1
|
Cilek N, Ugurel E, Goksel E, Yalcin O. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J Cell Physiol 2024; 239:e30958. [PMID: 36748950 DOI: 10.1002/jcp.30958] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Intracellular signaling mechanisms in red blood cells (RBCs) involve various protein kinases and phosphatases and enable rapid adaptive responses to hypoxia, metabolic requirements, oxidative stress, or shear stress by regulating the physiological properties of the cell. Protein phosphorylation is a ubiquitous mechanism for intracellular signal transduction, volume regulation, and cytoskeletal organization in RBCs. Spectrin-based cytoskeleton connects integral membrane proteins, band 3 and glycophorin C to junctional proteins, ankyrin and Protein 4.1. Phosphorylation leads to a conformational change in the protein structure, weakening the interactions between proteins in the cytoskeletal network that confers a more flexible nature for the RBC membrane. The structural organization of the membrane and the cytoskeleton determines RBC deformability that allows cells to change their ability to deform under shear stress to pass through narrow capillaries. The shear stress sensing mechanisms and oxygenation-deoxygenation transitions regulate cell volume and mechanical properties of the membrane through the activation of ion transporters and specific phosphorylation events mediated by signal transduction. In this review, we summarize the roles of Protein kinase C, cAMP-Protein kinase A, cGMP-nitric oxide, RhoGTPase, and MAP/ERK pathways in the modulation of RBC deformability in both healthy and disease states. We emphasize that targeting signaling elements may be a therapeutic strategy for the treatment of hemoglobinopathies or channelopathies. We expect the present review will provide additional insights into RBC responses to shear stress and hypoxia via signaling mechanisms and shed light on the current and novel treatment options for pathophysiological conditions.
Collapse
Affiliation(s)
- Neslihan Cilek
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Elif Ugurel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
| | - Evrim Goksel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Ozlem Yalcin
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
2
|
Pavlaki M, Moiko K, Thomaidis A, Chalikias G, Schäfer K, Konstantinides S, Tziakas D. Modulators of Nitric Oxide-Dependent Osteoinductive Activity of Human Red Blood Cells. TH OPEN 2022; 6:e248-e250. [PMID: 36299806 PMCID: PMC9467692 DOI: 10.1055/a-1877-9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Maria Pavlaki
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kateryna Moiko
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Adina Thomaidis
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Chalikias
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stavros Konstantinides
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Dimitrios Tziakas
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
3
|
Friebe A, Voußen B, Groneberg D. NO-GC in cells 'off the beaten track'. Nitric Oxide 2018; 77:12-18. [DOI: 10.1016/j.niox.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
|
4
|
Sager G, Smaglyukova N, Fuskevaag OM. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J Cell Physiol 2018; 233:5972-5980. [PMID: 29244191 PMCID: PMC5947735 DOI: 10.1002/jcp.26409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023]
Abstract
The present study was conducted to characterise the transporter(s) responsible for the uptake of cyclic nucleotides to human erythrocytes. Western blotting showed that hRBC expressed OAT2 (SLC22A7), but detection of OAT1 (SLC22A6), or OAT3 (SLC22A8) was not possible. Intact hRBC were employed to clarify the simultaneous cyclic nucleotide egression and uptake. Both these opposing processes were studied. The Km‐values for high affinity efflux was 3.5 ± 0.1 and 39.4 ± 5.7 μM for cGMP and cAMP, respectively. The respective values for low affinity efflux were 212 ± 11 and 339 ± 42 μM. The uptake was characterised with apparently low affinity and similar Km‐values for cGMP (2.2 mM) and cAMP (0.89 mM). Using an iterative approach in order to balance uptake with efflux, the predicted real Km‐values for uptake were 100–200 μM for cGMP and 50–150 μM for cAMP. The established OAT2‐substrate indomethacin showed a competitive interaction with cyclic nucleotide uptake. Creatinine, also an OAT2 substrate, showed saturable uptake with a Km of 854 ± 98 μM. Unexpectedly, co‐incubation with cyclic nucleotides showed an uncompetitive inhibition. The observed Km‐values were 399 ± 44 and 259 ± 30 μM for creatinine, in the presence of cGMP and cAMP, respectively. Finally, the OAT1‐substrate para‐aminohippurate (PAH) showed some uptake (Km‐value of 2.0 ± 0.4 mM) but did not interact with cyclic nucleotide or indomethacin transport.
