliation(s)
- Kaoru Onodera
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | | | |
Collapse
|
28
|
Jardin I, Dionisio N, Frischauf I, Berna-Erro A, Woodard GE, López JJ, Salido GM, Rosado JA. The polybasic lysine-rich domain of plasma membrane-resident STIM1 is essential for the modulation of store-operated divalent cation entry by extracellular calcium. Cell Signal 2013; 25:1328-37. [PMID: 23395841 DOI: 10.1016/j.cellsig.2013.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/09/2013] [Accepted: 01/23/2013] [Indexed: 01/16/2023]
Abstract
STIM1 acts as an endoplasmic reticulum Ca(2+) sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca(2+) binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca(2+) concentrations in store-operated Ca(2+) entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca(2+) in a concentration-dependent manner. Expression of the Ca(2+)-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca(2+). Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn(2+) entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca(2+), which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca(2+) mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca(2+) concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.
Collapse
Affiliation(s)
- Isaac Jardin
- Institute of Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
30
|
Schäfer C, Rymarczyk G, Ding L, Kirber MT, Bolotina VM. Role of molecular determinants of store-operated Ca(2+) entry (Orai1, phospholipase A2 group 6, and STIM1) in focal adhesion formation and cell migration. J Biol Chem 2012; 287:40745-57. [PMID: 23043102 DOI: 10.1074/jbc.m112.407155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Store-operated Ca(2+) entry is important for cell migration. RESULTS This study presents characterization of localization and roles of Orai1, STIM1, and PLA2g6 in adhesion dynamics during cell migration. CONCLUSION Orai1 and PLA2g6 are involved in adhesion formation at the front, whereas STIM1 participates in both adhesion formation and disassembly. SIGNIFICANCE Results uncovered new parameters of Orai1, STIM1, and PLA2g6 involvement in cell migration. Store-operated Ca(2+) entry and its major determinants are known to be important for cell migration, but the mechanism of their involvement in this complex process is unknown. This study presents a detailed characterization of distinct roles of Orai1, STIM1, and PLA2g6 in focal adhesion (FA) formation and migration. Using HEK293 cells, we discovered that although molecular knockdown of Orai1, STIM1, or PLA2g6 resulted in a similar reduction in migration velocity, there were profound differences in their effects on number, localization, and lifetime of FAs. Knockdown of STIM1 caused an increase in lifetime and number of FAs, their redistribution toward lamellae region, and an increase in cell tail length. In contrast, the number of FAs in Orai1- or PLA2g6-deficient cells was significantly reduced, and FAs accumulated closer to the leading edge. Assembly rate and Vinculin phosphorylation of FAs was similarly reduced in Orai1, PLA2g6, or STIM1-deficient cells. Although Orai1 and PLA2g6 accumulated and co-localized at the leading edge, STIM1 distribution was more complex. We found STIM1 protrusions in lamellipodia, which co-localized with FAs, whereas major accumulation could be seen in central and retracting parts of the cell. Interestingly, knockdown of Orai1 and PLA2g6 produced similar and non-additive effect on migration, whereas knockdown of STIM1 simultaneously with either Orai1 or PLA2g6 produced additional inhibition. Together these data suggest that although Orai1, PLA2g6, and STIM1 play major roles in formation of new FAs at the leading edge, STIM1 may also be involved in Orai1- and PLA2g6-independent disassembly of FAs in the back of cells.
