1
|
Sun X, Wan X, Chen L, Cui Y, Chen X, Zhang J, Jiang X. Mitomycin induced the senescence of alveolar epithelial cells by targeting peroxiredoxin I. Biochem Pharmacol 2025; 236:116890. [PMID: 40139326 DOI: 10.1016/j.bcp.2025.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The senescence of alveolar epithelial cells is one of the characteristics of mitomycin pulmonary toxicity, but the direct target of mitomycin-induced alveolar epithelial cell senescence remains unclear. In this study, a method of small-molecule ligand-protein interaction by pulldown/mass spectrometry identified peroxiredoxin I (Prdx I) as the target of mitomycin-induced alveolar epithelial cell senescence, and mitomycin was shown to significantly inhibit the peroxidase activity of Prdx I. Consequently, the levels of cellular reactive oxygen species (ROS) increased, leading to the activation of mitogen-activated protein kinase kinase 1/2 (MEK1/2)-extracellular signal-regulated protein kinases 1/2 (ERK 1/2) and, accordingly, to the increased expression of p53. Both a Prdx I activator and Prdx I overexpression alleviated mitomycin-induced alveolar cell senescence. A ROS scavenger inhibited MEK1/2-ERK1/2-p53 activation and then attenuated the senescence of alveolar epithelial cells triggered by mitomycin. Thus, Prdx I can serve as the first target of mitomycin-induced alveolar epithelial cell senescence, which might represent a promising approach to reduce mitomycin-induced lung toxicity.
Collapse
Affiliation(s)
- Xionghua Sun
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xuelei Wan
- College of Pharmaceutical Sciences, Soochow University, China
| | - Li Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Yadong Cui
- College of Pharmaceutical Sciences, Soochow University, China
| | - Xihua Chen
- College of Pharmaceutical Sciences, Soochow University, China
| | - Jian Zhang
- College of Pharmaceutical Sciences, Soochow University, China.
| | - Xiaogang Jiang
- College of Pharmaceutical Sciences, Soochow University, China.
| |
Collapse
|
2
|
Zhong WJ, Xiong JB, Zhang CY, Jin L, Yang NSY, Sha HX, Liu YB, Duan JX, Guan CX, Zhou Y, Su F. Blocking triggering receptors expressed on myeloid cell-1 alleviates alveolar epithelial cell senescence by inhibiting oxidative stress in pulmonary fibrosis. Histochem Cell Biol 2025; 163:45. [PMID: 40240638 DOI: 10.1007/s00418-025-02374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Pulmonary fibrosis (PF) is an insidious, progressive, and fatal age-associated disease that occurs primarily in older adults and has a poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. The accumulation of oxygen radicals, commonly referred to as reactive oxygen species (ROS), strongly contributes to cellular senescence. The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor. Triggering via TREM-1 results in ROS, leading to the amplification of inflammation. However, whether TREM-1 is involved in PF by inducing oxidative stress to exacerbate AEC senescence remains unclear. We first observed that blockade of TREM-1 during the fibrotic phase attenuated bleomycin (BLM)-induced PF in mice, with decreased expression of senescence-related proteins, including p16, p21, p53, and γ-H2AX, in the lung tissue. Moreover, TREM-1 blockade during the fibrosis stage restored antioxidant levels by increasing the percentage of Nrf2- and HO-1-positive cells in mice with PF. Notably, TREM-1 was highly expressed in surfactant-associated protein (SPC)-positive AECs in mice with PF. In vitro, blocking TREM-1 activated Nrf2 antioxidant signaling, thereby