1
|
Bannykh KS, Fuentes-Fayos AC, Linesch PW, Breunig JJ, Bannykh SI. Laminin Beta 2 Is Localized at the Sites of Blood-Brain Barrier and Its Disruption Is Associated With Increased Vascular Permeability, Histochemical, and Transcriptomic Study. J Histochem Cytochem 2024; 72:641-667. [PMID: 39340425 PMCID: PMC11472343 DOI: 10.1369/00221554241281896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Heterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 (LAMB2) at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete LAMB2 coverage. In contrast, its cognate protein laminin beta 1 (LAMB1) is absent in MV of normal brain but emerges at the sprouting tip of a growing vessels. Similarly, vascular proliferation in high-grade gliomas (HGG) is accompanied by marked overexpression of LAMB1, whereas LAMB2 shows deficient deposition. We find that many brain pathologies with presence of post-gadolinium enhancement (PGE) on magnetic resonance imaging (MRI) show disruption of LAMB2 vascular ensheathment. Inhibition of vascular endothelial growth factor signaling in HGG blocks angiogenesis, suppresses PGE in HGG, prevents expression of LAMB1, and restores LAMB2 vascular coverage. Analysis of single-cell RNA sequencing (scRNA-seq) databases shows that in quiescent brain LAMB2 is predominantly expressed by BBB-associated pericytes (PCs) and endothelial cells (ECs), whereas neither cell types produce LAMB1. In contrast, in HGG, both LAMB1 and 2 are overexpressed by endothelial precursor cells, a phenotypically unique immature group, specific to proliferating hyperplastic MV.
Collapse
Affiliation(s)
- Katherine S. Bannykh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Antonio C. Fuentes-Fayos
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Linesch
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J. Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Serguei I. Bannykh
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
2
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Wong CY, Chang YM, Tsai YS, Ng WV, Cheong SK, Chang TY, Chung IF, Lim YM. Decoding the differentiation of mesenchymal stem cells into mesangial cells at the transcriptomic level. BMC Genomics 2020; 21:467. [PMID: 32635896 PMCID: PMC7339572 DOI: 10.1186/s12864-020-06868-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mesangial cells play an important role in the glomerulus to provide mechanical support and maintaine efficient ultrafiltration of renal plasma. Loss of mesangial cells due to pathologic conditions may lead to impaired renal function. Mesenchymal stem cells (MSC) can differentiate into many cell types, including mesangial cells. However transcriptomic profiling during MSC differentiation into mesangial cells had not been studied yet. The aim of this study is to examine the pattern of transcriptomic changes during MSC differentiation into mesangial cells, to understand the involvement of transcription factor (TF) along the differentiation process, and finally to elucidate the relationship among TF-TF and TF-key gene or biomarkers during the differentiation of MSC into mesangial cells. Results Several ascending and descending monotonic key genes were identified by Monotonic Feature Selector. The identified descending monotonic key genes are related to stemness or regulation of cell cycle while ascending monotonic key genes are associated with the functions of mesangial cells. The TFs were arranged in a co-expression network in order of time by Time-Ordered Gene Co-expression Network (TO-GCN) analysis. TO-GCN analysis can classify the differentiation process into three stages: differentiation preparation, differentiation initiation and maturation. Furthermore, it can also explore TF-TF-key genes regulatory relationships in the muscle contraction process. Conclusions A systematic analysis for transcriptomic profiling of MSC differentiation into mesangial cells has been established. Key genes or biomarkers, TFs and pathways involved in differentiation of MSC-mesangial cells have been identified and the related biological implications have been discussed. Finally, we further elucidated for the first time the three main stages of mesangial cell differentiation, and the regulatory relationships between TF-TF-key genes involved in the muscle contraction process. Through this study, we have increased fundamental understanding of the gene transcripts during the differentiation of MSC into mesangial cells.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan
| | - Wailap Victor Ng
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan
| | - Soon-Keng Cheong
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - Ting-Yu Chang
- Department of Research, ChangHua Christian Hospital, 135, Nan-Hsiao Street, ChangHua City, Taiwan
| | - I-Fang Chung
- Center for Systems and Synthetic Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan. .,Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan. .,Preventive Medicine Research Center, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, Taiwan.
