1
|
van Leeuwen ALI, Dekker NAM, Jansma EP, Boer C, van den Brom CE. Therapeutic interventions to restore microcirculatory perfusion following experimental hemorrhagic shock and fluid resuscitation: A systematic review. Microcirculation 2020; 27:e12650. [PMID: 32688443 PMCID: PMC7757213 DOI: 10.1111/micc.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Objective Microcirculatory perfusion disturbances following hemorrhagic shock and fluid resuscitation contribute to multiple organ dysfunction and mortality. Standard fluid resuscitation is insufficient to restore microcirculatory perfusion; however, additional therapies are lacking. We conducted a systematic search to provide an overview of potential non‐fluid‐based therapeutic interventions to restore microcirculatory perfusion following hemorrhagic shock. Methods A structured search of PubMed, EMBASE, and Cochrane Library was performed in March 2020. Animal studies needed to report at least one parameter of microcirculatory flow (perfusion, red blood cell velocity, functional capillary density). Results The search identified 1269 records of which 48 fulfilled all eligibility criteria. In total, 62 drugs were tested of which 29 were able to restore microcirculatory perfusion. Particularly, complement inhibitors (75% of drugs tested successfully restored blood flow), endothelial barrier modulators (100% successful), antioxidants (66% successful), drugs targeting cell metabolism (83% successful), and sex hormones (75% successful) restored microcirculatory perfusion. Other drugs consisted of attenuation of inflammation (100% not successful), vasoactive agents (68% not successful), and steroid hormones (75% not successful). Conclusion Improving mitochondrial function, inhibition of complement inhibition, and reducing microvascular leakage via restoration of endothelial barrier function seem beneficial to restore microcirculatory perfusion following hemorrhagic shock and fluid resuscitation.
Collapse
Affiliation(s)
- Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health research institute, Amsterdam, The Netherlands.,Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ruggiero SA, Huber JS, Murrant CL, Brunt KR, Simpson JA. Splenic blood-flow response following myocardial infarction in rat. Can J Physiol Pharmacol 2018; 96:1060-1068. [PMID: 30102865 DOI: 10.1139/cjpp-2018-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During physiological stress (e.g., exercise, hypoxia), blood flow is shunted to specific anatomical regions to protect critical organs; yet, splenic blood flow in these circumstances remains to be investigated. Despite being classically viewed as a non-critical organ, recent experimental and epidemiological evidence suggests the spleen plays a significant role in cardiovascular pathophysiology. We hypothesized that splenic blood flow is prioritized in the development of heart failure (i.e., chronic state of reduced cardiac output). Five-week-old male Wistar rats were randomized for either myocardial infarction (MI; n = 58) or sham (n = 56) surgery. At 2, 5, and 9 weeks post-surgery, Doppler ultrasound measurements of the splenic, left renal, left common carotid, and left femoral arteries were performed. Cardiac function was assessed at all time points using echocardiography and at 9 weeks post-surgery using invasive hemodynamic analysis. Splenic and cerebral blood flow was preferentially maintained at 9 weeks post-MI, whereas blood flow to the lower limb and kidney were reduced. Spleen size increased by 5 weeks post-MI and remained elevated. Splenic blood flow was maintained in conditions of decreased cardiac output, when other tissues showed decreased blood flow. The maintenance of blood flow in the face of decreased cardiac output indicates that splenic function is being prioritized during heart failure.