decreasing intracellular ROS levels and diminishing BLM-induced senescence in AECs. Furthermore, inhibition of Nrf2/HO-1 partially counteracted the anti-senescence effect of blocking TREM-1 in BLM-treated AECs. In this study, we reported that TREM-1 stimulated the senescence of AECs, induced ROS and exacerbated PF. We also provide compelling evidence suggesting that the Nrf2/HO-1 signaling pathway underpins TREM-1-triggered senescence. Therefore, our findings provide new insights into the molecular mechanisms associated with TREM-1 and AEC senescence in the pathogenesis of PF.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jian-Bing Xiong
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Han-Xi Sha
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Feng Su
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
3
|
Zhou Y, Su W, Xu M, Zhang A, Li S, Guo H, Gong K, Lu K, Yu X, Zhu J, Zhu Q, Liu C. Maimendong decoction modulates the PINK1/Parkin signaling pathway alleviates type 2 alveolar epithelial cells senescence and enhances mitochondrial autophagy to offer potential therapeutic effects for idiopathic pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119568. [PMID: 40037475 DOI: 10.1016/j.jep.2025.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maimendong decoction (MMDD) originates from the ancient Chinese medical text Synopsis of the Golden Chamber and is a well-established remedy for treating lung diseases. It has demonstrated efficacy in the long-term clinical management of idiopathic pulmonary fibrosis (IPF); however, its underlying mechanisms remain unclear. AIM OF THE STUDY This study investigates whether MMDD alleviates IPF by reducing type 2 alveolar epithelial cell (AEC2) senescence and enhancing mitochondrial autophagy. It also explores whether these effects are mediated through the PTEN-induced putative kinase 1 (PINK1)/Parkinson juvenile disease protein 2 (Parkin) pathway. MATERIALS AND METHODS An IPF mouse model was established with bleomycin (BLM). Mice were administered MMDD, pirfenidone (PFD), or saline for 7 or 28 days. Body weight, lung coefficient, and lung appearance were monitored, and lung tissue pathology was assessed. The expression levels of p53, p21, p16, SA-β-gal activity, and senescence-associated secretory phenotype (SASP) markers were measured. Ultrastructural changes in AEC2 mitochondria were analyzed using transmission electron microscopy. Protein levels of autophagy markers sequestosome-1 and light chain 3 were assessed. The protein levels of PINK1, Parkin, and phosphorylated Parkin were further assessed using network pharmacology analysis and molecular docking technology. RESULTS MMDD alleviated BLM-induced IPF by improving body weight, lung appearance, and histopathological features. It reduced AEC2 senescence markers, including p53, p21, p16, SA-β-gal, and SASP, while enhancing mitochondrial autophagy and repairing mitochondrial damage. Network pharmacology and molecular docking identified PINK1 as a major target, and Western blot (WB) analysis confirmed that MMDD regulates the PINK1/Parkin signaling pathway in the treatment of IPF. CONCLUSIONS MMDD regulates the PINK1/Parkin signaling pathway, alleviates AEC2 senescence, and enhances mitochondrial autophagy, providing significant therapeutic potential for IPF treatment.
Collapse
Affiliation(s)
- Yuhe Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Aijun Zhang
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co, Ltd.Jinan, Jinan, 250100, China.
| | - Shaoli Li
- Jinan Lixia District People's Hospital, Jinan, 250014, China.