Collapse
Affiliation(s)
- Claudia Schäfer
- Ion Channel and Calcium Signaling Unit, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
31
|
Rao JN, Rathor N, Zhuang R, Zou T, Liu L, Xiao L, Turner DJ, Wang JY. Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca²+ signaling by differentially modulating STIM1 and STIM2. Am J Physiol Cell Physiol 2012; 303:C308-17. [PMID: 22592407 PMCID: PMC3423028 DOI: 10.1152/ajpcell.00120.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022]
Abstract
Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca(2+) signaling is crucial for stimulation of IEC migration after wounding, and induced translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane activates TRPC1-mediated Ca(2+) influx and thus enhanced restitution. Here, we show that polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca(2+) signaling by altering the ratio of STIM1 to STIM2. Increasing cellular polyamines by ectopic overexpression of the ornithine decarboxylase (ODC) gene stimulated STIM1 but inhibited STIM2 expression, whereas depletion of cellular polyamines by inhibiting ODC activity decreased STIM1 but increased STIM2 levels. Induced STIM1/TRPC1 association by increasing polyamines enhanced Ca(2+) influx and stimulated epithelial restitution, while decreased formation of the STIM1/TRPC1 complex by polyamine depletion decreased Ca(2+) influx and repressed cell migration. Induced STIM1/STIM2 heteromers by polyamine depletion or STIM2 overexpression suppressed STIM1 membrane translocation and inhibited Ca(2+) influx and epithelial restitution. These results indicate that polyamines differentially modulate cellular STIM1 and STIM2 levels in IECs, in turn controlling TRPC1-mediated Ca(2+) signaling and influencing cell migration after wounding.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Timmons JA, Rao JN, Turner DJ, Zou T, Liu L, Xiao L, Wang PY, Wang JY. Induced expression of STIM1 sensitizes intestinal epithelial cells to apoptosis by modulating store-operated Ca2+ influx. J Gastrointest Surg 2012; 16:1397-405. [PMID: 22547346 PMCID: PMC3715032 DOI: 10.1007/s11605-012-1876-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/20/2012] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Apoptosis plays a critical role in the maintenance of gut mucosal epithelial homeostasis and is tightly regulated by numerous factors including intracellular Ca(2+). Canonical transient receptor potential channel-1 (TRPC1) is expressed in intestinal epithelial cells (IECs) and functions as a store-operated Ca(2+) channel. We have recently demonstrated that increased TRPC1 activity sensitizes IECs to apoptosis, but the upstream signaling initiating TRPC1 activation remains elusive. The novel protein, stromal interaction molecule 1 (STIM1), is shown to act as a store Ca(2+) sensor, and it can rapidly translocate to the plasma membrane where it directly interacts with TRPC1. The current study determined whether STIM1 plays an important role in the regulation of IEC apoptosis by activating TRPC1 channel activity. METHODS Studies were conducted in IEC-6 cells (derived from rat intestinal crypts) and stable TRPC1-transfected IECs (IEC-TRPC1). Apoptosis was induced by tumor necrosis factor-α (TNF-α)/cycloheximide (CHX), and intracellular free Ca(2+) concentration ([Ca(2+)](cyt)) was measured by fluorescence digital imaging analysis. Functions of STIM1 were investigated by specific siRNA (siSTIM1) and ectopic overexpression of the constitutively active STIM1 EF-hand mutants. RESULTS Stable STIM1-transfected IEC-6 cells (IEC-STIM1) showed increased STIM1 protein expression (~5 fold) and displayed a sustained increase in Ca(2+) influx after Ca(2+) store depletion (~2 fold). Susceptibility of IEC-STIM1 cells to TNF-α/CHX-induced apoptosis increased significantly as measured by changes in morphological features, DNA fragmentation, and caspase-3 activity. Apoptotic cells were increased from ~20% in parental IEC-6 cells to ~40% in stable IEC-STIM1 cells 4 h after exposure to TNF-α/CHX (p<0.05). In addition, stable IEC-TRPC1 cells also exhibited an increased sensitivity to TNF-α/CHX-induced apoptosis, which was prevented by STIM1 silencing through siSTIM1 transfection. STIM1 silencing by siSTIM1 also decreased Ca(2+) influx after store depletion in cells overexpressing TRPC1. Levels of Ca(2+) influx due to store depletion were decreased by ~70% in STIM1-silenced populations. Similarly, exposure of IEC-STIM1 cells to Ca(2+)-free medium also blocked increased sensitivity to apoptosis. CONCLUSIONS These results indicate that (1) STIM1 plays an important role in the regulation of IEC apoptosis by altering TRPC1 activity and (2) ectopic STIM1 expression sensitizes IECs to apoptosis through induction in TRPC1-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- Jennifer A Timmons