Collapse
Affiliation(s)
- Sara A Ruggiero
- a Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jason S Huber
- a Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,b IMPART team Canada Investigator Network
| | - Coral L Murrant
- a Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Keith R Brunt
- b IMPART team Canada Investigator Network.,c Department of Pharmacology, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, NB E2K 5E2, Canada
| | - Jeremy A Simpson
- a Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,b IMPART team Canada Investigator Network
| |
Collapse
|
3
|
Warren M, Subramani K, Schwartz R, Raju R. Mitochondrial dysfunction in rat splenocytes following hemorrhagic shock. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2526-2533. [PMID: 28844961 DOI: 10.1016/j.bbadis.2017.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/23/2022]
Abstract
The regulation of mitochondrial function is critical in cellular homeostasis following hemorrhagic shock. Hemorrhagic shock results in fluid loss and reduced availability of oxygen and nutrients to tissues. The spleen is a secondary lymphoid organ playing a key role in 'filtering the blood' and in the innate and adaptive immune responses. To understand the molecular basis of hemorrhagic shock, we investigated the changes in splenocyte mitochondrial respiration, and concomitant immune and metabolic alterations. The hemorrhagic injury (HI) in our rat model was induced by bleeding 60% of the total blood volume followed by resuscitation with Ringers lactate. Another group of animals was subjected to hemorrhage, but did not receive fluid resuscitation. Oxygen consumption rate of splenocytes were determined using a Seahorse analyzer. We found a significantly reduced oxygen consumption rate in splenocytes following HI compared to sham operated rats. The mitochondrial stress test revealed a decreased basal oxygen consumption rate, ATP production, maximal respiration and spare respiratory capacity. The mitochondrial membrane potential, and citrate synthase activity, were also reduced in the splenocytes following HI. Hypoxic response in the splenocyte was confirmed by increased gene expression of Hif1α. Elevated level of mitochondrial stress protein, hsp60 and induction of high mobility group box1 protein (HMGB1) were observed in splenocytes following HI. An increased inflammatory response was demonstrated by significantly increased expression of IL-6, IFN-β, Mip-1α, IL-10 and NFκbp65. In summary, we conclude that splenocyte oxidative phosphorylation and metabolism were severely compromised following HI.
Collapse
Affiliation(s)
- Marie Warren
- Augusta University, Augusta, GA 30912, United States
| | | | | | - Raghavan Raju
- Augusta University, Augusta, GA 30912, United States..
| |
Collapse
|
4
|
Yadav VR, Rao G, Houson H, Hedrick A, Awasthi S, Roberts PR, Awasthi V. Nanovesicular liposome-encapsulated hemoglobin (LEH) prevents multi-organ injuries in a rat model of hemorrhagic shock. Eur J Pharm Sci 2016; 93:97-106. [PMID: 27503458 DOI: 10.1016/j.ejps.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
The goals of resuscitation in hemorrhagic shock are to correct oxygen deficit and to maintain perfusion pressure to the vital organs. We created liposome-encapsulated hemoglobin (LEH) as a nanoparticulate oxygen carrier (216±2nm) containing 7.2g/dl hemoglobin, and examined its ability to prevent the systemic manifestations of hemorrhagic shock (45% blood loss) in a rat model. We collected plasma after 6h of shock and LEH resuscitation, and determined the circulating biomarkers of systemic inflammation and functions of liver, gut, heart, and kidney. As is typical of the shock pathology, a significant increase in the plasma levels of cardiac troponin, liver function enzymes, soluble CD163 (macrophage activation), and creatinine, and the liver/gut myeloperoxidase activity was observed in the hemorrhaged rats. The plasma levels of TNF-α, IL-6, IL-1α, CINC-1, and IL-22 also increased after hemorrhagic shock. LEH administration prevented the hemorrhagic shock-induced accumulation of the markers of injury to the critical organs and pro-inflammatory cytokines. LEH also decreased the plasma levels of stress hormone corticosterone in hemorrhaged rats. Although saline also reduced the circulating corticosterone and a few other tissue injury markers, it was not as effective as LEH in restraining the plasma levels of creatinine, alanine transaminase, CD163, TNF-α, IL-6, and IL-1α. These results indicate that resuscitation with nanoparticulate LEH creates a pro-survival phenotype in hemorrhaged rats, and because of its oxygen-carrying capacity, LEH performs significantly better than saline in hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Hailey Houson
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Andria Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Pamela R Roberts
- Department of Anesthesiology, University of Oklahoma Health Science Center, 750 N.E. 13th St., Oklahoma City, OK 73104, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA.
