1
|
Gao F, Reynolds MB, Passalacqua KD, Sexton JZ, Abuaita BH, O'Riordan MXD. The Mitochondrial Fission Regulator DRP1 Controls Post-Transcriptional Regulation of TNF-α. Front Cell Infect Microbiol 2021; 10:593805. [PMID: 33520735 PMCID: PMC7840702 DOI: 10.3389/fcimb.2020.593805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial network plays a critical role in the regulation of innate immune signaling and subsequent production of proinflammatory cytokines such as IFN-β and IL-1β. Dynamin-related protein 1 (DRP1) promotes mitochondrial fission and quality control to maintain cellular homeostasis during infection. However, mechanisms by which DRP1 and mitochondrial dynamics control innate immune signaling and the proinflammatory response are incompletely understood. Here we show that macrophage DRP1 is a positive regulator of TNF-α production during sterile inflammation or bacterial infection. Silencing macrophage DRP1 decreased mitochondrial fragmentation and TNF-α production upon stimulation with lipopolysaccharide (LPS) or methicillin-resistant Staphylococcus aureus (MRSA) infection. The defect in TNF-α induction could not be attributed to changes in gene expression. Instead, DRP1 was required for post-transcriptional control of TNF-α. In contrast, silencing DRP1 enhanced IL-6 and IL-1β production, indicating a distinct mechanism for DRP1-dependent TNF-α regulation. Our results highlight DRP1 as a key player in the macrophage pro-inflammatory response and point to its involvement in post-transcriptional control of TNF-α production.
Collapse
Affiliation(s)
- Fushan Gao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States.,U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, United States.,Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Alekseeva OY, Bobyleva PI, Andreeva ER. Phenotype and Secretome of Monocyte-Derived Macrophages Interacting with Mesenchymal Stromal Cells under Conditions of Hypoxic Stress. Bull Exp Biol Med 2019; 168:125-131. [PMID: 31776955 DOI: 10.1007/s10517-019-04662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 01/18/2023]
Abstract
We studied the effect of short-term hypoxic stress on the phenotypic polarization of monocyte-derived macrophages and their secretory activity during interaction with mesenchymal stromal cells. In the presence of mesenchymal stromal cells, monocyte-derived macrophages exhibited the signs of M2 polarization, which was evidenced by increased expression of CD206 and CD163 markers, as well as increased transcription and translation of IL-6. Short-term hypoxic stress promoted a shift of macrophage phenotype from inflammatory M1 towards anti-inflammatory M2 in monoculture and co-culture with mesenchymal stromal cells. In addition to the immunoregulatory action, mesenchymal stromal cells demonstrated stromal activity and maintained high viability of monocyte-derived macrophages.
Collapse
Affiliation(s)
- O Yu Alekseeva
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - P I Bobyleva
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - E R Andreeva
- State Research Center Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Jin L, Zeng W, Zhang F, Zhang C, Liang W. Naringenin Ameliorates Acute Inflammation by Regulating Intracellular Cytokine Degradation. THE JOURNAL OF IMMUNOLOGY 2017; 199:3466-3477. [DOI: 10.4049/jimmunol.1602016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
|
4
|
Xu B, Gao Y, Zhan S, Ge W. Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections. Mol Immunol 2017; 87:122-131. [PMID: 28433889 DOI: 10.1016/j.molimm.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 02/05/2023]
Abstract
Lysosomes play vital roles in both innate and adaptive immunity. It is widely accepted that lysosomes do not function exclusively as a digestive organelle. It is also involved in the process of immune cells against pathogens. However, the changes in the lysosomal proteome caused by infection with various microbes are still largely unknown, and our understanding of the proteome of the purified lysosome is another obstacle that needs to be resolved. Here, we performed a proteomic study on lysosomes enriched from THP1 cells after infection with Listeria monocytogenes (L.m), Herpes Simplex Virus 1 (HSV-1) and Vesicular Stomatitis Virus (VSV). In combination with the gene ontology (GO) analysis, we identified 284 lysosomal-related proteins from a total of 4560 proteins. We also constructed the protein-protein interaction networks for the differentially expressed proteins and revealed the core lysosomal proteins, including SRC in the L. m treated group, SRC, GLB1, HEXA and HEXB in the HSV-1 treated group and GLB1, CTSA, CTSB, HEXA and HEXB in the VSV treated group, which are involved in responding to diverse microbial infections. This study not only reveals variable lysosome responses depending on the bacterial or virus infection, but also provides the evidence based on which we propose a novel approach to proteome research for investigation of the function of the enriched organelles.