- Cell Biology Group, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Keledjian KM, Marasa BS, Wang JY, Rao JN. Induced PDK1 kinase activity suppresses apoptosis in intestinal epithelial cells by activating Akt signaling following polyamine depletion. Int J Clin Exp Med 2012; 5:221-228. [PMID: 22837796 PMCID: PMC3403558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Apoptosis plays a critical role in the maintenance of gut mucosal homeostasis and is highly regulated by numerous factors including polyamines. Decreasing cellular polyamines promotes the resistance of intestinal epithelial cells (IECs) to apoptosis by increasing Akt kinase activity, but the exact mechanisms by which polyamine depletion activates Akt remain unknown. 3-phosphoinositide-dependent protein kinase-1 (PDK1), functions as a downstream of phosphatidylinositol-3 kinase (PI3K) and upstream of Akt and serves as a major regulator of Akt activity. The current study determined if polyamines regulate Akt activity by altering PDK1. Studies were conducted in IEC-6 cells, derived from rat small intestinal crypts. Depletion of cellular polyamines induced PDK1 phosphorylation and increased its kinase activity, which were prevented by exogenous polyamine putrescine. Induced PDK1 activation following polyamine depletion was associated with an increase in phosphorylated Akt (pAkt) and Akt kinase activity. In contrast, polyamine depletion did not alter levels of total PDK1 and Akt proteins. PDK1 silencing in polyamine-deficient cells not only prevented the induced Akt activation but also blocked the increased resistance to apoptosis. These results indicate that polyamine depletion enhanced Akt phosphorylation by increasing PDK1 kinase activity, thereby protecting IECs against apoptosis.
Collapse
Affiliation(s)
- Kaspar M Keledjian
- Department of Surgery, University of Maryland School of MedicineBaltimore, Maryland 21201
- Baltimore Veterans Affairs Medical CenterBaltimore, Maryland 21201
| | - Bernard S Marasa
- Department of Surgery, University of Maryland School of MedicineBaltimore, Maryland 21201
| | - Jian-Ying Wang
- Department of Surgery, University of Maryland School of MedicineBaltimore, Maryland 21201
- Department of Pathology, University of Maryland School of MedicineBaltimore, Maryland 21201
- Baltimore Veterans Affairs Medical CenterBaltimore, Maryland 21201
| | - Jaladanki N Rao
- Department of Surgery, University of Maryland School of MedicineBaltimore, Maryland 21201
- Baltimore Veterans Affairs Medical CenterBaltimore, Maryland 21201
| |
Collapse
|
34
|
Timmons J, Chang ET, Wang JY, Rao JN. Polyamines and Gut Mucosal Homeostasis. JOURNAL OF GASTROINTESTINAL & DIGESTIVE SYSTEM 2012; 2:001. [PMID: 25237589 PMCID: PMC4165078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The epithelium of gastrointestinal (GI) mucosa has the most rapid turnover rate of any tissue in the body and its integrity is preserved through the dynamic balance between cell migration, proliferation, growth arrest and apoptosis. To maintain tissue homeostasis of the GI mucosa, the rates of epithelial cell division and apoptosis must be highly regulated by various extracellular and intracellular factors including cellular polyamines. Natural polyamines spermidine, spermine and their precursor putrescine, are organic cations in eukaryotic cells and are implicated in the control of multiple signaling pathways and distinct cellular functions. Normal intestinal epithelial growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines also regulate intestinal epithelial cell (IEC) apoptosis. Although the specific molecular processes controlled by polyamines remains to be fully defined, increasing evidence indicates that polyamines regulate intestinal epithelial integrity by modulating the expression of various growth-related genes. In this review, we will extrapolate the current state of scientific knowledge regarding the roles of polyamines in gut mucosal homeostasis and highlight progress in cellular and molecular mechanisms of polyamines and their potential clinical applications.
Collapse
Affiliation(s)
| | | | - Jian-Ying Wang
- Department of Surgery, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Jaladanki N. Rao
- Department of Surgery, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
35
|
Abstract
Influx of Ca(2+) is a central component of the receptor-evoked Ca(2+) signal. A ubiquitous form of Ca(2+) influx comes from Ca(2+) channels that are activated in response to depletion of the endoplasmic reticulum Ca(2+) stores and are thus named the store-operated Ca(2+) -influx channels (SOCs). One form of SOC is the transient receptor potential canonical (TRPC) channels. A major question in the field of Ca(2+) signalling is the molecular mechanism that regulates the opening and closing of these channels. All TRPC channels have a Homer-binding ligand and two conserved negative charges that interact with two terminal lysines of the stromal interacting molecule 1 (STIM1). The Homer and STIM1 sites are separated by only four amino acid residues. Based on available results, we propose a molecular mechanism by which Homer couples TRPC channels to IP(3) receptors (IP(3) Rs) to keep these channels in the closed state. Dissociation of the TRPCs-Homer-IP(3) Rs complex allows STIM1 access to the TRPC channels negative charges to gate open these channels.