Collapse
Affiliation(s)
- Georg Sager
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ole-Martin Fuskevaag
- Faculty of Health Science, Department of Medical Biology, Research Group of Experimental and Clinical Pharmacology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.,Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
5
|
Cortese-Krott MM, Mergia E, Kramer CM, Lückstädt W, Yang J, Wolff G, Panknin C, Bracht T, Sitek B, Pernow J, Stasch JP, Feelisch M, Koesling D, Kelm M. Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease. Redox Biol 2017; 14:328-337. [PMID: 29024896 PMCID: PMC5975213 DOI: 10.1016/j.redox.2017.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC) in the vasculature and in platelets. Red blood cells (RBCs) are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE)-5 and protein kinase G (PKG) in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD). Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active α1β1-sGC (isoform 1), which converts 32P-GTP into 32P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO) RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany.
| | - Evanthia Mergia
- Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian M Kramer
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany
| | - Wiebke Lückstädt
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany
| | - Jiangning Yang
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Karolinska Universitetssjukhuset, Solna, 171 76 Stockholm, Sweden
| | - Georg Wolff
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany
| | - Christina Panknin
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr- University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr- University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - John Pernow
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Karolinska Universitetssjukhuset, Solna, 171 76 Stockholm, Sweden
| | - Johannes-Peter Stasch
- Bayer Pharma AG, Aprather Weg 18a, 42096 Wuppertal, Germany; Institute of Pharmacy, University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Tremona Road, SO166YD Southampton, United Kingdom
| | - Doris Koesling
- Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich Heine University, Moorensstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Fatini C, Mannini L, Sticchi E, Cecchi E, Bruschettini A, Leprini E, Pagnini P, Gensini GF, Prisco D, Abbate R. eNOS Gene Affects Red Cell Deformability: Role of T-786C, G894T, and 4a/4b Polymorphisms. Clin Appl Thromb Hemost 2016; 11:481-8. [PMID: 16244776 DOI: 10.1177/107602960501100417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma viscosity and erythrocyte deformability play a key role in maintaining and regulating microcirculation. In vitro and in vivo studies suggested a role for nitric oxide (NO) in modulating flow-mediated vasodilatation and red blood cell deformability. Impaired NO availability due to mutations in eNOS gene might contribute to the altered haemorheologic state. The aim of this study was to investigate the role of eNOS T-786C, G894T, and 4a/4b polymorphisms in modulating the haemorheologic state in a clinical condition characterized by a microcirculatory disorder. Eighty patients with idiopathic sudden sensorineural hearing loss (ISSHL) and 80 healthy subjects were studied. By using a dominant model of inheritance, we found a significant association between eNOS 894T rare variant and ISSHL (odds ratio [OR] 894TT+GT = 2.08, p = 0.03) after adjustment with traditional vascular risk factors. A higher percentage of altered red cell deformability both in patients and in controls carrying the eNOS rare variants was found in comparison to subjects carrying the wild type. Apart from the disease, eNOS T-786C and G894T polymorphisms independently affected the deformability index (OR,-786CC+TC = 2.81, p = 0.01 and OR, 894TT+GT = 2.5, p = 0.02, respectively), in particular in subjects in whom the contemporary presence of the two rare alleles was observed (OR,-786CC+TC and 894TT+GT combined genotype = 6.9, p<0.0001). Our study documented that eNOS gene affects the red blood cell deformability, so possibly contributing to ISSHL, which may represent a suitable model of microcirculatory disorder.
Collapse
Affiliation(s)
- Cinzia Fatini
- Department of Medical and Surgical Critical Care, Section of Clinical Medicine and Cardiology, Thrombosis Centre, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Since the identification of the elusive endothelium-derived relaxing factor as nitric oxide (NO), much attention has been devoted to understanding its physiological effects. NO is a free radical with many roles, and owing to its neutral charge and high diffusion capacity, it appears NO is involved in every mammalian biological system. Most attention has been focused on the NO generating pathways within the endothelium; however, the recent discovery of a NO synthase (NOS)-like enzyme residing in red blood cells (RBC) has increased our understanding of the blood flow and oxygen delivery modulation by RBC. In the present review, pathways of NO generation are summarized, with attention to those residing within RBC. While the bioactivity of RBC-derived NO is still debated due to its generation within proximity of NO scavengers, current theories for NO export from RBC are explored, which are supported by recent findings demonstrating an extracellular response to RBC-derived NO. The importance of NO in the active regulation of RBC deformability is discussed in the context of the subsequent effects on blood fluidity, and the complex interplay between blood rheology and NO are summarized. This review provides a summary of recent advances in understanding the role played by RBC in NO equilibrium and vascular regulation.
