1
|
Sans MD, Crozier SJ, Vogel NL, D'Alecy LG, Williams JA. Dietary Protein and Amino Acid Deficiency Inhibit Pancreatic Digestive Enzyme mRNA Translation by Multiple Mechanisms. Cell Mol Gastroenterol Hepatol 2020; 11:99-115. [PMID: 32735995 PMCID: PMC7596297 DOI: 10.1016/j.jcmgh.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Chronic amino acid (AA) deficiency, as in kwashiorkor, reduces the size of the pancreas through an effect on mammalian target of rapamycin complex 1 (mTORC1). Because of the physiological importance of AAs and their role as a substrate, a stimulant of mTORC1, and protein synthesis, we studied the effect of acute protein and AA deficiency on the response to feeding. METHODS ICR/CD-1 mice were fasted overnight and refed for 2 hours with 4 different isocaloric diets: control (20% Prot); Protein-free (0% Prot); control (AA-based diet), and a leucine-free (No Leu). Protein synthesis, polysomal profiling, and the activation of several protein translation factors were analyzed in pancreas samples. RESULTS All diets stimulated the Protein Kinase-B (Akt)/mTORC1 pathway, increasing the phosphorylation of the kinase Akt, the ribosomal protein S6 (S6) and the formation of the eukaryotic initiation factor 4F (eIF4F) complex. Total protein synthesis and polysome formation were inhibited in the 0% Prot and No Leu groups to a similar extent, compared with the 20% Prot group. The 0% Prot diet partially reduced the Akt/mTORC1 pathway and the activity of the guanine nucleotide exchange factor eIF2B, without affecting eIF2α phosphorylation. The No Leu diet increased the phosphorylation of eIF2α and general control nonderepressible 2, and also inhibited eIF2B activity, without affecting mTORC1. Essential and nonessential AA levels in plasma and pancreas indicated a complex regulation of their cellular transport mechanisms and their specific effect on the synthesis of digestive enzymes. CONCLUSIONS These studies show that dietary AAs are important regulators of postprandial digestive enzyme synthesis, and their deficiency could induce pancreatic insufficiency and malnutrition.
Collapse
Affiliation(s)
- Maria Dolors Sans
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Stephen J Crozier
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nancy L Vogel
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Louis G D'Alecy
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - John A Williams
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
2
|
Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. PLANT PHYSIOLOGY 2013; 163:1859-67. [PMID: 24134887 PMCID: PMC3850193 DOI: 10.1104/pp.113.225961] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 05/17/2023]
Abstract
Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Mingyuan Li
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Alexander Becker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| |
Collapse
|
3
|
Changes in kinetics of amino acid uptake at the ageing ovine blood-cerebrospinal fluid barrier. Neurobiol Aging 2010; 33:121-33. [PMID: 20138405 DOI: 10.1016/j.neurobiolaging.2010.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 01/05/2023]
Abstract
Amino acids (AA) in brain are precisely controlled by blood-brain barriers, which undergo a host of changes in both morphology and function during ageing. The effect of these age-related changes on AA homeostasis in brain is not well described. This study investigated the kinetics of four AA (Leu, Phe, Ala and Lys) uptakes at young and old ovine choroid plexus (CP), the blood-cerebrospinal fluid (CSF) barrier (BCB), and measured AA concentrations in CSF and plasma samples. In old sheep, the weight of lateral CP increased, so did the ratio of CP/brain. The expansion of the CP is consistent with clinical observation of thicker leptomeninges in old age. AA concentrations in old CSF, plasma and their ratio were different from the young. Both V(max) and K(m) of Phe and Lys were significant higher compared to the young, indicating higher trans-stimulation in old BCB. Cross-competition and kinetic inhibition studies found the sensitivity and specificity of these transporters were impaired in old BCB. These changes may be the first signs of a compromised barrier system in ageing brain leading increased AA influx into the brain causing neurotoxicity.