Collapse
Affiliation(s)
- J P Yuan
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | |
Collapse
|
36
|
Pani B, Bollimuntha S, Singh BB. The TR (i)P to Ca²⁺ signaling just got STIMy: an update on STIM1 activated TRPC channels. Front Biosci (Landmark Ed) 2012; 17:805-23. [PMID: 22201775 DOI: 10.2741/3958] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium is a ubiquitous signaling molecule, indispensable for cellular metabolism of organisms from unicellular life forms to higher eukaryotes. The biological function of most eukaryotic cells is uniquely regulated by changes in cytosolic calcium, which is largely achieved by the universal phenomenon of store-operated calcium entry (SOCE). The canonical TRPs and Orai channels have been described as the molecular components of the store-operated calcium channels (SOCC). Importantly, the ER calcium-sensor STIM1 has been shown to initiate SOCE via gating of SOCC. Since the discovery of STIM1, as the critical regulator of SOCE, there has been a flurry of observations suggesting its obligatory role in regulating TRPC and Orai channel function. Considerable effort has been made to identify the molecular details as how STIM1 activates SOCC. In this context, findings as of yet has substantially enriched our understanding on, the modus operandi of SOCE, the distinct cellular locales that organize STIM1-SOCC complexes, and the physiological outcomes entailing STIM1-activated SOCE. In this review we discuss TRPC channels and provide an update on their functional regulation by STIM1.
Collapse
Affiliation(s)
- Biswaranjan Pani
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | | | | |
Collapse
|
37
|
Morash AJ, McClelland GB. Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation. Physiol Biochem Zool 2011; 84:625-33. [PMID: 22030855 DOI: 10.1086/662552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Periods of fasting, in most animals, are fueled principally by fatty acids, and changes in the regulation of fatty acid oxidation must exist to meet this change in metabolic substrate use. We examined the regulation of carnitine palmitoyltransferase (CPT) I, to help explain changes in mitochondrial fatty acid oxidation with fasting. After fasting rainbow trout (Oncorhynchus mykiss) for 5 wk, the mitochondria were isolated from red muscle and liver to determine (1) mitochondrial fatty acid oxidation rate, (2) CPT I activity and the concentration of malonyl-CoA needed to inhibit this activity by 50% (IC(50)), (3) mitochondrial membrane fluidity, and (4) CPT I (all five known isoforms) and peroxisome proliferator-activated receptor (PPARα and PPARβ) mRNA levels. Fatty acid oxidation in isolated mitochondria increased during fasting by 2.5- and 1.75-fold in liver and red muscle, respectively. Fasting also decreased sensitivity of CPT I to malonyl-CoA (increased IC(50)), by two and eight times in red muscle and liver, respectively, suggesting it facilitates the rate of fatty acid oxidation. In the liver, there was also a significant increase CPT I activity per milligram mitochondrial protein and in whole-tissue PPARα and PPARβ mRNA levels. However, there were no changes in mitochondrial membrane fluidity in either tissue, indicating that the decrease in CPT I sensitivity to malonyl-CoA is not due to bulk fluidity changes in the membrane. However, there were significant differences in CPT I mRNA levels during fasting. Overall, these data indicate some important changes in the regulation of CPT I that promote the increased mitochondrial fatty acid oxidation that occurs during fasting in trout.
Collapse
Affiliation(s)
- Andrea J Morash
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | | |
Collapse
|
38
|
Valverde MA, Cantero-Recasens G, Garcia-Elias A, Jung C, Carreras-Sureda A, Vicente R. Ion channels in asthma. J Biol Chem 2011; 286:32877-82. [PMID: 21799020 DOI: 10.1074/jbc.r110.215491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.
Collapse
Affiliation(s)
- Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|