Collapse
Affiliation(s)
- Benhong Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| | - Yanpan Gao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| | - Shaohua Zhan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| | - Wei Ge
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, No 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China.
| |
Collapse
|
5
|
Terrizzi AR, Fernandez-Solari J, Lee CM, Conti MI, Martínez MP. Deleterious effect of chronic continuous hypoxia on oral health. Arch Oral Biol 2016; 72:1-7. [PMID: 27521733 DOI: 10.1016/j.archoralbio.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effect of chronic continuous hypoxia (CCH) in alveolar bone and its correlation with the inflammatory markers which play a key role in the development of periodontitis. MATERIAL AND METHODS Wistar rats were exposed to CCH (600mbar, 3 months). Macroscopic and histological analyses of alveolar bone were performed, together with measurement of oxidative stress and inflammatory parameters in gums and submandibular glands (SMG). RESULTS HCC induced cortical alveolar bone loss, decreased interradicular bone volume and increased the periodontal ligament height compared to control rats (p<0.05). CCH enhanced iNOS activity in gums (from 2735,04±662,96 nmol/min/mg proteins to 4289,58±915,63 p<0.05) and in SMG (from 56,71±12,05 nmol/min/mg proteins to 90,15±21,78 p<0.05). PGE2 did not change in gums or in SMG by means of CCH, while TNFα decreased in gums (p<0.05). Regarding oxidative stress, thiobarbituric acid reactive species concentration in CCH animals was higher both in gums as in SMG, and catalase activity was decreased in SMG. CONCLUSION Higher iNOS activity both in gums and SMG under CCH could be associated with the alveolar bone loss observed. The increase in oxidative stress occurring in SMG and gums, together with a lower antioxidant capacity might indicate a deleterious effect of HX in oral health.
Collapse
Affiliation(s)
- Antonela R Terrizzi
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina
| | - Javier Fernandez-Solari
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina
| | - Ching M Lee
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - María Ines Conti
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - María Pilar Martínez
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina.
| |
Collapse
|
6
|
Jiang H, Zhang X, Lin H. Lysine fatty acylation promotes lysosomal targeting of TNF-α. Sci Rep 2016; 6:24371. [PMID: 27079798 PMCID: PMC4832147 DOI: 10.1038/srep24371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 12/23/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin family of enzymes, can remove the fatty acyl modification on TNF-α and promote its secretion. However, the mechanistic details about how lysine fatty acylation regulates TNF-α secretion have been unknown. Here we present experimental data supporting that lysine fatty acylation promotes lysosomal targeting of TNF-α. The result is an important first step toward understanding the biological functions of lysine fatty acylation.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm 2016; 2016:4375120. [PMID: 26997761 PMCID: PMC4779817 DOI: 10.1155/2016/4375120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies.
Collapse
|
8
|
Mishra KP, Ganju L, Singh SB. Hypoxia modulates innate immune factors: A review. Int Immunopharmacol 2015; 28:425-8. [PMID: 26184693 DOI: 10.1016/j.intimp.2015.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
Hypoxia is an important factor for transcriptional regulation of cell metabolism and the adaptation to cellular stress. It modulates the function of phagocytic cells by stimulating surface receptors such as scavenger receptors, toll like receptors and their downstream signaling cascades. In response to hypoxia, innate immune modifiers are upregulated through pathways involving the key immune response master regulator nuclear factor-κB leading to the modulation of inflammatory cytokines. In this review, we highlighted the effects of hypoxia on different innate immune factors and consequences thereof.