| | - Hong Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
4
|
Elliot SJ, Anderson-Terhune D, Roos B, Rubio GA, Xia X, Pereira-Simon S, Catanuto P, Civettini G, Hagen ES, Arvanitis C, Shahzeidi S, Glassberg MK. Ratio of miRNA-29 to miRNA-199 expression coordinates mesenchymal stem cell repair of bleomycin-induced pulmonary injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102461. [PMID: 40124162 PMCID: PMC11930095 DOI: 10.1016/j.omtn.2025.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/17/2025] [Indexed: 03/25/2025]
Abstract
Our previous work demonstrated the anti-fibrotic effects of infusion of adipose-derived mesenchymal stem cells (ASCs) to prevent or repair bleomycin (BLM)-induced lung injury. The present study investigates mechanisms driving these anti-fibrotic effects. Pulmonary fibrosis developed at day 12 in 22-month-old C57BL/6 male mice after intratracheal BLM instillation. There was a decrease in indices of pulmonary fibrosis, including collagen content, AKT activation, collagen types I and III, αV-integrin, tumor necrosis factor alpha, and transforming growth factor β mRNA after infusion of ASCs 12 days post-BLM treatment compared to BLM alone. Infusion of ASCs increased the population of alveolar types I and II epithelial cells that had been reduced after BLM treatment. miRNAscope technology and reverse-transcription polymerase chain reaction revealed that ASC-treated mice demonstrated increased miR-29a, decreased miR-199, and increased telomere length, telomerase RNA component, and telomerase reverse transcriptase compared to BLM alone. In vitro and ex vivo experiments using double-transfected mouse or human myofibroblasts (miR-29 mimic, and miR-199 inhibitor) confirmed that alterations of these miRNAs regulate downstream effectors of fibrosis. These data suggest that alteration of the ratio of anti-fibrotic to fibrotic miRNAs and increase in telomere length are critical mechanisms of ASC-mediated repair of BLM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Sharon J. Elliot
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Dustin Anderson-Terhune
- Department of Pulmonary and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Roos
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gustavo A. Rubio
- Associate Medical Director, Jackson Health System, 1611 NW 12 Avenue, Miami, FL 33136, USA
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Arizona College of Medicine-Phoenix University Medical Center-Phoenix, Phoenix, AZ 85004, USA
| | - Simone Pereira-Simon
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Paola Catanuto
- Department of Ophthalmology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Gina Civettini
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Emily S. Hagen
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Constadina Arvanitis
- Director of Center for Advanced Microscopy & Nikon Imaging Center, Northwestern University, Chicago, IL 60611, USA
| | - Shahriar Shahzeidi
- Grand Health Institute, 1717 N. Bayshore Drive, Suite R244, Miami, FL 33132, USA
| | - Marilyn K. Glassberg
- Stritch School of Medicine, Department of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Thapa R, Marianesan AB, Rekha A, Ganesan S, Kumari M, Bhat AA, Ali H, Singh SK, Chakraborty A, MacLoughlin R, Gupta G, Dua K. Hypoxia-inducible factor and cellular senescence in pulmonary aging and disease. Biogerontology 2025; 26:64. [PMID: 40011266 DOI: 10.1007/s10522-025-10208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Cellular senescence and hypoxia-inducible factor (HIF) signaling are crucial in pulmonary aging and age-related lung diseases such as chronic obstructive pulmonary disease idiopathic pulmonary fibrosis and lung cancer. HIF plays a pivotal role in cellular adaptation to hypoxia, regulating processes like angiogenesis, metabolism, and inflammation. Meanwhile, cellular senescence leads to irreversible cell cycle arrest, triggering the senescence-associated secretory phenotype which contributes to chronic inflammation, tissue remodeling, and fibrosis. Dysregulation of these pathways accelerates lung aging and disease progression by promoting oxidative stress, mitochondrial dysfunction, and epigenetic alterations. Recent studies indicate that HIF and senescence interact at multiple levels, where HIF can both induce and suppress senescence, depending on cellular conditions. While transient HIF activation supports tissue repair and stress resistance, chronic dysregulation exacerbates pulmonary pathologies. Furthermore, emerging evidence suggests that targeting HIF and senescence pathways could offer new therapeutic strategies to mitigate age-related lung diseases. This review explores the intricate crosstalk between these mechanisms, shedding light on how their interplay influences pulmonary aging and disease progression. Additionally, we discuss potential interventions, including senolytic therapies and HIF modulators, that could enhance lung health and longevity.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - A Rekha
- Dr D Y Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW, 2007, Australia.