| |
Collapse
|
5
|
Molfino A, Laviano A. Perioperative nutritional intervention: a way to improve long-term outcomes. Nat Rev Clin Oncol 2016; 13:198. [DOI: 10.1038/nrclinonc.2016.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Abstract
Trauma results in a persistent depression in adaptive immunity, which contributes to patient morbidity and mortality. This state of immune paralysis following trauma is characterized by a change in cell-mediated immunity, specifically a depression in T-cell function and a shift toward TH2 T-cell phenotype. Upregulation of inducible nitric oxide synthase (iNOS) is well recognized after injury and contributes to the inflammatory response and organ damage early after trauma. However, it is unknown whether iNOS plays a role in adaptive immune dysfunction after trauma. This study utilized a murine model of severe peripheral tissue injury to show that iNOS is rapidly upregulated in macrophages and a (Gr-1-CD11b) myeloid-derived suppressor cell subpopulation in the spleen. Through the use of iNOS knockout mice, a specific iNOS inhibitor, and a nitric oxide (NO) scavenger, this study demonstrates that iNOS-derived NO is required for the depression in T-lymphocyte proliferation, interferon γ, and interleukin 2 production within the spleen at 48 h after trauma. These findings support the hypothesis that iNOS regulates immune suppression following trauma and suggest that targeting the sustained production of NO by iNOS may attenuate posttraumatic immune depression.
Collapse
|
7
|
L-arginine infusion during resuscitation for hemorrhagic shock: impact and mechanism. J Trauma Acute Care Surg 2012; 72:397-402. [PMID: 22439203 DOI: 10.1097/ta.0b013e3181d039fd] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our previous work showed a survival advantage with L-arginine (L-Arg) pretreatment in a swine model of severe hemorrhagic shock. This study was designed to evaluating whether the benefit is sustained when L-Arg is given during resuscitation and whether the mechanism is mediated by enzymatic activation of nitric oxide (NO) synthesis. METHODS Adult rats (n = 30) underwent 40% blood volume loss and were resuscitated with saline (3 shed blood volume). Animals were divided into five treatment groups of six animals each: (1) Sham, (2) Control (resuscitation alone), (3) L-Arg (300 mg/kg)with resuscitation, (4) L-Arg + L-nitroarginine methyl ester pretreatment, and (5) D-arginine (300 mg/kg) with resuscitation.Animals were observed for 240 minutes postresuscitation or until death. Hemodynamic, metabolic, histologic, and survival outcomes were measured. RESULTS Administration of L-Arg after hemorrhage and before resuscitation significantly improved outcomes, relative to the control group.The L-Arg infusion improved terminal arterial pressures, lowered lactate, improved small bowel histologic signs of reperfusion injury, and increased survival (p < 0.05). Endpoints of the L-Arg group were similar to the Sham group. The benefits of L-Arg infusion were abolished or attenuated when animals were pretreated with L-nitro arginine methyl ester and potentiated with D-arginine, suggesting a NO-specific mechanism of L-Arg. Finally, severe shock and resuscitation injury significantly elevated circulating asymmetric dimethylarginine levels, which are potent competitive inhibitors of NO synthetase. CONCLUSION L-Arg infusion during resuscitation offers a significant functional, metabolic, and survival benefit after severe hemorrhagic shock.The mechanism seems to be by activation of NO synthesis with its attendant benefits to local perfusion and inflammation after global reperfusion.