Collapse
|
4
|
Caerulein or taurocholate induced enzymatic and histologic alterations in the isolated perfused rat pancreas. Langenbecks Arch Surg 2008; 394:363-9. [DOI: 10.1007/s00423-008-0401-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
|
5
|
Fanning KJ, Roberts MS. Characterization of the Physiological Spaces and Distribution of Tolbutamide in the Perfused Rat Pancreas. Pharm Res 2007; 24:512-20. [PMID: 17252192 DOI: 10.1007/s11095-006-9167-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE To set up and validate a viable perfused rat pancreas model suitable for pharmacokinetic studies. MATERIALS AND METHODS We setup and conducted multiple indicator dilution studies in the single pass perfused rat pancreas. The distribution of the reference markers [99mTc]-red blood cells (RBC), [14C]-sucrose, and [3H]-water, and tolbutamide were analysed using both non-parametric and parametric methods. RESULTS The perfusion preparation was observed to be viable by oxygen consumption, outflow perfusate pH, lactate release and insulin release in response to glucose. Parametric analysis of the outflow profiles suggested that the transport of water and tolbutamide from the vascular space was permeability limited. Parametric and nonparametric estimates of Vd for RBC and sucrose were similar and were 0.14+/-0.01, 0.15 0.005 and 0.35+/-0.01 ml/g. The parametric estimate for water, 1.04+/-0.05 ml/g was greater than the nonparametric estimate, 0.89+/-0.02 ml/g. The multiple indicator dilution method Vd of tolbutamide of 0.75+0.08 ml/g was similar to the reported value of 0.73+/-0.04 ml/g estimated by tissue partitioning studies. CONCLUSIONS A viable single pass pancreas perfusion model was established and applied to define distribution spaces of reference markers and the distribution kinetics of tolbutamide.
Collapse
Affiliation(s)
- Kent John Fanning
- Department of Medicine, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | | |
Collapse
|
6
|
Sweiry JH, Shibuya I, Asada N, Niwa K, Doolabh K, Habara Y, Kanno T, Mann GE. Acute oxidative stress modulates secretion and repetitive Ca2+ spiking in rat exocrine pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:19-30. [PMID: 10354511 DOI: 10.1016/s0925-4439(99)00021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of the oxidant tert-butylhydroperoxide (t-buOOH) on carbachol-stimulated pancreatic secretion in the vascularly perfused rat pancreas have been studied in parallel with [Ca2+]i signalling and amylase output in perifused rat pancreatic acinar cells. Perfusion of the pancreas with t-buOOH (0.1-1 mM) caused a rapid and irreversible inhibition of carbachol-stimulated (3x10-7 M) amylase and fluid secretion. Pre-perfusion of the pancreas with vitamin C and dithiothreitol or a cocktail of GSH and GSH-precursor amino acids provided only marginal protection against the deleterious effects of t-buOOH, even though GSH levels were elevated significantly. In perifused pancreatic acini, repetitive [Ca2+]i spikes evoked by carbachol (3x10-7 M) were sustained for 40 min. t-buOOH (1 mM) acutely increased the amplitude and duration of Ca2+ spikes, then attenuated Ca2+ spiking and subsequently caused a marked and sustained rise in [Ca2+]i. t-buOOH-induced alterations in carbachol-stimulated [Ca2+]i signalling and amylase release in perifused pancreatic acini were prevented by vitamin C. Although vitamin C restored impaired Ca2+ signalling and maintained amylase output in pancreatic acini, it seems likely that oxidative stress inhibits fluid secretion irreversibly in the intact pancreas, resulting in a loss of amylase output. Thus, perturbations in [Ca2+]i signalling may not fully explain the secretory block caused by oxidative stress in acute pancreatitis.
Collapse
Affiliation(s)
- J H Sweiry
- Division of Physiology, GKT School of Biomedical Sciences, King's College London, Campden Hill Road, London W8 7AH, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Because cerebrovascular hemorrhage in newborns is often associated with fluctuations in cerebral blood flow, this study was designed to investigate the effects of pulsatile flow in isolated cerebral arteries from neonatal piglets. Arteries mounted on cannulas were bathed in and perfused with a physiologic saline solution. An electronic system produced pulsations, the amplitude and frequency of which were independently controlled. At constant mean transmural pressure (20 mm Hg), increasing flow in steps from 0 to 1.6 mL/min under steady flow conditions caused a biphasic response, constriction at low flow, and dilation at high flow. Under pulsatile flow conditions (pulse amplitude 16-24 mm Hg; 2 Hz), the arteries dilated upon flow initiation and continued to dilate as mean flow increased. Dilation to pulsatile flow did not depend on the level of mean flow because switching from steady to pulsatile flow at each flow step also caused dilation. Arteries dilated further upon increasing either pulse amplitude (12-28 mm Hg; 2 Hz) or frequency (16-24 mm Hg; 4 Hz). Inhibiting nitric oxide synthesis with Nomega-nitro-L-arginine or perfusing with glutaraldehyde to decrease endothelial cell deformability significantly reduced dilations to pulsatile flow and to increased amplitude and frequency. These data suggest that the arterial response to flow is highly dependent on the mode of flow. Dilation induced by initiating pulsatile flow or increasing either pulse amplitude or frequency appears to be mediated by augmented nitric oxide release as result of shear stress-induced deformation of the endothelial cells.