- Woolcock Institute of Medical Research, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
Xu Y, Wei J, Wang W, Mao Z, Wang D, Zhang T, Zhang P. Oleanolic Acid Slows Down Aging Through IGF-1 Affecting the PI3K/AKT/mTOR Signaling Pathway. Molecules 2025; 30:740. [PMID: 39942843 PMCID: PMC11820160 DOI: 10.3390/molecules30030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE A pentacyclic triterpene, oleanolic acid (OA), has anti-inflammatory activity. The role of oleanolic acid in aging is poorly understood, and the regulatory mechanism of IGF-1 signaling in aging is still not fully understood. Thus, we hypothesized that OA could delay aging by regulating the PI3K/AKT/mTOR pathway via insulin-like growth factor-1 (IGF-1). METHOD This study initially established a replicative aging model and a bleomycin-induced aging model in human dermal fibroblast (HDF) and mouse embryonic fibroblast (MEF) cell lines. On this basis, IGF-1 inhibitors or IGF-1 recombinant proteins were then combined with OA (at a concentration of 20 μM) and treated for 72 h. The project plans to detect the expression of aging-related proteins such as CDKN2A (p16) using Western blot technology, detect the expression of aging-related factors such as Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Enzyme-Linked Immunosorbent Assay (ELISA), and other technologies, and combine Senescence-Associated β-Galactosidase (SA-β-gal) staining to detect changes in aging. RESULTS The expression of IGF-1, PI3K/AKT/mTOR, aging-related proteins P16, and aging-related secretory factors (SASP) IL-1β, IL-6, and IL-8 was increased in senescent cells. After treatment with jujuboside, the expression of IGF-1, PI3K/AKT/mTOR, aging-related protein P16, and aging-related secretory factors IL-1β, IL-6, and IL-8 were decreased. CONCLUSION The findings suggested that OA slowed down aging by inhibiting the PI3K/AKT/mTOR expression through IGF-1. These findings suggest OA as a potential new drug and its mechanisms for anti-aging.
Collapse
Affiliation(s)
- Yan Xu
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases of Heilongjiang Province, Jiamusi University, Jiamusi 154000, China
| | - Jianlei Wei
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Wang Wang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China;
| | - Didi Wang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Tao Zhang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Pengxia Zhang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases of Heilongjiang Province, Jiamusi University, Jiamusi 154000, China
| |
Collapse
|
7
|
Chilosi M, Ravaglia C, Doglioni C, Piciucchi S, Stefanizzi L, Poletti V. The pathogenesis of idiopathic pulmonary fibrosis: from "folies à deux" to "Culprit cell Trio". Pathologica 2025; 117:3-9. [PMID: 40205925 PMCID: PMC11983081 DOI: 10.32074/1591-951x-1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Marco Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Claudia Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | | | - Lavinia Stefanizzi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Venerino Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Patarat R, Chuaybudda S, Yasom S, Mutirangura A. HMGB1 Box A gene therapy to alleviate bleomycin-induced pulmonary fibrosis in rats. BMC Pulm Med 2025; 25:52. [PMID: 39891078 PMCID: PMC11786397 DOI: 10.1186/s12890-025-03522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis is characterized by the destruction of normal lung tissue and then replacement by abnormal fibrous tissue, leading to an overall decrease in gas exchange function. The effective treatment for pulmonary fibrosis remains unknown. The upstream pathogenesis of pulmonary fibrosis may involve cellular senescence of the lung tissue. Previously, a new gene therapy technology using Box A of the HMGB1 plasmid (Box A) was used to reverse cellular senescence and cure liver fibrosis in aged rats. METHODS Here, we show that Box A is a promising medicine for the treatment of lung fibrosis. In a bleomycin-induced pulmonary fibrosis model in the male Wistar rats, Student's t-test and one-way ANOVA were used to compare groups of samples. RESULTS Box A effectively lowered fibrous tissue deposits (from 18.74 ± 0.62 to 3.45 ± 1.19%) and senescent cells (from 3.74 ± 0.40% to 0.89 ± 0.18%) to levels comparable to those of the negative control group. Moreover, after eight weeks, Box A also increased the production of the surfactant protein C (from 3.60 ± 1.68% to 6.82 ± 0.65%). CONCLUSIONS Our results demonstrate that Box A is a promising therapeutic approach for pulmonary fibrosis and other senescence-promoted fibrotic lesions.