Collapse
Affiliation(s)
- Michael J Simmonds
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Queensland, Australia
| | - Jon A Detterich
- Division of Cardiology, Childrens Hospital Los Angeles, Los Angeles, CA, USA
| | - Philippe Connes
- UMR Inserm 1134, Hôpital Ricou, CHU de Pointe à Pitre, Pointe à Pitre, Guadeloupe Institut Universitaire de France, Paris, France Laboratory of Excellence GR-Ex "The red cell: from genesis to death", PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Suhr F, Brenig J, Müller R, Behrens H, Bloch W, Grau M. Moderate exercise promotes human RBC-NOS activity, NO production and deformability through Akt kinase pathway. PLoS One 2012; 7:e45982. [PMID: 23049912 PMCID: PMC3457942 DOI: 10.1371/journal.pone.0045982] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023] Open
Abstract
Background Nitric oxide (NO) produced by nitric oxide synthase (NOS) in human red blood cells (RBCs) was shown to depend on shear stress and to exhibit important biological functions, such as inhibition of platelet activation. In the present study we hypothesized that exercise-induced shear stress stimulates RBC-NOS activation pathways, NO signaling, and deformability of human RBCs. Methods/Findings Fifteen male subjects conducted an exercise test with venous blood sampling before and after running on a treadmill for 1 hour. Immunohistochemical staining as well as western blot analysis were used to determine phosphorylation and thus activation of Akt kinase and RBC-NOS as well as accumulation of cyclic guanylyl monophosphate (cGMP) induced by the intervention. The data revealed that activation of NO upstream located enzyme Akt kinase was significantly increased after the test. Phosphorylation of RBC-NOSSer1177 was also significantly increased after exercise, indicating activation of RBC-NOS through Akt kinase. Total detectable RBC-NOS content and phosphorylation of RBC-NOSThr495 were not affected by the intervention. NO production by RBCs, determined by DAF fluorometry, and RBC deformability, measured via laser-assisted-optical-rotational red cell analyzer, were also significantly increased after the exercise test. The content of the NO downstream signaling molecule cGMP increased after the test. Pharmacological inhibition of phosphatidylinositol 3 (PI3)-kinase/Akt kinase pathway led to a decrease in RBC-NOS activation, NO production and RBC deformability. Conclusion/Significance This human in vivo study first-time provides strong evidence that exercise-induced shear stress stimuli activate RBC-NOS via the PI3-kinase/Akt kinase pathway. Actively RBC-NOS-produced NO in human RBCs is critical to maintain RBC deformability. Our data gain insights into human RBC-NOS regulation by exercise and, therefore, will stimulate new therapeutic exercise-based approaches for patients with microvascular disorders.
Collapse
Affiliation(s)
- Frank Suhr
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
- The German Research Center of Elite Sport, German Sport University Cologne, Cologne, Germany
| | - Julian Brenig
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Rebecca Müller
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Hilke Behrens
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
- The German Research Center of Elite Sport, German Sport University Cologne, Cologne, Germany
| | - Marijke Grau
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
9
|
Del Viscovo A, Secondo A, Esposito A, Goglia F, Moreno M, Canzoniero LMT. Intracellular and plasma membrane-initiated pathways involved in the [Ca2+]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells. Am J Physiol Endocrinol Metab 2012; 302:E1419-30. [PMID: 22414808 DOI: 10.1152/ajpendo.00389.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of 3,5,3'-triiodo-l-thyronine (T3) and its metabolite 3,5-diiodo-l-thyronine (T2) in modulating the intracellular Ca(2+) concentration ([Ca(2+)](i)) and endogenous nitric oxide (NO) synthesis was evaluated in pituitary GH(3) cells in the absence or presence of extracellular Ca(2+). When applied in Ca(2+)-free solution, T2 and T3 increased [Ca(2+)](i), in a dose-dependent way, and NO levels. Inhibition of neuronal NO synthase by N(G)-nitro-l-arginine methyl ester and l-n(5)-(1-iminoethyl)ornithine hydrochloride significantly reduced the [Ca(2+)](i) increase induced by T2 and T3. However, while depletion of inositol trisphosphate-dependent Ca(2+) stores did not interfere with the T2- and T3-induced [Ca(2+)](i) increases, the inhibition of phosphatidylinositol 3-kinase by LY-294002 and the dominant negative form of Akt mutated at the ATP binding site prevented these effects. Furthermore, the mitochondrial protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone prevented the increases in both [Ca(2+)](i) and NO elicited by T2 or T3. Interestingly, rotenone blocked the early [Ca(2+)](i) increases elicited by T2 and T3, while antimycin prevented only that