Collapse
Affiliation(s)
- L A Shimoda
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
8
|
Ihnken K, Morita K, Buckberg GD, Winkelmann B, Schmitt M, Ignarro LJ, Sherman MP. Nitric-oxide-induced reoxygenation injury in the cyanotic immature heart is prevented by controlling oxygen content during initial reoxygenation. Angiology 1997; 48:189-202. [PMID: 9071194 DOI: 10.1177/000331979704800301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reintroduction of high levels of molecular oxygen after a hypoxic period is followed by a burst of nitric oxide (NO), peroxynitrite, and oxygen free radicals (OFR), which are highly cytotoxic. This study indicates that hyperoxic reoxygenation of cyanotic immature hearts on cardiopulmonary bypass (CPB) induces a reoxygenation injury and that, by reducing NO and OFR production during institution of CPB with subsequent reoxygenation under blood cardioplegic arrest, this oxygen-related damage can be avoided and biochemical and functional status improved. Of 25 immature piglets (3-5 kg, two to three weeks old), 6 underwent one hour of CPB including thirty minutes of aortic clamping with substrate-enriched modified blood cardioplegia (hypocalcemic, alkalotic, and hyperosmolar; warm induction-cold replenishment-warm reperfusion) without preceding hypoxia (controls). Nineteen others were made hypoxic (arterial [Po2] 20-30 mmHg) for up to two hours by lowering the fraction of inspired oxygen (FIO2) on ventilator. These hypoxic piglets were then reoxygenated on CPB at different Po2 levels (hyperoxic, normoxic, or hypoxic) for five minutes, followed by the aforementioned blood cardioplegic (BCP) arrest regimen. Myocardial conjugated diene (CD) production as a marker of lipid peroxidation, and NO production, determined as its spontaneous oxidation products, nitrite (NO2-) and nitrate (NO3-), were assessed during blood cardioplegic induction, and antioxidant reserve capacity was determined by incubating myocardium in the oxidant t-butylhydroperoxide (t-BHP). Myocardial function was evaluated from end-systolic elastance (Ees, conductance catheter). Blood cardioplegic arrest caused no functional or biochemical changes in normoxic control immature piglets. In contrast, brief reoxygenation at PO2 > 400 mmHg, followed by BCP-arrest (hyperoxic) resulted in marked CD production (42 +/- 4 vs 3 +/- 1 A233 nm/minute/100 g; P < 0.05), and NO production (4500 +/- 500 vs 450 +/- 32 mmol/minute/100 g; P < 0.05) during blood cardioplegic induction, reduced antioxidant reserve capacity (malondialdehyde [MDA] at 4.0 mM of t-BHP: 1342 +/- 59 vs 958 +/- 50 nM/g protein; P < 0.05), and caused profound myocardial dysfunction; Ees recovered only 21 +/- 2% (vs 104 +/- 7; P < 0.05), despite the blood cardioplegic regimen shown to be cardioprotective in control normoxic piglets. Conversely, controlling initial PO2 to normoxic (100 mmHg) or hypoxic (20-30 mmHg) levels reduced lipid peroxidation (CD production 16 +/- 2, 2 +/- 1 A233nm/minute/100 g) and NO production (1264 +/- 736, 270 +/- 182 mmol/minute/100 g), restored antioxidant reserve capacity (MDA at 4.0 mM of t-BHP: 940 +/- 95, 982 +/- 88 nM/g protein), and allowed significant functional recovery (58 +/- 11% and 83 +/- 8%), in a PO2-dependent fashion. The authors conclude that reoxygenation of hypoxemic immature hearts by initiating hyperoxic CPB causes oxidant-related damage characterized by lipid peroxidation, enhanced NO production, and reduced antioxidants, leading to functional depression that nullifies the cardioprotective effects of blood cardioplegia. These detrimental effects can be reduced in a PO2-dependent fashion by controlling initial PO2 on CPB and subsequent reoxygenation during blood cardioplegic arrest.