Collapse
|
8
|
Wild T, Rahbarnia A, Kellner M, Sobotka L, Eberlein T. Basics in nutrition and wound healing. Nutrition 2011; 26:862-6. [PMID: 20692599 DOI: 10.1016/j.nut.2010.05.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/21/2010] [Indexed: 01/09/2023]
Abstract
Wound healing is a process that can be divided into three different phases (inflammatory, proliferative, and maturation). Each is characterized by certain events that require specific components. However, wound healing is not always a linear process; it can progress forward and backward through the phases depending on various intrinsic and extrinsic factors. If the wound-healing process is affected negatively, this can result in chronic wounds. Chronic wounds demand many resources in the clinical daily routine. Therefore, local wound management and good documentation of the wound is essential for non-delayed wound healing and prevention of the development of chronic wounds. During the wound-healing process much energy is needed. The energy for the building of new cells is usually released from body energy stores and protein reserves. This can be very challenging for undernourished and malnourished patients. Malnutrition is very common in geriatric patients and patients in catabolic phases of stress such as after injury or surgery. For that reason a close survey of the nutritional status of patients is necessary to start supplementation quickly, if applicable. Wound healing is indeed a very complex process that deserves special notice. There are some approaches to develop guidelines but thus far no golden standard has evolved. Because wounds, especially chronic wounds, cause also an increasing economic burden, the development of guidelines should be advanced.
Collapse
Affiliation(s)
- Thomas Wild
- University Clinic of Surgery, Paracelsus Medical University, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
9
|
Shukla J, Chatterjee S, Thakur VS, Premachandran S, Checker R, Poduval TB. L-Arginine reverses radiation-induced immune dysfunction: the need for optimum treatment window. Radiat Res 2009; 171:180-7. [PMID: 19267543 DOI: 10.1667/rr1241.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of the present study was to investigate the protective efficacy of l-arginine in mitigating the injury induced by 2 Gy of total-body gamma radiation (TBI). Mice exposed to radiation (TBI group) had significantly decreased spleen weight, splenocyte numbers and bone marrow cellularity. Administration of l-arginine 2 h after TBI (TBI + l-arginine group) was effective in reducing the radiation-induced depletion of spleen and bone marrow cellularity but was not effective when administered before TBI (l-arginine + TBI group). The radiation-induced decrease in Con A-induced spleen cell proliferation, specific antibody response of spleen B cells to sheep red blood cells, and spleen RNA content was reversed in mice in the TBI + l-arginine group. The radiation-induced increase in serum TNF-alpha levels, serum nitrate/nitrite (NOx) levels, spleen DNA fragmentation, spleen nitric oxide synthase (NOS) activity, spleen inducible NOS (iNOS) activity, and hepatic iNOS activity was reversed in mice in the TBI + l-arginine group. l-Arginine administered before TBI could not reverse these changes. Mice in the TBI + l-arginine group had significantly increased spleen arginase activity compared to mice from either the TBI or l-arginine + TBI group. The results suggest the importance of the time of administration of l-arginine and the l-arginine pathway in mitigating the radiation-induced host immune dysfunction.
Collapse
Affiliation(s)
- Jyoti Shukla
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085, India
| | | | | | | | | | | |
Collapse
|
10
|
Han J, Liu YL, Fan W, Chao J, Hou YQ, Yin YL, Zhu HL, Meng GQ, Che ZQ. Dietary l-arginine supplementation alleviates immunosuppression induced by cyclophosphamide in weaned pigs. Amino Acids 2008; 37:643-51. [DOI: 10.1007/s00726-008-0184-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/12/2008] [Indexed: 12/14/2022]
|
11
|
Abstract
PURPOSE OF REVIEW Vascular endothelial cells control vascular smooth muscle tone via the release of nitric oxide. Following adverse circulatory conditions, namely trauma and hemorrhage, endothelial cell dysfunction occurs, leading to a decrease in the release of endothelium-derived nitric oxide, which contributes to further alterations in tissue perfusion and organ function. RECENT FINDINGS Early administration of L-arginine (the precursor of nitric oxide) and the substrate for nitric oxide synthase in vascular endothelial cells has been found to restore the depressed organ blood flow and to reduce tissue injury following shock. This improvement in cardiovascular function was associated with restoration of the depressed cell-mediated immune responses and attenuation of the massive inflammatory response encountered under such conditions. Furthermore, the excessive infiltration of the liver with neutrophils following trauma-hemorrhage was decreased by L-arginine administration, thereby reducing hepatic injury. In addition, L-arginine treatment decreased the inflammatory response at the site of trauma and the improved wound-healing process following blood loss. SUMMARY Despite those promising results in animal models at present, none of the published clinical trials has demonstrated efficacy of L-arginine at doses above standard dietary practices on the outcome in critically ill surgical patients, besides the reduction in infectious complications.