elicited by T3. Inhibition of mitochondrial Na(+)/Ca(2+) exchanger by CGP37157 significantly reduced the [Ca(2+)](i) increases induced by T2 and T3. In the presence of extracellular calcium (1.2 mM), under carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, T2 and T3 increased both [Ca(2+)](i) and intracellular Na(+) concentration; nimodipine reduced the [Ca(2+)](i) increases elicited by T2 and T3, but inhibition of NO synthase and blockade of the Na(+)/H(+) pump by 5-(N-ethyl-N-isopropyl)amiloride prevented only that elicited by T3; and CB-DMB, bisindolylmaleimide, and LY-294002 (inhibitors of the Na(+)/Ca(2+) exchanger, PKC, and phosphatidylinositol 3-kinase, respectively) failed to modify the T2- and T3-induced effects. Collectively, the present results suggest that T2 and T3 exert short-term nongenomic effects on intracellular calcium and NO by modulating plasma membrane and mitochondrial pathways that differ between these iodothyronines.
Collapse
Affiliation(s)
- Adelaide Del Viscovo
- Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente, Università del Sannio, Piazza Guerrazzi 1, Benevento, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Adderley SP, Thuet KM, Sridharan M, Bowles EA, Stephenson AH, Ellsworth ML, Sprague RS. Identification of cytosolic phosphodiesterases in the erythrocyte: a possible role for PDE5. Med Sci Monit 2011; 17:CR241-7. [PMID: 21525805 PMCID: PMC3366467 DOI: 10.12659/msm.881763] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Within erythrocytes (RBCs), cAMP levels are regulated by phosphodiesterases (PDEs). Increases in cAMP and ATP release associated with activation of β-adrenergic receptors (βARs) and prostacyclin receptors (IPRs) are regulated by PDEs 2, 4 and PDE 3, respectively. Here we establish the presence of cytosolic PDEs in RBCs and determine a role for PDE5 in regulating levels of cGMP. Material/Methods Purified cytosolic proteins were obtained from isolated human RBCs and western analysis was performed using antibodies against PDEs 3A, 4 and 5. Rabbit RBCs were incubated with dbcGMP, a cGMP analog, to determine the effect of cGMP on cAMP levels. To determine if cGMP affects receptor-mediated increases in cAMP, rabbit RBCs were incubated with dbcGMP prior to addition of isoproterenol (ISO), a βAR receptor agonist. To demonstrate that endogenous cGMP produces the same effect, rabbit and human RBCs were incubated with SpNONOate (SpNO), a nitric oxide donor, and YC1, a direct activator of soluble guanylyl cyclase (sGC), in the absence and presence of a selective PDE5 inhibitor, zaprinast (ZAP). Results Western analysis identified PDEs 3A, 4D and 5A. dbcGMP produced a concentration dependent increase in cAMP and ISO-induced increases in cAMP were potentiated by dbcGMP. In addition, incubation with YC1 and SpNO in the presence of ZAP potentiated βAR-induced increases in cAMP. Conclusions PDEs 2, 3A and 5 are present in the cytosol of human RBCs. PDE5 activity in RBCs regulates cGMP levels. Increases in intracellular cGMP augment cAMP levels. These studies suggest a novel role for PDE5 in erythrocytes.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Shamova EV, Bichan OD, Drozd ES, Gorudko IV, Chizhik SA, Shumaev KB, Cherenkevich SN, Vanin AF. Regulation of the functional and mechanical properties of platelet and red blood cells by nitric oxide donors. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911020278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Horn P, Cortese-Krott MM, Keymel S, Kumara I, Burghoff S, Schrader J, Kelm M, Kleinbongard P. Nitric oxide influences red blood cell velocity independently of changes in the vascular tone. Free Radic Res 2011; 45:653-61. [PMID: 21480762 DOI: 10.3109/10715762.2011.574288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitric oxide (NO) plays a key role in regulation of vascular tone and blood flow. In the microcirculation blood flow is strongly dependent on red blood cells (RBC) deformability. In vitro NO increases RBC deformability. This study hypothesized that NO increases RBC velocity in vivo not only by regulating vascular tone, but also by modifying RBC deformability. The effects of NO on RBC velocity were analysed by intra-vital microscopy in the microcirculation of the chorioallantoic membrane (CAM) of the avian embryo at day 7 post-fertilization, when all vessels lack smooth muscle cells and vascular tone is not affected by NO. It was found that inhibition of enzymatic NO synthesis and NO scavenging decreased intracellular NO levels and avian RBC deformability in vitro. Injection of a NO synthase-inhibitor or a NO scavenger into the microcirculation of the CAM decreased capillary RBC velocity and deformation, while the diameter of the vessels remained constant. The results indicate that scavenging of NO and inhibition of NO synthesis decrease RBC velocity not only by regulating vascular tone but also by decreasing RBC deformability.