| | - Yang-Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
5
|
Ishikawa T, Wondimu Z, Oikawa Y, Gentilcore G, Kiessling R, Egyhazi Brage S, Hansson J, Patarroyo M. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biol 2014; 38:69-83. [PMID: 24951930 DOI: 10.1016/j.matbio.2014.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/23/2022]
Abstract
α4-laminins, such as laminins 411 and 421, are mesenchymal laminins expressed by blood and lymphatic vessels and some tumor cells. Laminin-411 promotes migration of leukocytes and endothelial cells, but the effect of this laminin and laminin-421 on tumor cells is poorly understood. In the present study, we demonstrate that laminin-411 and, to a greater extent, laminin-421 significantly promote migration of tumor cells originated from melanomas, gliomas and different carcinomas via α6β1 integrin. In solid-phase binding assays, both laminins similarly bound α6β1 integrin but only laminin-421, among several laminin isoforms, readily bound MCAM (CD146), a cell-surface adhesion molecule strongly associated with tumor progression. Accordingly, a function-blocking mAb to MCAM inhibited tumor cell migration on laminin-421 but not on laminins 411 or 521. In tumor tissues, melanoma cells co-expressed MCAM, laminin α4, β1, β2 and γ1 chains, and integrin α6 and β1 chains. The present data highlight the novel role of α4-laminins in tumor cell migration and identify laminin-421 as a primary ligand for MCAM and a putative mediator of tumor invasion and metastasis.
Collapse
Affiliation(s)
- Taichi Ishikawa
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zenebech Wondimu
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuko Oikawa
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giusy Gentilcore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Savoy RM, Ghosh PM. The dual role of filamin A in cancer: can't live with (too much of) it, can't live without it. Endocr Relat Cancer 2013; 20:R341-56. [PMID: 24108109 PMCID: PMC4376317 DOI: 10.1530/erc-13-0364] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamin A (FlnA) has been associated with actin as cytoskeleton regulator. Recently its role in the cell has come under scrutiny for FlnA's involvement in cancer development. FlnA was originally revealed as a cancer-promoting protein, involved in invasion and metastasis. However, recent studies have also found that under certain conditions, it prevented tumor formation or progression, confusing the precise function of FlnA in cancer development. Here, we try to decipher the role of FlnA in cancer and the implications for its dual role. We propose that differences in subcellular localization of FlnA dictate its role in cancer development. In the cytoplasm, FlnA functions in various growth signaling pathways, such as vascular endothelial growth factor, in addition to being involved in cell migration and adhesion pathways, such as R-Ras and integrin signaling. Involvement in these pathways and various others has shown a correlation between high cytoplasmic FlnA levels and invasive cancers. However, an active cleaved form of FlnA can localize to the nucleus rather than the cytoplasm and its interaction with transcription factors has been linked to a decrease in invasiveness of cancers. Therefore, overexpression of FlnA has a tumor-promoting effect, only when it is localized to the cytoplasm, whereas if FlnA undergoes proteolysis and the resulting C-terminal fragment localizes to the nucleus, it acts to suppress tumor growth and inhibit metastasis. Development of drugs to target FlnA and cause cleavage and subsequent localization to the nucleus could be a new and potent field of research in treating cancer.
Collapse
Affiliation(s)
- Rosalinda M Savoy
- Department of Urology, University of California Davis School of Medicine, University of California, 4860 Y Street, Suite 3500, Sacramento, California 95817, USA VA Northern California Health Care System, Mather, California, USA
| | | |
Collapse
|
7
|
Song SE, Kim YW, Kim JY, Lee DH, Kim JR, Park SY. IGFBP5 mediates high glucose-induced cardiac fibroblast activation. J Mol Endocrinol 2013; 50:291-303. [PMID: 23417767 DOI: 10.1530/jme-12-0194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study examined whether IGF-binding protein 5 (IGFBP5) is involved in the high glucose-induced deteriorating effects in cardiac cells. Cardiac fibroblasts and cardiomyocytes were isolated from the hearts of 1- to 3-day-old Sprague Dawley rats. Treatment of fibroblasts with 25 mM glucose increased the number of cells and the mRNA levels of collagen III, matrix metalloproteinase 2 (MMP2), and MMP9. High glucose increased ERK1/2 activity, and the ERK1/2 inhibitor PD98059 suppressed high glucose-mediated fibroblast proliferation and increased collagen III mRNA levels. Whereas high glucose increased both mRNA and protein levels of IGFBP5 in fibroblasts, high glucose did not affect IGFBP5 protein levels in cardiomyocytes. The high glucose-induced increase in IGFBP5 protein levels was inhibited by PD98059 in fibroblasts. While recombinant IGFBP5 increased ERK phosphorylation, cell proliferation, and the mRNA levels of collagen III, MMP2, and MMP9 in fibroblasts, IGFBP5 increased c-Jun N-terminal kinase phosphorylation and induced apoptosis in cardiomyocytes. The knockdown of IGFBP5 inhibited high glucose-induced cell proliferation and collagen III mRNA levels in fibroblasts. Although high glucose increased IGF1 levels, IGF1 did not increase IGFBP5 levels in fibroblasts. The hearts of Otsuka Long-Evans Tokushima Fatty rats and the cardiac fibroblasts of streptozotocin-induced diabetic rats showed increased IGFBP5 expression. These results suggest that IGFBP5 mediates high glucose-induced profibrotic effects in cardiac fibroblasts.