Collapse
Affiliation(s)
- K Ihnken
- Department of Cardiovascular Surgery, Albert-Ludwigs-University Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang XD, Deng XM, Haraldsen P, Andersson R, Ihse I. Antioxidant and calcium channel blockers counteract endothelial barrier injury induced by acute pancreatitis in rats. Scand J Gastroenterol 1995; 30:1129-1136. [PMID: 8578176 DOI: 10.3109/00365529509101619] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Multiple organ failure is the major mortality-related complication in severe acute pancreatitis. Endothelial barrier injury may be involved in its pathophysiology. METHODS The present study evaluated alterations in endothelial barrier integrity in different organs/tissues 12 h after induction of acute pancreatitis by intraductal infusions of bile. Potential effects of oxygen free radicals and calcium influx were evaluated by pretreatment with an antioxidant, N-acetyl-L-cysteine, and calcium channel antagonists, verapamil and diltiazem. RESULTS Tissue edema, reflected by an increase in tissue water content, was noted in the stomach, proximal small intestine, cecum, spleen, pancreas, kidneys, liver, lungs, heart, and brain in rats with pancreatitis. Also, an increased endothelial barrier permeability, as evidenced by the leakage of radiolabeled human serum albumin from blood to tissues, occurred in the stomach, proximal small intestine, colon, peritoneum, spleen, pancreas, kidneys, liver, lungs, and heart, accompanied by altered liver functions, increased levels of pancreatic enzymes, compromised renal function, and delayed intestinal motility. N-acetyl-L-cysteine prevented tissue edema and endothelial permeability changes in most organs/tissues, whereas the effects of verapamil and diltiazem were less marked. The preventive effects occurred in an organ-dependent manner. CONCLUSIONS Endothelial barrier injury is found in all investigated organs/tissues in acute experimental pancreatitis. Oxygen free radicals and calcium influx may play a role in the development of these changes.
Collapse
Affiliation(s)
- X D Wang
- Dept. of Surgery, Lund University Hospital, Sweden
| | | | | | | | | |
Collapse
|
10
|
Ihnken K, Morita K, Buckberg GD, Sherman MP, Ignarro LJ, Young HH. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XIII. Interaction between oxygen tension and cardioplegic composition in limiting nitric oxide production and oxidant damage. J Thorac Cardiovasc Surg 1995; 110:1274-86. [PMID: 7475179 DOI: 10.1016/s0022-5223(95)70014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study tests the interaction between oxygen tension and cardioplegic composition on nitric oxide production and oxidant damage during reoxygenation of previously cyanotic hearts. Of 35 Duroc-Yorkshire piglets (2 to 3 weeks, 3 to 5 kg), six underwent 30 minutes of blood cardioplegic arrest with hyperoxemic (oxygen tension about 400 mm Hg), hypocalcemic, alkalotic, glutamate/aspartate blood cardioplegic solution during 1 hour of cardiopulmonary bypass without hypoxemia (control). Twenty-nine others were subjected to up to 120 minutes of ventilator hypoxemia (oxygen tension about 25 mm Hg) before reoxygenation on CPB. To simulate routine clinical management, nine piglets underwent uncontrolled cardiac reoxygenation, whereby cardiopulmonary bypass was started at oxygen tension of about 400 mm Hg followed by the aforementioned blood cardioplegic protocol 5 minutes later. All 20 other piglets underwent controlled cardiac reoxygenation, whereby cardiopulmonary bypass was started at the ambient oxygen tension (about 25 mm Hg), and reoxygenation was delayed until blood cardioplegia was given. The blood cardioplegia solution was kept normoxemic (oxygen tension about 100 mm Hg) in 10 piglets and made hyperoxemic (oxygen tension about 400 mm Hg) in 10 others. The cardioplegic composition was also varied so that the cardioplegic solution in each subgroup contained either KCl only (30 mEq/L) or components that theoretically inhibit nitric oxide synthase by including hypocalcemia, alkalosis, and glutamate/aspartate. Function (end-systolic elastance) and myocardial nitric oxide production, conjugated diene production, and antioxidant reserve capacity were measured. Blood cardioplegic arrest without hypoxemia did not cause myocardial nitric oxide or conjugated diene production, reduce antioxidant reserve capacity, or change left