Collapse
Affiliation(s)
- Patrick Horn
- Division of Cardiology, Pneumology and Angiology, Medical Faculty of the Heinrich Heine University of Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Nitric oxide (NO) is a potent regulator of vascular tone and hemorheology. The signaling function of NO was largely unappreciated until approximately 30 years ago, when the endothelium-derived relaxing factor (EDRF) was identified as NO. Since then, NO from the endothelium has been considered the major source of NO in the vasculature and a contributor to the paracrine regulation of blood hemodynamics. Because NO is highly reactive, and its half-life in vivo is only a few seconds (even less in the bloodstream), any NO bioactivity derived from the intraluminal region has traditionally been considered insignificant. However, the availability and significance of NO signaling molecules derived from intraluminal sources, particularly erythrocytes, have gained attention in recent years. Multiple potential sources of NO bioactivity have been identified in the blood, but unresolved questions remain concerning these proposed sources and how the NO released via these pathways actually interacts with intravascular and extravascular targets. Here we review the hypotheses that have been put forward concerning blood-borne NO and its contribution to hemorheological properties and the regulation of vascular tone, with an emphasis on the quantitative aspects of these processes.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
14
|
Abstract
Hydroxyurea, a drug widely used for treating myeloproliferative diseases, has also been approved for the treatment of sickle cell disease by raising fetal hemoglobin (HbF). We have shown that nitric oxide (NO) and the soluble guanylyl cyclase (sGC) pathways are involved in hydroxyurea induction of HbF levels in erythroid progenitor cells (EPCs). We demonstrate now that during erythroid differentiation, endothelial NO synthase mRNA and protein levels decline steadily, as does the production of NO derivatives and cyclic adenosine monophosphate (cAMP) levels, but guanosine 3',5'-cyclic monophosphate (cGMP) levels are stable. Hydroxyurea increased intracellular cGMP levels and cAMP levels in EPCs. The NO donor, DEANONOate, induced much higher cGMP levels, but reduced cAMP levels. Hydroxyurea (1 mM) induced production of approximately 45 pM cGMP/minute/ng of purified sGC, similar to induction by 1 muM DEANONOate. We found that hydroxyurea and ProliNONOate produced iron-nitrosyl derivatives of sGC. Thus, we confirm that hydroxyurea can directly interact with the deoxy-heme of sGC, presumably by a free-radical nitroxide pathway, and activate cGMP production. These data add to an expanding appreciation of the role of hydroxyurea as an inducer of the NO/cGMP pathway in EPCs. These mechanisms may also be involved in the cytostatic effects of hydroxyurea, as well as the induction of HbF.