Collapse
Affiliation(s)
- Florian Loehe
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | |
Collapse
|
12
|
Chatterjee S, Premachandran S, Bagewadikar RS, Bhattacharya S, Chattopadhyay S, Poduval TB. Arginine metabolic pathways determine its therapeutic benefit in experimental heatstroke: role of Th1/Th2 cytokine balance. Nitric Oxide 2006; 15:408-16. [PMID: 16765619 DOI: 10.1016/j.niox.2006.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/24/2006] [Accepted: 04/17/2006] [Indexed: 11/29/2022]
Abstract
We have demonstrated that therapeutic administration of L-arginine (L-arg) (120 mg/kg) at +2 h of whole body hyperthermia (WBH) could rescue the mice from heatstroke-induced death. Studies were undertaken to elucidate the role of L-arg in the immunomodulation of the heat-stressed mice. Administration of L-arginine (L-arg), (120 mg/kg, i.p.), at +2 h of WBH, rescued the mice from heat-induced death and reduced the hypothermia. At +4 and +24 h of WBH, levels of IL-1beta, IFN-gamma, nitrite, TNF-alpha, IL-4, TGF-beta1, inducible form of nitric oxide synthase (iNOS), and corticosterone significantly increased compared to the sham group. The elevated levels of Th(1) cytokines, namely TNF-alpha, IL-1beta, IFN-gamma, nitrite, and iNOS, decreased significantly both at +4 and +24 h of WBH, following L-arg administration. However, L-arg administration did not reduce the increased levels of Th(2) cytokines, namely IL-4 and TGF-beta1, in WBH mice at +4 h of WBH. L-arg administration significantly increased the levels of Th(2) cytokines at +24 h of WBH, compared to the saline-treated WBH mice. L-arg administration significantly increased both the splenic and hepatic arginase activity at +4 and +24 h of WBH compared to the saline-treated WBH mice. L-NAME treatment at +2 h of WBH and anti-TGF-beta antibody treatment at 0 h of WBH significantly increased the mortality compared to the saline-treated WBH mice. Altered liver histopathology was attenuated following the administration of L-arg at +2 h of WBH. These results suggest that therapeutic administration of L-arg at appropriate concentration and time attenuates the acute inflammatory response, leading to the rescue of mice from heatstroke.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | | | | | |
Collapse
|
13
|
Chatterjee S, Premachandran S, Sharma D, Bagewadikar RS, Poduval TB. THERAPEUTIC TREATMENT WITH L-ARGININE RESCUES MICE FROM HEAT STROKE-INDUCED DEATH: PHYSIOLOGICAL AND MOLECULAR MECHANISMS. Shock 2005; 24:341-7. [PMID: 16205319 DOI: 10.1097/01.shk.0000180983.55623.2b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heat stroke-induced death is a major killer worldwide. Mice were subjected to acute heat stress by exposing them to whole-body hyperthermia (WBH) treatment and were used as a model to study heat stroke. Administration of L-arginine (L-arg, 120 mg/kg, i.p) 2 h after the cessation of WBH rescued the mice from heat-induced death and reduced the hypothermia. Heat shock protein 70 levels in the liver were increased significantly in heat-stressed mice administered L-arg compared with the heat-stressed group. WBH induced apoptosis, as indicated by DNA fragmentation, and increased levels of p53 and caspase-3 activity, which were significantly reduced by the administration of L-arg. The levels of inducible nitric oxide synthase in the liver, nitrite, and inflammatory cytokines like interleukin 1beta and tumor necrosis factor-alpha in the serum increased in WBH-treated mice. The levels of the above markers of heat stress significantly decreased in L-arg-treated mice. Kinin-B1 receptor (kinin-B1R) in cardiac tissue that is upregulated in heat stressed mice was significantly lower in L-arg-administered mice. These data suggest the potential use of L-arg, a nonessential amino acid that is used as an enteral diet supplement, to treat heat stroke-related injury when administered at the appropriate dose and time.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Immunology and Hyperthermia Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