Collapse
Affiliation(s)
- Seung Eun Song
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Schaeffer V, Hansen KM, Morris DR, LeBoeuf RC, Abrass CK. RNA-binding protein IGF2BP2/IMP2 is required for laminin-β2 mRNA translation and is modulated by glucose concentration. Am J Physiol Renal Physiol 2012; 303:F75-82. [PMID: 22513850 DOI: 10.1152/ajprenal.00185.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Laminin-β2 (LAMB2) is a critical component of the glomerular basement membrane as content of LAMB2 in part determines glomerular barrier permeability. Previously, we reported that high concentrations of glucose reduce expression of this laminin subunit at the translational level. The present studies were undertaken to further define systems that control Lamb2 translation and the effect of high glucose on those systems. Complementary studies were performed using in vitro differentiation of cultured podocytes and mesangial cells exposed to normal and elevated concentrations of glucose, and tissues from control and diabetic rats. Together, these studies provide evidence for regulation of Lamb2 translation by IMP2, an RNA binding protein that targets Lamb2 mRNA to the actin cytoskeleton. Expression of Imp2 itself is regulated by the transcription factor HMGA2, which in turn is regulated by the microRNA let-7b. Elevated concentrations of glucose increase let-7b, which reduces HMGA2 expression, in turn reducing IMP2 and LAMB2. Correlative changes in kidney tissues from control and streptozotocin-induced diabetic rats suggest these control mechanisms are operative in vivo and may contribute to proteinuria in diabetic nephropathy. To our knowledge, this is the first time that translation of Lamb2 mRNA has been linked to the actin cytoskeleton, as well as to specific RNA-binding proteins. These translational control points may provide new targets for therapy in proteinuric disorders such as diabetic nephropathy where LAMB2 levels are reduced.
Collapse
Affiliation(s)
- Valerie Schaeffer
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
9
|
Oh Y. The insulin-like growth factor system in chronic kidney disease: Pathophysiology and therapeutic opportunities. Kidney Res Clin Pract 2012; 31:26-37. [PMID: 26889406 PMCID: PMC4715090 DOI: 10.1016/j.krcp.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/24/2011] [Accepted: 11/24/2011] [Indexed: 12/21/2022] Open
Abstract
The growth hormone-insulin-like growth factor-insulin-like growth factor binding protein (GH-IGF-IGFBP) axis plays a critical role in the maintenance of normal renal function and the pathogenesis and progression of chronic kidney disease (CKD). Serum IGF-I and IGFBPs are altered with different stages of CKD, the speed of onset, the amount of proteinuria, and the potential of remission. Recent studies demonstrate that growth failure in children with CKD is due to a relative GH insensitivity and functional IGF deficiency. The functional IGF deficiency in CKD results from either IGF resistance due to increased circulating levels of IGFBPs or IGF deficiency due to increased urinary excretion of serum IGF-IGFBP complexes. In addition, not only GH and IGFs in circulation, but locally produced IGFs, the high-affinity IGFBPs, and low-affinity insulin-like growth factor binding protein-related proteins (IGFBP-rPs) may also affect the kidney. With respect to diabetic kidney disease, there is growing evidence suggesting that GH, IGF-I, and IGFBPs are involved in the pathogenesis of diabetic nephropathy (DN). Thus, prevention of GH action by blockade either at the receptor level or along its signal transduction pathway offers the potential for effective therapeutic opportunities. Similarly, interrupting IGF-I and IGFBP actions also may offer a way to inhibit the development or progression of DN. Furthermore, it is well accepted that the systemic inflammatory response is a key player for progression of CKD, and how to prevent and treat this response is currently of great interest. Recent studies demonstrate existence of IGF-independent actions of high-affinity and low-affinity-IGFBPs, in particular, antiinflammatory action of IGFBP-3 and profibrotic action of IGFBP-rP2/CTGF. These findings reinforce the concept in support of the clinical significance of the IGF-independent action of IGFBPs in the assessment of pathophysiology of kidney disease and its therapeutic potential for CKD. Further understanding of GH-IGF-IGFBP etiopathophysiology in CKD may lead to the development of therapeutic strategies for this devastating disease. It would hold promise to use of GH, somatostatin analogs, IGFs, IGF agonists, GHR and insulin-like growth factor-I receptor (IGF-IR) antagonists, IGFBP displacer, and IGFBP antagonists as well as a combination treatment as therapeutic agents for CKD.