Collapse
Affiliation(s)
- K P Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Lilly Ganju
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Shashi Bala Singh
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
9
|
Seo SM, Jeon JW, Kim TY, Paek SH. An innate immune system-mimicking, real-time biosensing of infectious bacteria. Analyst 2015; 140:6061-70. [DOI: 10.1039/c5an00912j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An immune system-mimicking real-time biosensing could detect bacteria (<100 CFU mL−1) automatically within the working time.
Collapse
Affiliation(s)
- Sung-Min Seo
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701
- Korea
| | - Jin-Woo Jeon
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701
- Korea
| | - Tae-Yong Kim
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701
- Korea
| | - Se-Hwan Paek
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701
- Korea
- Department of Biotechnology and Bioinformatics
| |
Collapse
|
10
|
Ge W, Li D, Gao Y, Cao X. The Roles of Lysosomes in Inflammation and Autoimmune Diseases. Int Rev Immunol 2014; 34:415-31. [DOI: 10.3109/08830185.2014.936587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Tan CW, Lee YH, Tan HH, Lau MSK, Choolani M, Griffith L, Chan JKY. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil Steril 2014; 102:167-177.e9. [PMID: 24825423 DOI: 10.1016/j.fertnstert.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To test the hypothesis that endometrial stromal cells (ESCs) in endometriosis exhibit increased cell motility under hypoxia. DESIGN Prospective case-control study. SETTING University research laboratory. PATIENT(S) Women with endometriosis (n = 18) or benign gynecological disease (n=19). INTERVENTION(S) Eutopic ESCs were cultured under normoxia (20% O2) or hypoxia (6.5% O2), and migration and invasion capacity assayed, with pathway-focused polymerase chain reaction (PCR) array and ELISAs performed. CD26/dipeptidyl peptidase IV (DPPIV) expression was determined by flow cytometric analysis and enzymatic activity assay. The ESCs supplemented with Diprotin A (CD26 inhibitor), stromal cell-derived factor-1α, or AMD3100 (C-X-C motif receptor 4; CXCR4 blocker) were assayed for their migratory potential. MAIN OUTCOME MEASURE(S) Endometrial stromal cell migration and invasion under hypoxia. RESULT(S) Endometriotic ESCs showed significantly higher migration and invasion through collagen gels under hypoxia compared with nonendometriotic ESCs. The PCR array revealed down-regulation of the migration inhibitor CD26/DPPIV and up-regulation of angiogenic factors (vascular endothelial growth factor A, C-X-C motif Ligand 6; CXCL6) in endometriotic ESCs under hypoxia. The CD26/DPPIV surface expression and activity as well as angiogenic protein secretions suggested that the molecular mechanisms underlying aberrant migratory and angiogenic behavior in endometriotic ESCs. A combinatorial treatment with diprotin A and stromal cell-derived factor-1α effectively enhanced migration and invasion preferentially in endometriotic ESCs cultured hypoxically. CONCLUSION(S) Loss of CD26/DPPIV under hypoxia and the subsequent increase in migratory and angiogenic factors may favor conditions for lesion development in endometriosis.
Collapse
Affiliation(s)
- Chin Wen Tan
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore; Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | - Yie Hou Lee
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore
| | - Heng Hao Tan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Matthew Sie Kuei Lau
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | - Linda Griffith
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore; Department of Biological and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jerry Kok Yen Chan
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research & Technology, Singapore; Department of Obstetrics and Gynaecology, National University of Singapore, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore; Cancer & Stem Cell Biology Program, Duke NUS Graduate Medical School, Singapore.
| |
Collapse
|
12
|
Gwinn WM, Qu W, Shines CJ, Bousquet RW, Taylor GJ, Waalkes MP, Morgan DL. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro. Toxicol Sci 2013; 135:414-24. [PMID: 23872580 DOI: 10.1093/toxsci/kft154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.