ventricular functional recovery. In contrast, uncontrolled cardiac reoxygenation raised nitric oxide and conjugated diene production 19- and 13-fold, respectively (p < 0.05 vs control), reduced antioxidant reserve capacity 40%, and contractility recovered only 21% of control levels. After controlled cardiac reoxygenation at oxygen tension about 400 mm Hg with cardioplegic solution containing KCl only, nitric oxide and conjugated diene production rose 16- and 12-fold, respectively (p < 0.05 vs control), and contractility recovered only 43% +/- 5%. Normoxemic (oxygen tension of about 100 mm Hg) controlled cardiac reoxygenation with the same solution reduced nitric oxide and conjugated diene production 85% and 71%, and contractile recovery rose to 55% +/- 7% (p < 0.05 vs uncontrolled reoxygenation). In comparison, controlled cardiac reoxygenation with an oxygen tension of about 400 mm Hg hypocalcemic, alkalotic, glutamate/aspartate blood cardioplegic solution reduced nitric oxide and conjugated diene production 85% and 62%, respectively, and contractility recovered 63% +/- 4% (p < 0.05 vs KCl only).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Ihnken
- Department of Surgery, University of California School of Medicine, Los Angeles, 90095-1741, USA
| | | | | | | | | | | |
Collapse
|
11
|
Morita K, Ihnken K, Buckberg GD, Matheis G, Sherman MP, Young HH. Studies of hypoxemic/reoxygenation injury: without aortic clamping. VIII. Counteraction of oxidant damage by exogenous glutamate and aspartate. J Thorac Cardiovasc Surg 1995; 110:1228-34. [PMID: 7475174 DOI: 10.1016/s0022-5223(95)70009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies show that (1) hypoxemia depletes immature myocardium of amino acid substrates and their replenishment improves ischemic tolerance, (2) reoxygenation on cardiopulmonary bypass causes oxygen-mediated damage without added ischemia, and (3) this damage may be related to the nitric oxide-L-arginine pathway that is affected by amino acid metabolism. This study tests the hypothesis that priming the cardiopulmonary bypass circuit with glutamate and aspartate limits reoxygenation damage. Of 22 immature Duroc-Yorkshire piglets (< 3 weeks old), five were observed over a 5-hour period (control), and five others underwent 30 minutes of CPB without hypoxemia (cardiopulmonary bypass control). Twelve others became hypoxemic by reducing ventilator inspired oxygen fraction to 6% to 7% (oxygen tension about 25 mm Hg) before reoxygenation on cardiopulmonary bypass for 30 minutes. Of these five were untreated (no treatment), and the cardiopulmonary bypass circuit was primed with 5 mmol/L glutamate and aspartate in seven others (treatment). Left ventricular function before and after bypass was measured by inscribing pressure-volume loops (end-systolic elastance). Myocardial conjugated diene levels were measured to detect lipid peroxidation, and antioxidant reserve capacity was tested by incubating cardiac muscle with the oxidant t-butylhydroperoxide to determine the susceptibility to subsequent oxidant injury. CPB (no hypoxemia) allowed complete functional recovery without changing conjugated dienes and antioxidant reserve capacity, whereas reoxygenation injury developed in untreated hearts. This was characterized by reduced contractility (elastance end-systolic recovered only 37% +/- 8%*), increased conjugated diene levels (1.3 +/- 0.1 vs 0.7 +/- 0.1*), and decreased antioxidant reserve capacity (910 +/- 59 vs 471 +/- 30 malondialdehyde nmol/g protein at 2 mmol/L t-butylhydroperoxide*). In contrast, priming the cardiopulmonary bypass circuit with glutamate and aspartate resulted in significantly better left ventricular functional recovery (75% +/- 8% vs 37% +/- 8%*), minimal conjugated diene production (0.8 +/- 0.1 vs 1.3 +/- 0.1*), and improved antioxidant reserve capacity (726 +/- 27 vs 910 +/- 59 malondialdehyde nmol/g protein*) (*p < 0.05 vs cardiopulmonary bypass control). We conclude that reoxygenation of immature hypoxemic piglets by the initiation of cardiopulmonary bypass causes myocardial dysfunction, lipid peroxidation, and reduced tolerance to oxidant stress, which may increase vulnerability to subsequent ischemia (i.e., aortic crossclamping). These data suggest that supplementing the prime of cardiopulmonary bypass circuit with glutamate and aspartate may reduce these deleterious consequences of reoxygenation.