Collapse
Affiliation(s)
- Youngman Oh
- Cancer and Metabolic Syndrome Research Laboratory, Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Abrass CK, Hansen KM. Insulin-like growth factor-binding protein-5-induced laminin gamma1 transcription requires filamin A. J Biol Chem 2010; 285:12925-34. [PMID: 20167606 DOI: 10.1074/jbc.m109.061754] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding protein-5 (IGFBP-5) has IGF-1-independent intranuclear effects that are poorly defined. Treatment of cells with IGFBP-5 induces migration, prevents apoptosis, and leads to increased laminin subunit transcription. Similarly, filamin A (FLNa), an actin-binding protein that participates in cell attachment, plays important additional roles in signal transduction and modulation of transcriptional responses. In this report, we show that IGFBP-5 leads to dephosphorylation of FLNa with subsequent FLNa cleavage. Following cleavage, there is enhanced recruitment of Smad3/4 to a C-terminal FLNa fragment with nuclear translocation and subsequent binding to the promoter region of the laminin gamma1 (lamc1) gene. FLNa knockdown prevents IGFBP-5-mediated increases in lamc1 transcription. These data indicate that IGFBP-5 induces formation of a FLNa-based nuclear shuttle that recruits transcription factors and regulates transcription of IGFBP-5 target genes. These studies provide new insights into the mechanisms whereby IGFBP-5 and FLNa exert intranuclear effects.
Collapse
Affiliation(s)
- Christine K Abrass
- Department of Medicine, Allergy & Inflammation Program, University of Washington School of Medicine, Seattle, Washington 98109, USA.
| | | |
Collapse
|
11
|
Abrass CK, Hansen KM, Patton BL. Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:839-49. [PMID: 20035058 DOI: 10.2353/ajpath.2010.090570] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Each extracellular matrix compartment in the kidney has a unique composition, with regional specificity in the expression of various laminin isoforms. Although null mutations in the majority of laminin chains lead to specific developmental abnormalities in the kidney, Lama4-/- mice have progressive glomerular and tubulointerstitial fibrosis. These mice have a significant increase in expression of platelet-derived growth factor (PDGF)-BB, PDGF-DD, and PDGF receptor beta in association with immature glomerular and peritubular capillaries. In addition, mesangial cell exposure to alpha4-containing laminins, but not other isoforms, results in down-regulation of PDGF receptor mRNA and protein, suggesting a direct effect of LN411/LN421 on vessel maturation. Given the known role of overexpression of PDGF-BB and PDGF-DD on glomerular and tubulointerstitial fibrosis, these data suggest that failure of laminin alpha4-mediated down-regulation of PDGF activity contributes to the progressive renal lesions in this animal model. Given the recent demonstration that individuals with laminin alpha4 mutations develop cardiomyopathy, these findings may be relevant to kidney disease in humans.
Collapse
Affiliation(s)
- Christine K Abrass
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
| | | | | |
Collapse
|
12
|
Schaeffer V, Hansen KM, Morris DR, Abrass CK. Reductions in laminin beta2 mRNA translation are responsible for impaired IGFBP-5-mediated mesangial cell migration in the presence of high glucose. Am J Physiol Renal Physiol 2009; 298:F314-22. [PMID: 19864299 DOI: 10.1152/ajprenal.00483.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factor binding protein-5 (IGFBP-5) mediates mesangial cell migration through activation of cdc42, and laminin421 binding to alpha(6)beta(1)-integrin (Berfield AK, Hansen KM, Abrass CK. Am J Physiol Cell Physiol 291: C589-C599, 2006). Because glomerular expression of laminin beta(2) is reduced in diabetic rats (Abrass CK, Spicer D, Berfield AK, St. John PL, Abrahamson DR. Am J Pathol 151: 1131-1140, 1997), we directly examined the effect of hyperglycemia on mesangial cell migration and laminin beta2 expression. Migration mediated by IGFBP-5 is impaired in the presence of 25 mM glucose. This reduction in migration was found to result from a loss in mesangial cell synthesis of laminin421, and IGFBP-5-induced migration could be restored by replacing laminin421. Additional studies showed that there was selective reduction in mRNA translation of laminin beta2 in the presence of high glucose. Preserved synthesis of laminin beta1 indicates that not all proteins are reduced by high glucose and confirms prior data showing that laminin411 cannot substitute for laminin421 in IGFBP-5-mediated migration. Given the importance of mesangial migration in the reparative response to diabetes-associated mesangiolysis, these findings provide new insights into abnormalities associated with diabetic nephropathy and the potential importance of differential control of protein translation in determination of alterations of protein expression.
Collapse
Affiliation(s)
- Valerie Schaeffer
- Primary and Specialty Care Medicine, Department of Veterans Affairs Puget Sound Health Care System, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|