Collapse
|
15
|
Fatini C, Mannini L, Sticchi E, Rogai V, Guiducci S, Conforti ML, Cinelli M, Pignone AM, Bolli P, Abbate R, Cerinic MM. Hemorheologic profile in systemic sclerosis: role of NOS3 -786T > C and 894G >T polymorphisms in modulating both the hemorheologic parameters and the susceptibility to the disease. ACTA ACUST UNITED AC 2006; 54:2263-70. [PMID: 16802365 DOI: 10.1002/art.21933] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Microvascular disorders are relevant in systemic sclerosis (SSc). Hyperviscosity, due to alterations of blood cells and plasma components, may play a role in the pathogenesis of microcirculatory disorders. An impaired availability of nitric oxide, related to polymorphisms in NOS3, the gene for endothelial cell nitric oxide synthase, might influence erythrocyte deformability. We undertook this study to investigate the hemorheologic profile in SSc and the role of NOS3 polymorphisms in modulating the hemorheologic status of SSc patients. METHODS We studied 113 consecutive SSc patients (75 with limited cutaneous SSc [lcSSc] and 38 with diffuse cutaneous SSc [dcSSc]) and 113 healthy controls. The hemorheologic profile was obtained by assessing whole blood viscosity (WBV; at shear rates of 0.512 and 94.5 seconds(-1)), plasma viscosity (PLV; at a shear rate of 94.5 seconds(-1)), and erythrocyte deformability index (DI). We determined NOS3 polymorphisms by molecular analysis. RESULTS A marked alteration of hemorheologic parameters was found both in patients with lcSSc and in those with dcSSc compared with controls (P < 0.0001). In multivariate analysis, rheologic variables were significantly associated with the disease (for WBV at a shear rate of 94.5 seconds(-1), odds ratio [OR] 5.4, 95% confidence interval [95% CI] 1.4-19.9, P = 0.01; for PLV, OR 2.8, 95% CI 1.2-6.5, P = 0.01; for DI, OR 3.9, 95% CI 1.4-10.8, P = 0.007), and NOS3 -786C and 894T alleles significantly affected the DI (for -786C allele, OR 2.3, 95% CI 1.01-5.4, P = 0.04; for 894T allele, OR 2.2, 95% CI 1.01-4.8, P = 0.04). The simultaneous presence of the -786C and 894T alleles represented a susceptibility factor for SSc (OR 2.8, 95% CI 1.4-5.7, P = 0.004). CONCLUSION Our findings document an altered rheologic profile in SSc and demonstrate a relationship between this alteration and NOS3 polymorphisms, thus shedding light on a potential novel mechanism influencing the microcirculation in this disease.
Collapse
Affiliation(s)
- Cinzia Fatini
- Department of Medical and Surgical Critical Care, Thrombosis Centre, University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu CP, Klokouzas A, Hladky SB, Ambudkar SV, Barrand MA. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4) that are present in human red cell membranes. Biochem Pharmacol 2005; 70:500-10. [PMID: 16004972 PMCID: PMC1356667 DOI: 10.1016/j.bcp.2005.05.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/17/2005] [Accepted: 05/23/2005] [Indexed: 12/12/2022]
Abstract
Human erythrocyte membranes express the multidrug resistance-associated proteins, MRP1, MRP4 and 5, that collectively can efflux oxidised glutathione, glutathione conjugates and cyclic nucleotides. It is already known that the quinoline derivative, MK-571, is a potent inhibitor of MRP-mediated transport. We here examine whether the quinoline-based antimalarial drugs, amodiaquine, chloroquine, mefloquine, primaquine, quinidine and quinine, also interact with erythrocyte MRPs with consequences for their access to the intracellular parasites or for efflux of oxidised glutathione from infected cells. Using inside-out vesicles prepared from human erythrocytes we have shown that mefloquine and MK-571 inhibit transport of 3 microM [(3)H]DNP-SG known to be mediated by MRP1 (IC(50) 127 and 1.1 microM, respectively) and of 3.3 microM [(3)H]cGMP thought but not proven to be mediated primarily by MRP4 (IC(50) 21 and 0.41 microM). They also inhibited transport in membrane vesicles prepared from tumour cells expressing MRP1 or MRP4 and blocked calcein efflux from MRP1-overexpressing cells and BCECF efflux from MRP4-overexpressing cells. Both stimulated ATPase activity in membranes prepared from MRP1 and MRP4-overexpressing cells and inhibited activity stimulated by quercetin or PGE(1), respectively. Neither inhibited [alpha-(32)P]8-azidoATP binding confirming that the interactions are not at the ATP binding site. These results demonstrate that mefloquine and MK-571 both inhibit transport of other substrates and stimulate ATPase activity and thus may themselves be substrates for transport. But at concentrations achieved clinically mefloquine is unlikely to affect the MRP1-mediated transport of GSSG across the erythrocyte membrane.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Laboratory of Cell Biology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-42546 USA
| | - Antonios Klokouzas
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Laboratory of Cell Biology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-42546 USA
| | - Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, NIH, DHHS, Bethesda, MD 20892-42546 USA
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ UK
- Corresponding author: Dr M.A. Barrand, Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1QJ +44-1223-334019; +44-1223-334040 (FAX);; URL: http://www.phar.cam.ac.uk
| |
Collapse
|
17
|
Barvitenko NN, Adragna NC, Weber RE. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 2005; 15:1-18. [PMID: 15665511 DOI: 10.1159/000083634] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2004] [Indexed: 11/19/2022] Open
Abstract
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate.