Collapse
Affiliation(s)
- K Morita
- Department of Surgery, University of California, Los Angeles School of Medicine 90095-1741, USA
| | | | | | | | | | | |
Collapse
|
12
|
Morita K, Ihnken K, Buckberg GD. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: a new concept of controlled cardiac reoxygenation. J Thorac Cardiovasc Surg 1995; 110:1265-73. [PMID: 7475178 DOI: 10.1016/s0022-5223(95)70013-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Twenty-one immature piglets (< 3 weeks old) underwent 30 minutes of aortic clamping with hypocalcemic glutamate/aspartate blood cardioplegia. Six piglets underwent hyperoxemic cardiopulmonary bypass and blood cardioplegia without preceding hypoxemia (control). Fifteen piglets became hypoxemic (oxygen tension about 25 mm Hg) for up to 2 hours by decreasing ventilator fraction of inspired oxygen to 6% to 7% before cardiopulmonary bypass. Of these, six piglets underwent 5 minutes of abrupt hyperoxemic uncontrolled reoxygenation by starting cardiopulmonary bypass at oxygen tension of about 400 mm Hg before they received oxygen tension of about 400 mm Hg blood cardioplegia. Nine others underwent controlled cardiac reoxygenation by starting cardiopulmonary bypass at ambient oxygen tension (about 25 mm Hg) followed 5 minutes later by 30 minutes of cardiopulmonary bypass at normoxemic oxygen tension (about 100 mm Hg) before raising oxygen tension to about 400 mm Hg. Myocardial function after cardiopulmonary bypass was evaluated from end-systolic elastance by conductance catheter, oxidant damage was estimated by measuring transcoronary conjugated diene levels to detect lipid peroxidation, and antioxidant reserve capacity was determined by measuring malondialdehyde produced from myocardium incubated with the oxidant t-butylhydroperoxide. Hyperoxemic cardiopulmonary bypass and blood cardioplegia preserved myocardial function and produced no oxidant damage in nonhypoxemic piglets. In contrast, uncontrolled reoxygenation at oxygen tension about 400 mm Hg, followed by blood cardioplegia, resulted in marked conjugated dienes production (42 +/- 4* vs 3 +/- 1) A233 nm/min/100 g during blood cardioplegic induction, reduced antioxidant reserve capacity malondialdehyde at 4 mmol/L t-butylhydroperoxide; 1342 +/- 59* vs 958 +/- 50 nmol/g protein) and caused profound myocardial dysfunction; end-systolic elastance recovered only 21% +/- 2%* despite a blood cardioplegic regimen that was cardioprotective in nonhypoxemic piglets. Conversely, controlled cardiac reoxygenation reduced lipid peroxidation (conjugated dienes production was 2 +/- 1**), restored antioxidant reserve capacity (malondialdehyde at 4 mmol/L t-butylhydroperoxide; 982 +/- 88**), and allowed near-complete (83 +/- 8%**) functional recovery. We conclude that reoxygenation of the hypoxemic immature heart by initiating conventional hyperoxemic cardiopulmonary bypass causes oxidant damage characterized by lipid peroxidation, reduced antioxidant reserve capacity, and results in functional depression that nullifies the cardioprotective effects of blood cardioplegia. These changes can be reduced by starting cardiopulmonary bypass at the ambient oxygen tension of the hypoxemic subject and delaying subsequent reoxygenation until blood cardioplegic induction by controlled cardiac reoxygenation (*p < 0.05 vs control; **p < 0.05 vs uncontrol reoxygenation) and analysis of variance.