| | | | | | | | | |
Collapse
|
14
|
Wittmann F, Prix N, Mayr S, Angele P, Wichmann MW, van den Engel NK, Hernandez-Richter T, Chaudry IH, Jauch KW, Angele MK. l-Arginine Improves Wound Healing after Trauma-Hemorrhage by Increasing Collagen Synthesis. ACTA ACUST UNITED AC 2005; 59:162-8. [PMID: 16096557 DOI: 10.1097/01.ta.0000171529.06625.a8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several studies indicate impaired wound healing after trauma and shock. Wound immune cell dysfunction seems to be responsible for altered wound healing after trauma-hemorrhage (T-H). In this respect, administration of the amino acid L-arginine normalized wound immune cell function under those conditions. It remains unknown, however, whether L-arginine improves impaired wound healing after T-H. METHODS To study this, male C3H/HeN mice were subjected to a midline laparotomy (i.e., soft tissue trauma induced), and polyvinyl sponges were implanted subcutaneously at the wound site before hemorrhage (35 +/- 5 mm Hg for 90 minutes) or were subjected to sham operation. During resuscitation, mice received 300 mg/kg body weight L-arginine or saline (vehicle). Seven days thereafter, hydroxyproline (OHP), a metabolite of collagen synthesis, was measured in the wound fluid using high-performance liquid chromatography. Collagen types I and III were determined in the wound by Western blot analysis. In addition, wound breaking strength was measured 10 days after T-H or sham operation. RESULTS The results indicate that OHP was significantly decreased in T-H mice. L-arginine, however, restored depressed OHP in the wound fluid in the T-H animals. Similarly, L-arginine treatment prevented a significant depression of collagen I synthesis after T-H. Collagen III was not significantly affected by T-H or L-arginine. Most important, L-arginine increased maximal wound breaking strength after severe blood loss. Therefore, L-arginine improves wound healing after T-H by increasing collagen synthesis. CONCLUSION Because L-arginine improves wound healing, the results suggest that L-arginine might represent a novel and useful adjunct to fluid resuscitation for decreasing wound complications after trauma and severe blood loss.
Collapse
Affiliation(s)
- F Wittmann
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Arginine functions in the body as a free amino acid, a component of most proteins, and the substrate for several non-protein, nitrogen-containing compounds, many of which function in immunity. Although arginine is synthesized in the body, it is not made in sufficient quantities to support growth or meet metabolic requirements during periods of stress. Based on the biochemical and physiological role of arginine in maintaining health and immunity, arginine is being added at pharmacologic concentrations to enteral formulas to boost immune function. Unfortunately, animal and human studies that investigate enteral arginine supplementation as the single variable do not show clear immunologic benefit. The inconsistent effects of arginine supplementation on immune function are due to numerous factors, such as the amount and timing of arginine supplementation, the animal species or strain of species, and the experimental model. Systematic study is required to determine whether a basal dietary intake of arginine is required to maintain immune function during health and how much arginine is required to meet metabolic requirements during periods of growth or stress.