Collapse
Affiliation(s)
- Rathasapa Patarat
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suchanart Chuaybudda
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sakawdaurn Yasom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. JCI Insight 2024; 10:e183483. [PMID: 39699958 PMCID: PMC11948584 DOI: 10.1172/jci.insight.183483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single-mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double-mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage-tracing and organoid-modeling studies demonstrated that HPS AT2 cells were primed to persist in a Keratin-8-positive reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia N. Michki
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sneha Sitaraman
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brandon J. Banaschewski
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reshma Jamal
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan M. Lin
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Jeremy B. Katzen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - Maria C. Basil
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward Cantu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarod A. Zepp
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| | - David B. Frank
- Division of Cardiology, Department of Pediatrics, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Lung Biology Institute and
| |
Collapse
|
10
|
Xie W, Deng L, Zhang X, Huang X, Ding J, Liu W, Tang SY. Myricetin Alleviates Silica-Mediated Lung Fibrosis via PPARγ-PGC-1α Loop and Suppressing Mitochondrial Senescence in Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27737-27749. [PMID: 39586772 DOI: 10.1021/acs.jafc.4c04887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE Long-term inhalation of silica dust particles leads to lung tissue fibrosis, resulting in impaired gas exchange and increased mortality. Silica inhalation triggers the aging of epithelial cells (AECs), which is a key contributor to the development of pulmonary fibrosis. Myricetin, a flavonoid compound extracted from Myrica genus plants, possesses various biological activities, including antioxidant and immunomodulatory effects. However, the mechanisms underlying myricetin's ability to counter senescence and fibrosis need to be further studied. EXPERIMENTAL APPROACH In vivo, the antifibrotic and anti-senescence effects of myricetin were evaluated using a silica-induced pulmonary fibrosis mouse model. To further elucidate the mechanisms by which myricetin counteracts silica-induced senescence, in vitro experiments were conducted using AECs. RESULTS Our studies revealed that myricetin treatment alleviated silica-induced mortality, improved lung function, and reduced the severity of pulmonary fibrosis in mice. Immunofluorescence analysis suggests its potential in mitigating senescence of AECs. Under laboratory conditions, myricetin intervened in the cellular senescence pathway induced by silica dust by modulating mitochondrial function. It acted through the PPARγ-PGC1α axis, effectively reducing silica-induced mitochondrial oxidative stress in AECs, promoting mitophagy, and maintaining mitochondrial dynamics. However, the efficacy of myricetin was reversed under PPARγ siRNA intervention. Additionally, myricetin exhibited an enhancing effect on PPARγ and autophagy in animal models. Treatment with PPARγ and PGC-1α siRNA elucidated the role of myricetin in promoting the formation of a positive feedback loop between PPARγ and PGC-1α. Additionally, the PPARγ inhibitor GW9662 verified the in vivo effects of myricetin. CONCLUSIONS Myricetin activates PPARγ, forming a PPARγ-PGC-1α loop, which promotes mitophagy and maintains mitochondrial dynamics. This alleviates epithelial cell senescence induced by silica exposure, consequently mitigating silica-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Weixi Xie
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Xiaohua Zhang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410000 Hunan, China
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - JinFeng Ding
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
- The School of Nursing, Ningxia Medical University, Yinchuan 750000 Ningxia, China
| |
Collapse
|
11
|
Wang JY, Michki SN, Sitaraman S, Banaschewski BJ, Jamal R, Gokey JJ, Lin SM, Katzen JB, Basil MC, Cantu E, Kropski JA, Zepp JA, Frank DB, Young LR. Dysregulated alveolar epithelial cell progenitor function and identity in Hermansky-Pudlak syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.17.545390. [PMID: 38496421 PMCID: PMC10942273 DOI: 10.1101/2023.06.17.545390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell function was impaired ex vivo and in vivo . Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and organoid modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8 + reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.