Collapse
Affiliation(s)
- K Morita
- Department of Surgery, University of California, Los Angeles School of Medicine, 90095-1741, USA
| | | | | |
Collapse
|
13
|
Kompella UB, Kim KJ, Shiue MH, Lee VH. Possible existence of Na(+)-coupled amino acid transport in the pigmented rabbit conjunctiva. Life Sci 1995; 57:1427-31. [PMID: 7674833 DOI: 10.1016/0024-3205(95)02105-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objective of the present study was to determine whether Na(+)-amino acid cotransport contributed to the short-circuit current (ISC) in the isolated pigmented rabbit conjunctiva. Glycine, L-arginine, D-arginine, and L-glutamic acid were the amino acids tested, and bioelectric measurements were made in the Using chamber. The ISC was increased from 4% (L-glutamic acid) to 44% (L-arginine). The EC50 was 0.35 mM for glycine, 0.06 mM for L-arginine, 0.16 mM for D-arginine, and 1 mM for L-glutamic acid. No elevation in ISC was seen in the absence of Na+ in the mucosal bathing fluid. The above findings are consistent with the possible existence of a Na(+)-amino acid cotransport process on the apical side of the pigmented rabbit conjunctiva.
Collapse
Affiliation(s)
- U B Kompella
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
14
|
Sweiry JH, Sastre J, Viña J, Elsässer HP, Mann GE. A role for gamma-glutamyl transpeptidase and the amino acid transport system xc- in cystine transport by a human pancreatic duct cell line. J Physiol 1995; 485 ( Pt 1):167-77. [PMID: 7658371 PMCID: PMC1157981 DOI: 10.1113/jphysiol.1995.sp020721] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The roles of the gamma-glutamyl cycle and the anionic amino acid transport system xc- in mediating L-cystine uptake were investigated in cultured human pancreatic duct PaTu 8902 cells. This cell line exhibits morphological features of normal pancreatic duct cells and expresses gamma-glutamyl transpeptidase (gamma-GT, EC 2.3.2.2), an enzyme involved in the metabolism and regulation of intracellular glutathione (GSH). 2. Uptake of L-cystine (10 microM) was linear for up to 10 min, temperature dependent, Na+ independent, saturable (Michaelis-Menten constant (Km), 86 +/- 25 microM; maximal velocity (Vmax), 109 +/- 33 nmol (mg protein)-1 h-1) and reduced by 80-90% by a 50-fold excess concentration of L-glutamate and L-homocysteic acid, but not L-aspartate. These transport properties resemble those described for system xc-, which exchanges cystine for intracellular glutamate. 3. Acivicin, a known inhibitor of gamma-GT, decreased gamma-GT activity from 2.58 +/- 0.96 to 0.97 +/- 0.11 mU (mg protein)-1 and decreased the initial rates of L-cystine and L-glutamine uptake by 41-55%. Anthglutin (1-gamma-L-glutamyl-2-(2-carboxyphenylhyl)hydrazine), a structurally different inhibitor of gamma-GT, also caused a concentration-dependent (0.01-1 mM) decrease in gamma-GT activity and L-cystine uptake. 4. Neither acivicin nor anthglutin inhibited the uptake of L-glutamate, a poor substrate for gamma-GT. 5. In the presence of a 500-fold excess concentration of glutamate, which should abolish entry of cystine via system xc-, the remaining fraction of cystine transport was inhibited by 50% by acivicin, suggesting that transport is, in part, dependent on the activity of gamma-GT. 6. Cystine transport was also 60-80% inhibited by a series of gamma-glutamyl amino acids (5 mM) including gamma-glutamyl-glutamate, gamma-glutamyl-glutamine and gamma-glutamyl-glycine. alpha-Dipeptides inhibited cystine transport by only 6-22%. 7. These findings demonstrate that in human pancreatic duct PaTu 8902 cells, cystine uptake is mediated by system xc- (50-60%) and the gamma-glutamyl cycle. Our results provide the first evidence linking gamma-GT with cystine transport in human epithelial cells and are of relevance in view of the importance of cystine as a sulphur amino acid source for GSH synthesis in cells exposed to oxidative stress.