Collapse
Affiliation(s)
- Carmelo Nieves
- Food Science and Human Nutrition Department, University of Florida, PO Box 110370, Gainesville, FL 32611-0370, USA
| | | |
Collapse
|
16
|
Prins HA, Nijveldt RJ, Gasselt DV, van Kemenade F, Teerlink T, van Lambalgen AA, Rauwerda JA, van Leeuwen PAM. The flux of arginine after ischemia-reperfusion in the rat kidney. Kidney Int 2002; 62:86-93. [PMID: 12081567 DOI: 10.1046/j.1523-1755.2002.00409.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Renal arginine synthesis is regulated by arginine plasma levels. The amino acid arginine is synthesized in the proximal tubule of the kidney. Renal ischemia reperfusion (I-R) injury as seen after shock, trauma and major vascular surgery, leading to acute tubular necrosis, might reduce arginine production. METHODS Wistar rats received either bovine liver arginase (ASE), to lower arginine plasma levels, or saline (SAL). Following the ASE or SAL infusion, rats were randomized to receive a renal artery clamp for 70 minutes, followed by 150 minutes of reperfusion. Renal arteriovenous blood samples were measured and plasma flow was calculated in the I-R kidney (SAL/I-R and ASE/I-R) and the contralateral kidney (SAL/C-L and ASE/C-L) in order to determine renal arginine metabolism. RESULTS Arginase infusion resulted in lower arginine plasma levels compared to SAL treatment (SAL/I-R vs. ASE/I-R, P < 0.005, and SAL/C-L vs. ASE/C-L, P < 0.005). Renal plasma flow was similar for all groups. The kidney switched from arginine production into arginine uptake after ischemia reperfusion (SAL/I-R vs. SAL/C-L, P < 0.01, and ASE/I-R vs. ASE/C-L, P < 0.01). Renal uptake of glutamine and citrulline increased after ischemia reperfusion (SAL/I-R vs. SAL/C-L and ASE/I-R vs. ASE/C-L, both P < 0.01). Histopathological slices of the kidney showed significantly higher counts of hyperchromasia, pyknosis, nuclear fragmentation and mitoses in individual kidney cells after ischemia reperfusion. CONCLUSION Decreased renal arginine production is observed with unilateral ischemia-reperfusion, and this change in arginine flux could contribute to or slow the recovery from the low plasma levels of arginine seen in conditions like trauma, shock, or after vascular procedures.
Collapse
Affiliation(s)
- Hubert A Prins
- Department of Surgery, Pathology and Clinical Chemistry, Free University Hospital, Free University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomas S, Ramachandran A, Patra S, Vidyasagar S, Balasubramanian KA. Nitric oxide protects the intestine from the damage induced by laparotomy and gut manipulation. J Surg Res 2001; 99:25-32. [PMID: 11421600 DOI: 10.1006/jsre.2001.6101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The intestine is highly susceptible to free radical-induced damage, and our earlier work has shown that surgical stress induces the generation of oxygen free radicals in enterocytes, resulting in intestinal damage along with ultrastructural changes. Since nitric oxide (NO) is an important mediator of gastrointestinal function, this study looked at the effect of NO on surgical stress-induced intestinal alterations. MATERIALS AND METHODS Control rats and rats pretreated with the NO donor l-arginine were subjected to surgical stress by opening the abdominal wall and handling the intestine as done during laparotomy. Enterocytes were isolated and homogenate prepared, and the protection offered by l-arginine against damage due to surgical stress was determined and compared with normal controls. Protection to structural as well as functional aspects of the intestine was also examined. RESULTS Intestinal manipulation affected intestinal structure as assessed by electron microscopy. Functional impairment of the enterocyte was also evident, with increased xanthine oxidase activity resulting in production of superoxide anion. This impairment is more dramatic in the crypt cells. Increased protease activity was also seen following laparotomy and handling. Pretreatment with the NO synthase substrate l-arginine prevented these damaging effects. Arginine protection was abolished in the presence of the NO synthase inhibitor NG-nitro-l-arginine methyl ester, indicating the role of NO. CONCLUSION Stress in the small intestine due to any surgery can affect enterocyte structure and function. These damaging effects can be prevented by NO, an important modulator of cellular function.