Collapse
Affiliation(s)
- William M Gwinn
- * NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences and
| | | | | | | | | | | | | |
Collapse
|
13
|
Induction of TNF-alfa and CXCL-2 mRNAs in different organs of mice infected with pathogenic Leptospira. Microb Pathog 2012; 52:206-16. [PMID: 22342618 DOI: 10.1016/j.micpath.2012.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 01/24/2023]
Abstract
The role of innate immune response in protection against leptospirosis is poorly understood. We examined the expression of the chemokine CXCL2/MIP-2 and the cytokine TNF-α in experimental resistant and susceptible mice models, C3H/HeJ, C3H/HePas and BALB/c strains, using a virulent strain of Leptospira interrogans serovar Copenhageni. Animals were infected intraperitoneally with 10(7) cells and the development of the disease was followed. Mortality of C3H/HeJ mice was observed whereas C3H/HePas presented jaundice and BALB/c mice remained asymptomatic. The infection was confirmed by the presence of leptospiral DNA in the organs of the animals, demonstrated by PCR. Sections of the organs were analyzed, after H&E stain. The relative expression of mRNA of chemokine CXCL2/MIP-2 and cytokine TNF-α was measured in lung, kidney and liver of the mice by qPCR. The concentrations of these proteins were measured in extracts of tissues and in serum of the animals, by ELISA. Increasing levels of transcripts and protein CXCL2/MIP-2 were detected since the first day of infection. The highest expression was observed at third day of infection in kidney, liver and lung of BALB/c mice. In C3H/HeJ the expression of CXCL2/MIP-2 was delayed, showing highest protein concentration in lung and kidney at the 5th day. Increasing in TNF-α transcripts were detected after infection, in kidney and liver of animals from the three mice strains. The expression of TNF-α protein in C3H/HeJ was also delayed, being detected in kidney and lung. Our data demonstrated that Leptospira infection stimulates early expression of CXCL2/MIP-2 and TNF-α in the resistant strain of mice. Histological analysis suggests that the expression of those molecules may be related to the influx of distinct immune cells and plays a role in the naturally acquired protective immunity.
Collapse
|
14
|
Rahat MA, Bitterman H, Lahat N. Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol 2011; 2:45. [PMID: 22566835 PMCID: PMC3342364 DOI: 10.3389/fimmu.2011.00045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022] Open
Abstract
Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunology Research Unit, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Haifa, Israel.
| | | | | |
Collapse
|
15
|
Werno C, Schmid T, Schnitzer SE, Peters K, Milke L, Brüne B. A combination of hypoxia and lipopolysaccharide activates tristetraprolin to destabilize proinflammatory mRNAs such as tumor necrosis factor-alpha. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1104-12. [PMID: 20639458 DOI: 10.2353/ajpath.2010.091212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is often accompanied by hypoxia because of the high oxygen consumption of invading bacteria and immune cells. During resolution of inflammation, the formation of inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha), which is produced by macrophages, needs to be terminated. We show in RAW264.7 macrophages that TNF-alpha mRNA as well as intracellular and secreted TNF-alpha protein levels are reduced after prolonged incubations with lipopolysaccharide (LPS) under hypoxic conditions. The decrease in TNF-alpha was mediated by destabilization of TNF-alpha mRNA via a 3'-untranslated region-dependent mechanism. Specifically, the RNA-binding protein tristetraprolin (TTP) increased at mRNA and protein levels after 16-hour incubations with LPS under hypoxia. Interestingly, TTP accumulated in a dephosphorylated and active form, and this accumulation was attributable to reduced p38 mitogen-activated protein kinase activity under these conditions. Knockdown of TTP by small interfering RNA abolished destabilization of TNF-alpha mRNA. Prolonged incubations with LPS under hypoxia also reduced mRNA amounts and stability of other proinflammatory mediators such as macrophage inflammatory protein-2, interleukin-6, and granulocyte macrophage colony-stimulating factor. Therefore, we propose that hypoxia plays a key role during resolution of inflammation by activating posttranscriptional, TTP-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Christian Werno