Collapse
|
12
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Shen S, Wang P, Wu P, Huang P, Chi T, Xu W, Xi Y. CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury. Mol Ther 2024; 32:3974-3989. [PMID: 39245939 PMCID: PMC11573616 DOI: 10.1016/j.ymthe.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.
Collapse
Affiliation(s)
- Shengxi Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ping Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Pei Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Xi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Moua T, Baqir M, Ryu JH. What Is on the Horizon for Treatments in Idiopathic Pulmonary Fibrosis? J Clin Med 2024; 13:6304. [PMID: 39518443 PMCID: PMC11546700 DOI: 10.3390/jcm13216304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal lung disease most commonly encountered in older individuals. Several decades of research have contributed to a better understanding of its pathogenesis, though only two drugs thus far have shown treatment efficacy, i.e., by slowing the decline of lung function. The pathogenesis of IPF remains incompletely understood and involves multiple complex interactions and mechanisms working in tandem or separately to result in unchecked deposition of extracellular matrix components and collagen characteristic of the disease. These mechanisms include aberrant response to injury in the alveolar epithelium, inappropriate communication between epithelial cells and mesenchymal cells, imbalances between oxidative injury and tissue repair, recruitment of inflammatory pathways that induce fibrosis, and cell senescence leading to sustained activation and proliferation of fibroblasts and myofibroblasts. Targeted approaches to each of these mechanistic pathways have led to recent clinical studies evaluating the safety and efficacy of several agents. This review highlights selected concepts in the pathogenesis of IPF as a rationale for understanding current or future therapeutic approaches, followed by a review of several selected agents and their recent or active clinical studies. Current novel therapies include approaches to attenuating or modifying specific cellular or signaling processes in the fibrotic pathway, modifying inflammatory and metabolic derangements, and minimizing inappropriate cell senescence.
Collapse
Affiliation(s)
- Teng Moua
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; (M.B.); (J.H.R.)
| | | | | |
Collapse
|
15
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
16
|
Li Y, Du X, Hu Y, Wang D, Duan L, Zhang H, Zhang R, Xu Y, Zhou R, Zhang X, Zhang M, Liu J, Lv Z, Chen Y, Wang W, Sun Y, Cui Y. Iron-laden macrophage-mediated paracrine profibrotic signaling induces lung fibroblast activation. Am J Physiol Cell Physiol 2024; 327:C979-C993. [PMID: 39183565 DOI: 10.1152/ajpcell.00675.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating condition characterized by progressive lung scarring and uncontrolled fibroblast proliferation, inevitably leading to organ dysfunction and mortality. Although elevated iron levels have been observed in patients and animal models of lung fibrosis, the mechanisms linking iron dysregulation to lung fibrosis pathogenesis, particularly the role of macrophages in orchestrating this process, remain poorly elucidated. Here we evaluate iron metabolism in macrophages during pulmonary fibrosis using both in vivo and in vitro approaches. In murine bleomycin- and amiodarone-induced pulmonary fibrosis models, we observed significant iron deposition and lipid peroxidation in pulmonary macrophages. Intriguingly, the ferroptosis regulator glutathione peroxidase 4 (GPX4) was upregulated in pulmonary macrophages following bleomycin instillation, a finding corroborated by single-cell RNA sequencing analysis. Moreover, macrophages isolated from fibrotic mouse lungs exhibited increased transforming growth factor (TGF)-β1 expression that correlated with lipid peroxidation. In vitro, iron overload in bone marrow-derived macrophages triggered lipid peroxidation and TGF-β1 upregulation, which was effectively suppressed by ferroptosis inhibitors. When cocultured with iron-overloaded macrophages, lung fibroblasts exhibited heightened activation, evidenced by increased α-smooth muscle actin and fibronectin expression. Importantly, this profibrotic effect was attenuated by treating macrophages with a ferroptosis inhibitor or blocking TGF-β receptor signaling in fibroblasts. Collectively, our study elucidates a novel mechanistic paradigm in which the accumulation of iron within macrophages initiates lipid peroxidation, thereby amplifying TGF-β1 production, subsequently instigating fibroblast activation through paracrine signaling. Thus, inhibiting iron overload and lipid peroxidation warrants further exploration as a strategy to suppress fibrotic stimulation by disease-associated macrophages. NEW & NOTEWORTHY This study investigates the role of iron in pulmonary fibrosis, specifically focusing on macrophage-mediated mechanisms. Iron accumulation in fibrotic lung macrophages triggers lipid peroxidation and an upregulation of transforming growth factor (TGF)-β1 expression. Coculturing iron-laden macrophages activates lung fibroblasts in a TGF-β1-dependent manner, which can be mitigated by ferroptosis inhibitors. These findings underscore the potential of targeting iron overload and lipid peroxidation as a promising strategy to alleviate fibrotic stimulation provoked by disease-associated macrophages.