Collapse
Affiliation(s)
- J H Sweiry
- Biomedical Sciences Division, King's College, London, UK
| | | | | | | | | |
Collapse
|
15
|
Mailliard ME, Stevens BR, Mann GE. Amino acid transport by small intestinal, hepatic, and pancreatic epithelia. Gastroenterology 1995; 108:888-910. [PMID: 7875494 DOI: 10.1016/0016-5085(95)90466-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M E Mailliard
- Department of Medicine, College of Medicine, University of Florida, Gainesville
| | | | | |
Collapse
|
16
|
Klar E, Schratt W, Foitzik T, Buhr H, Herfarth C, Messmer K. Impact of microcirculatory flow pattern changes on the development of acute edematous and necrotizing pancreatitis in rabbit pancreas. Dig Dis Sci 1994; 39:2639-44. [PMID: 7995190 DOI: 10.1007/bf02087702] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Impairment of pancreatic microcirculation has often been advocated as one pathogenic mechanism in necrotizing pancreatitis. In contrast, data on pancreatic capillary perfusion in edematous pancreatitis are scarce. It was the aim of this experimental study to compare changes in pancreatic microcirculation in edematous and necrotizing pancreatitis. Twelve rabbits were allocated to two groups. Two different models of acute pancreatitis were used. Edematous pancreatitis was elicited by intravenous administration of cerulein (25 micrograms/kg/hr) (N = 6). Necrotizing pancreatitis of the biliary type was induced by pressure-controlled intraductal infusion of a mixture of taurocholate, trypsin, and blood (N = 6). Pancreatic microcirculation was quantified by means of intravital microscopy assessing functional capillary density, blood cell velocity, and distribution of the plasma marker FITC-dextran 70. Systemic hemodynamics were maintained at baseline values by fluid administration. Regardless of edema or necrosis, pronounced extravasation of FITC-dextran was recorded in the early stage of pancreatitis. In cerulein-induced pancreatitis, hyperemia developed as indicated by an increase in blood cell velocity in the presence of homogeneous capillary perfusion. In contrast, a progressive reduction of the number of perfused capillaries was detected in necrotizing pancreatitis. In conclusion, pancreatic microvascular perfusion may be regarded as an important pathogenetic factor for the determination of acute pancreatitis.
Collapse
Affiliation(s)
- E Klar
- Department of Surgery, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Baydoun AR, Bogle RG, Pearson JD, Mann GE. Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling of citrulline to arginine. Br J Pharmacol 1994; 112:487-92. [PMID: 8075867 PMCID: PMC1910348 DOI: 10.1111/j.1476-5381.1994.tb13099.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The kinetics, specificity, pH- and Na(+)-dependency of L-citrulline transport were examined in unstimulated and lipopolysaccharide (LPS)-activated murine macrophage J774 cells. The dependency of nitric oxide production on extracellular arginine or citrulline was investigated in cells activated with LPS (1 microgram ml-1) for 24 h. 2. In unstimulated J774 cells, transport of citrulline was saturable (Kt = 0.16 mM and Vmax = 32 pmol micrograms-1 protein min-1), pH-insensitive and partially Na(+)-dependent. In contrast to arginine, transport of citrulline was unchanged in LPS-activated (1 microgram ml-1, 24 h) cells. 3. Kinetic inhibition experiments revealed that arginine was a relatively poor inhibitor of citrulline transport, whilst citrulline was a more potent inhibitor (Ki = 3.4 mM) of arginine transport but only in the presence of extracellular Na+. Neutral amino acids inhibited citrulline transport (Ki = 0.2-0.3 mM), but were poor inhibitors of arginine transport. 4. Activated J774 cells did not release nitrite in the absence of exogenous arginine. Addition of citrulline (0.01-10 mM), in the absence of exogenous arginine, could only partially restore the ability of cells to synthesize nitrite, which was abolished by 100 microM NG-nitro-L-arginine methyl ester or NG-iminoethyl-L-ornithine. 5. Intracellular metabolism of L-[14C]-citrulline to L-[14C]-arginine was detected in unstimulated J774 cells and was increased further in cells activated with LPS and interferon-gamma. 6. We conclude that J774 macrophage cells transport citrulline via a saturable but nonselective neutral carrier which is insensitive to induction by LPS. In contrast, transport of arginine via the cationic amino acid system y+ is induced in J774 cells activated with LPS.7. Our findings also confirm that citrulline can be recycled to arginine in activated J774 macrophage cells. Although this pathway provides a mechanism for enhanced arginine generation required for NO production under conditions of limited arginine availability, it cannot sustain maximal rates of NO synthesis.
Collapse
Affiliation(s)
- A R Baydoun
- Vascular Biology Research Centre, King's College, London
| | | | | | | |
Collapse
|