Collapse
Affiliation(s)
- Nadezhda N Barvitenko
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
18
|
Wu CP, Woodcock H, Hladky SB, Barrand MA. cGMP (guanosine 3′,5′-cyclic monophosphate) transport across human erythrocyte membranes. Biochem Pharmacol 2005; 69:1257-62. [PMID: 15794947 DOI: 10.1016/j.bcp.2005.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 02/09/2005] [Indexed: 11/21/2022]
Abstract
Human erythrocytes produce cGMP that can be eliminated by phosphodiesterases or active efflux transporters. The efflux can be studied under controlled conditions as ATP-dependent uptake into inside-out membrane vesicles. However, widely differing values for the transport rates have been reported. We have here examined factors that influence the uptake rates measured and thus may explain these discrepancies. Both the ionic composition of the buffer used during uptake and the mode of vesicle preparation were found to affect the observed transport rates. Furthermore it was apparent that different blood donors expressed on their erythrocytes different amounts of both MRP4 and MRP5, transporters that have been putatively linked to cGMP efflux across erythrocyte membranes. These differences in expression were reflected in differences in rates of cGMP uptake into inside-out erythrocyte membrane vesicles. Calculations based on the transport rates observed using vesicles suggest that efflux may be the principal means for eliminating cGMP from human erythrocytes.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB21PD, UK
| | | | | | | |
Collapse
|
19
|
Conran N, Oresco-Santos C, Acosta HC, Fattori A, Saad STO, Costa FF. Increased soluble guanylate cyclase activity in the red blood cells of sickle cell patients. Br J Haematol 2004; 124:547-54. [PMID: 14984506 DOI: 10.1111/j.1365-2141.2004.04810.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of soluble guanylate cyclase (sGC) has been reported to up-regulate gamma-globin gene transcription in erythroid cell lines and primary erythroblasts. sGC is activated by nitric oxide (NO), subsequently catalysing the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP), which mediates various physiological responses. To study the importance of this mechanism in the erythroid cells of sickle cell patients, cGMP levels were measured in the red blood cells (RBC) of normal individuals, steady-state sickle cell patients (SS) and SS patients on hydroxyurea (HU) therapy (SS + HU). cGMP levels were found to be significantly higher in RBC of SS patients (SS RBC) than in RBC of normal individuals, and were further increased in RBC of SS + HU patients. cGMP levels correlated with fetal haemoglobin (HbF) levels in SS/SS + HU patients, but not with reticulocyte count. Furthermore, NO-stimulated sGC activity, following incubation of cells with a NO donor, was significantly greater in SS RBC than in normal RBC. These results demonstrate, for the first time, an increased metabolism of NO mediated by sGC in the SS RBC, which is further increased by hydroxyurea. Augmentation of cGMP levels by NO in erythroid cells may constitute a mechanism for induction of HbF and other erythrocyte functions and represent a possible therapeutic target for treatment of sickle cell disease.
Collapse
Affiliation(s)
- Nicola Conran
- The Haematology and Haemotherapy Centre, State University of Campinas - UNICAMP, Campinas, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Bor-Kucukatay M, Wenby RB, Meiselman HJ, Baskurt OK. Effects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol 2003; 284:H1577-84. [PMID: 12521942 DOI: 10.1152/ajpheart.00665.2002] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.