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Acute hypoxia decreases E. coli LPS-induced cytokine production and NF-kappaB activation in alveolar macrophages. Respir Physiol Neurobiol 2010; 172:63-71. [PMID: 20470909 DOI: 10.1016/j.resp.2010.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/21/2022]
Abstract
Reductions in alveolar oxygenation during lung hypoxia/reoxygenation (H/R) injury are common after gram-negative endotoxemia. However, the effects of H/R on endotoxin-stimulated cytokine production by alveolar macrophages are unclear and may depend upon thresholds for hypoxic oxyradical generation in situ. Here TNF-alpha and IL-1beta production were determined in rat alveolar macrophages stimulated with Escherichia coli lipopolysaccharide (LPS, serotype O55:B5) while exposed to either normoxia for up to 24h, to brief normocarbic hypoxia (1.5h at an atmospheric PO(2)=10+/-2mm Hg), or to combined H/R. LPS-induced TNF-alpha and IL-1beta were reduced at the peak of hypoxia and by reoxygenation in LPS+H/R cells (P<0.01) compared with normoxic controls despite no changes in reduced glutathione (GSH) or in PGE2 production. Both TNF-alpha mRNA and NF-kappaB activation were reduced by hypoxia that suppressed superoxide anion generation. Thus, dynamic reductions in the ambient PO(2) of alveolar macrophages that do not deplete GSH suppress LPS-induced TNF-alpha expression, IL-1beta production, and NF-kappaB activation even as oxyradical production is decreased.
Collapse
|
17
|
Abstract
Oxygen is one of the most commonly used therapeutic agents. Injudicious use of oxygen at high partial pressures (hyperoxia) for unproven indications, its known toxic potential, and the acknowledged roles of reactive oxygen species in tissue injury led to skepticism regarding its use. A large body of data indicates that hyperoxia exerts an extensive profile of physiologic and pharmacologic effects that improve tissue oxygenation, exert anti-inflammatory and antibacterial effects, and augment tissue repair mechanisms. These data set the rationale for the use of hyperoxia in a list of clinical conditions characterized by tissue hypoxia, infection, and consequential impaired tissue repair. Data on regional hemodynamic effects of hyperoxia and recent compelling evidence on its anti-inflammatory actions incited a surge of interest in the potential therapeutic effects of hyperoxia in myocardial revascularization and protection, in traumatic and nontraumatic ischemicanoxic brain insults, and in prevention of surgical site infections and in alleviation of septic and nonseptic local and systemic inflammatory responses. Although the margin of safety between effective and potentially toxic doses of oxygen is relatively narrow, the ability to carefully control its dose, meticulous adherence to currently accepted therapeutic protocols, and individually tailored treatment regimens make it a cost-effective safe drug.
Collapse
Affiliation(s)
- Haim Bitterman
- Department of Internal Medicine, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Hörmannsperger G, Clavel T, Hoffmann M, Reiff C, Kelly D, Loh G, Blaut M, Hölzlwimmer G, Laschinger M, Haller D. Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One 2009; 4:e4365. [PMID: 19197385 PMCID: PMC2634842 DOI: 10.1371/journal.pone.0004365] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/17/2008] [Indexed: 12/14/2022] Open
Abstract
Background Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC). Methodology/Principal Findings VSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNFΔARE and IL-10−/− mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10−/− mice, IP-10 protein expression was reduced in primary epithelial cells. Conclusions/Significance We demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.
Collapse
Affiliation(s)
- Gabriele Hörmannsperger
- Chair for Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Thomas Clavel
- Chair for Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Micha Hoffmann
- Chair for Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Caroline Reiff
- Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom
| | - Denise Kelly
- Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom
| | - Gunnar Loh
- Gastrointestinale Mikrobiologie, Deutsches Institut für Ernährungsforschung, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Michael Blaut
- Gastrointestinale Mikrobiologie, Deutsches Institut für Ernährungsforschung, Potsdam-Rehbrücke, Nuthetal, Germany
| | | | | | - Dirk Haller
- Chair for Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|