Collapse
Affiliation(s)
- Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Luo Duan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Hanxiao Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ruoyang Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
- National Center for Respiratory Medicine, Beijing, People's Republic of China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ruonan Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Zhong WJ, Zhang CY, Duan JX, Chen MR, Ping-Deng, Zhang BL, Yang NSY, Sha HX, Zhang J, Xiong JB, Guan CX, Zhou Y. Krüppel-like transcription factor 14 alleviates alveolar epithelial cell senescence by inhibiting endoplasmic reticulum stress in pulmonaryfibrosis. Int J Biol Macromol 2024; 280:135351. [PMID: 39270890 DOI: 10.1016/j.ijbiomac.2024.135351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Pulmonary fibrosis (PF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia, occurring primarily in older adults with poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. However, the molecular mechanisms regulating AEC senescence in PF are incompletely understood. Herein, we provided evidence to support the function of Krüppel-like factor 14 (KLF14), a novel Krüppel-like transcription factor, in the regulation of AEC senescence during PF. We confirmed that the expression of KLF14 was up-regulated in PF patients and mice treated with bleomycin (BLM). KLF14 knockdown resulted in more pronounced structural disruption of the lung tissue and swelling of the alveolar septum, which led to significantly increased mortality in BLM-induced PF mice. Mechanistically, RNA-seq analysis indicated that KLF14 decreased the senescence of AECs by inhibiting endoplasmic reticulum (ER) stress. Furthermore, the pharmacological activation of KLF14 conferred protection against PF in mice. In conclusion, our findings reveal a protective role for KLF14 in preventing AECs from senescence and shed light on the development of KLF14-targeted therapeutics for PF.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Meng-Rui Chen
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Ping-Deng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Bo-Liang Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Han-Xi Sha
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Jun Zhang
- Department of Physiology, Hunan University of Medicine, Huaihua, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China.
| |
Collapse
|
18
|
Cai XT, Jia M, Heigl T, Shamir ER, Wong AK, Hall BM, Arlantico A, Hung J, Menon HG, Darmanis S, Brightbill HD, Garfield DA, Rock JR. IL-4-induced SOX9 confers lineage plasticity to aged adult lung stem cells. Cell Rep 2024; 43:114569. [PMID: 39088319 DOI: 10.1016/j.celrep.2024.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs). We show that IL4Ra signaling in macrophages promotes regeneration of the alveolar epithelium after bleomycin-induced lung injury. Using organoids and mouse models, we show that IL-4 directly acts on a subset of ATIIs to induce the expression of the transcription factor SOX9 and reprograms them toward a progenitor-like state with both airway and alveolar lineage potential. In the contexts of aging and bleomycin-induced lung injury, this leads to aberrant epithelial cell differentiation and bronchiolization, consistent with cellular and histological changes observed in interstitial lung disease.