Collapse
Affiliation(s)
- Melek Bor-Kucukatay
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070 Turkey
| | | | | | | |
Collapse
|
21
|
Adragna NC, White RE, Orlov SN, Lauf PK. K-Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am J Physiol Cell Physiol 2000; 278:C381-90. [PMID: 10666034 DOI: 10.1152/ajpcell.2000.278.2.c381] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K-Cl cotransport, the electroneutral-coupled movement of K and Cl ions, plays an important role in regulatory volume decrease. We recently reported that nitrite, a nitric oxide derivative possessing potent vasodilation properties, stimulates K-Cl cotransport in low-K sheep red blood cells (LK SRBCs). We hypothesized that activation of vascular smooth muscle (VSM) K-Cl cotransport by vasodilators decreases VSM tension. Here we tested this hypothesis by comparing the effects of commonly used vasodilators, hydralazine (HYZ), sodium nitroprusside, isosorbide mononitrate, and pentaerythritol, on K-Cl cotransport in LK SRBCs and in primary cultures of rat VSM cells (VSMCs) and of HYZ-induced K-Cl cotransport activation on relaxation of isolated porcine coronary rings. K-Cl cotransport was measured as the Cl-dependent K efflux or Rb influx in the presence and absence of inhibitors for other K/Rb transport pathways. All vasodilators activated K-Cl cotransport in LK SRBCs and HYZ in VSMCs, and this activation was inhibited by calyculin and genistein, two inhibitors of K-Cl cotransport. KT-5823, a specific inhibitor of protein kinase G, abolished the sodium nitroprusside-stimulated K-Cl cotransport in LK SRBCs, suggesting involvement of the cGMP pathway in K-Cl cotransport activation. Hydralazine, in a dose-dependent manner, and sodium nitroprusside relaxed (independently of the endothelium) precontracted arteries when only K-Cl cotransport was operating and other pathways for K/Rb transport, including the Ca-activated K channel, were inhibited. Our findings suggest that K-Cl cotransport may be involved in vasodilation.
Collapse
Affiliation(s)
- N C Adragna
- Departments of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, Ohio 45435, USA.
| | | | | | | |
Collapse
|
22
|
Calò L, Felice M, Cantaro S, Ceolotto G, Monari A, Antonello A, Semplicini A. Inhibition of furosemide-sensitive cation transport and activation of sodium-lithium exchange by endogenous circulating factor(s) in Bartter's and Gitelman's syndromes. J Hypertens 1997; 15:1407-13. [PMID: 9431846 DOI: 10.1097/00004872-199715120-00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The nature of the cellular abnormality causing hypokalemia, hypotension, and hypovolemia in Bartter's and Gitelman's syndromes is still being debated. In fact, despite the recent descriptions of an array of nonconservative missense or point mutations in some ion transporters and in K+ channel, the lack of detectable defects in some patients suggests that other abnormalities of cell ion homeostasis may be involved in the pathophysiology of these syndromes. The study of the activity of cell ion transporters in patients with these syndromes using red blood cells (RBC) as a cellular model never investigated the role of plasma factor(s) affecting ion transport. OBJECTIVE To evaluate the effect of plasma from patients with these syndromes on furosemide-sensitive lithium efflux (FSLE) from lithium (Li+)-loaded RBC of healthy subjects in vitro. METHODS RBC of healthy controls were loaded with Li+ in the presence of nystatin and FSLE was evaluated in the presence of various concentrations of plasma from controls and patients with the two syndromes. RESULTS Plasma from controls did not affect FSLE (0.08 +/- 0.02 mmol/l cells per h with 1:4 vol:vol and 0.07 +/- 0.02 mmol/l cells per h with 1:2 vol:vol plasma dilution). In contrast, doubling concentrations of plasma from patients with either syndrome in the efflux solution halved FSLE (from 0.10 +/- 0.0 mmol/l cells per h with 1:4 vol:vol to 0.05 +/- 0.01 mmol/l cells per h with 1:2 vol:vol plasma dilution, P < 0.05). Na+/Li+ exchange was significantly greater for RBC from patients with either syndrome than it was for RBC from controls (0.373 +/- 0.06 versus 0.257 +/- 0.01 mmol/l cells per h, P < 0.01), but the kinetic properties of furosemide-sensitive Na+-K+-2Cl- cotransport were similar. CONCLUSION These data provide evidence for the hypothesis that plasma factor(s) affect ion transport in patients with these two syndromes. Since FSLE estimates Na+-K+-2Cl- cotransport the data suggest that plasma factor(s) contribute(s) to K+ wasting, hypokalemia, and hypotension by inhibiting cotransport in patients with these syndromes. The increase of Na+/Li+ exchange is most likely a secondary phenomenon associated with the hypermineralocorticoid state.
Collapse
Affiliation(s)
- L Calò
- Institute of Internal Medicine, Division of Nephrology, University of Padova, Italy
| | | | | | | | | | | | | |
Collapse
|