Collapse
Affiliation(s)
- Xiaoyu T Cai
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA 15213, USA
| | - Tobias Heigl
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eliah R Shamir
- Department of Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Aaron K Wong
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben M Hall
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeffrey Hung
- Department of Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hari G Menon
- Department of Next Generation Sequencing and Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Spyros Darmanis
- Department of Next Generation Sequencing and Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Immunology and Infectious Diseases, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David A Garfield
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason R Rock
- Immunology Discovery and Regenerative Medicine, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
19
|
Yang Z, Yang Y, Han X, Hou J. Novel AT2 Cell Subpopulations and Diagnostic Biomarkers in IPF: Integrating Machine Learning with Single-Cell Analysis. Int J Mol Sci 2024; 25:7754. [PMID: 39062997 PMCID: PMC11277372 DOI: 10.3390/ijms25147754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-term condition with an unidentified cause, and currently there are no specific treatment options available. Alveolar epithelial type II cells (AT2) constitute a heterogeneous population crucial for secreting and regenerative functions in the alveolus, essential for maintaining lung homeostasis. However, a comprehensive investigation into their cellular diversity, molecular features, and clinical implications is currently lacking. In this study, we conducted a comprehensive examination of single-cell RNA sequencing data from both normal and fibrotic lung tissues. We analyzed alterations in cellular composition between IPF and normal tissue and investigated differentially expressed genes across each cell population. This analysis revealed the presence of two distinct subpopulations of IPF-related alveolar epithelial type II cells (IR_AT2). Subsequently, three unique gene co-expression modules associated with the IR_AT2 subtype were identified through the use of hdWGCNA. Furthermore, we refined and identified IPF-related AT2-related gene (IARG) signatures using various machine learning algorithms. Our analysis demonstrated a significant association between high IARG scores in IPF patients and shorter survival times (p-value < 0.01). Additionally, we observed a negative correlation between the percent predicted diffusing capacity for lung carbon monoxide (% DLCO) and increased IARG scores (cor = -0.44, p-value < 0.05). The cross-validation findings demonstrated a high level of accuracy (AUC > 0.85, p-value < 0.01) in the prognostication of patients with IPF utilizing the identified IARG signatures. Our study has identified distinct molecular and biological features among AT2 subpopulations, specifically highlighting the unique characteristics of IPF-related AT2 cells. Importantly, our findings underscore the prognostic relevance of specific genes associated with IPF-related AT2 cells, offering valuable insights into the advancement of IPF.
Collapse
Affiliation(s)
| | | | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Z.Y.); (Y.Y.)
| | - Jiwei Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Z.Y.); (Y.Y.)
| |
Collapse
|
20
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
21
|
Xie T, Liang J, Stripp B, Noble PW. Cell-cell interactions and communication dynamics in lung fibrosis. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:63-71. [PMID: 39169931 PMCID: PMC11332853 DOI: 10.1016/j.pccm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 08/23/2024]
Abstract
Cell-cell interactions are essential components of coordinated cell function in lung homeostasis. Lung diseases involve altered cell-cell interactions and communication between different cell types, as well as between subsets of cells of the same type. The identification and understanding of intercellular signaling in lung fibrosis offer insights into the molecular mechanisms underlying these interactions and their implications in the development and progression of lung fibrosis. A comprehensive cell atlas of the human lung, established with the facilitation of single-cell RNA transcriptomic analysis, has enabled the inference of intercellular communications using ligand-receptor databases. In this review, we provide a comprehensive overview of the modified cell-cell communications in lung fibrosis. We highlight the intricate interactions among the major cell types within the lung and their contributions to fibrogenesis. The insights presented in this review will contribute to a better understanding of the molecular mechanisms underlying lung fibrosis and may guide future research efforts in developing targeted therapies for this debilitating disease.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
22
|
Nyström A. The intertwined aging, the extracellular matrix, and fibrosis. Am J Physiol Cell Physiol 2024; 326:C645-C646. [PMID: 38223933 DOI: 10.1152/ajpcell.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Schaefer L. From promise to success: AJP-Cell Physiology's journey of accomplishments and future vision. Am J Physiol Cell Physiol 2024; 326:C382-C385. [PMID: 38884633 DOI: 10.1152/ajpcell.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Affiliation(s)
- Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|