Collapse
Affiliation(s)
- S Thomas
- Department of Gastrointestinal Sciences, The Wellcome Trust Research Laboratory, Christian Medical College & Hospital, Vellore, 632004, India
| | | | | | | | | |
Collapse
|
18
|
Calkins CM, Bensard DD, Heimbach JK, Meng X, Shames BD, Pulido EJ, McIntyre RC. L-arginine attenuates lipopolysaccharide-induced lung chemokine production. Am J Physiol Lung Cell Mol Physiol 2001; 280:L400-8. [PMID: 11159022 DOI: 10.1152/ajplung.2001.280.3.l400] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemokines stimulate the influx of leukocytes into tissues. Their production is regulated by nuclear factor-kappaB (NF-kappaB), an inducible transcription factor under the control of inhibitory factor kappaB-alpha (IkappaB-alpha). We have previously demonstrated that L-arginine (L-Arg) attenuates neutrophil accumulation and pulmonary vascular injury after administration of lipopolysaccharide (LPS). We hypothesized that L-Arg would attenuate the production of lung chemokines by stabilizing IkappaB-alpha and preventing NF-kappaB DNA binding. We examined the effect of L-Arg on chemokine production, IkappaB-alpha degradation, and NF-kappaB DNA binding in the lung after systemic LPS. To block nitric oxide (NO) production, a NO synthase inhibitor was given before L-Arg. LPS induced the production of chemokine protein and mRNA. L-Arg attenuated the production of chemokine protein and mRNA, prevented the decrease in IkappaB-alpha levels, and inhibited NF-kappaB DNA binding. NO synthase inhibition abolished the effects of L-Arg on all measured parameters. Our results suggest that L-Arg abrogates chemokine protein and mRNA production in rat lung after LPS. This effect is dependent on NO and is mediated by stabilization of IkappaB-alpha levels and inhibition of NF-kappaB DNA binding.
Collapse
Affiliation(s)
- C M Calkins
- Department of Surgery, University of Colorado Health Sciences Center and The Veterans Affairs Hospital, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
van Bokhorst-De Van Der Schueren MA, Quak JJ, von Blomberg-van der Flier BM, Kuik DJ, Langendoen SI, Snow GB, Green CJ, van Leeuwen PA. Effect of perioperative nutrition, with and without arginine supplementation, on nutritional status, immune function, postoperative morbidity, and survival in severely malnourished head and neck cancer patients. Am J Clin Nutr 2001; 73:323-32. [PMID: 11157331 DOI: 10.1093/ajcn/73.2.323] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Malnourished head and neck cancer patients are at increased risk of postoperative complications. OBJECTIVE We studied the effect of perioperative, arginine-supplemented nutritional support on nutritional status, immune status, postoperative outcome, and survival in severely malnourished (weight loss >10% of body weight) head and neck cancer patients undergoing major surgery. DESIGN Forty-nine patients were randomly assigned to receive 1) no preoperative and standard postoperative tube feeding, 2) standard preoperative and postoperative tube feeding, or 3) arginine-supplemented preoperative and postoperative tube feeding. RESULTS Patients in both prefed groups received approximately 9 d of preoperative tube feeding, resulting in energy intakes of 110% and 113% of calculated needs (compared with 79% in the control group; P = 0.007). Compared with no preoperative feeding, preoperative enteral nutrition did not significantly improve nutritional status or any of the studied biochemical or immunologic indexes. Major postoperative complications occurred in 53%, 47%, and 59% of patients in study groups 1, 2, and 3 (NS). A trend was seen toward better survival in the arginine-supplemented group (P = 0.15). Secondary analysis showed that survivors had better human leukocyte antigen-DR expression on monocytes (P = 0.05) and higher endotoxin-induced cytokine production (P = 0.010 for tumor necrosis factor alpha and P = 0.042 for interleukin 6) at the start of the study than did patients who died. CONCLUSIONS Nine days of preoperative tube feeding, with or without arginine, did not significantly improve nutritional status, reduce the surgery-induced immune suppression, or affect clinical outcome in severely malnourished head and neck cancer patients. Patients supplemented with arginine-enriched nutrition tended to live longer. Some markers of immune function may distinguish patients with good or bad prognoses.
Collapse
|
20
|
Angele MK, Fitzal F, Smail N, Knöferl MW, Schwacha MG, Ayala A, Wang P, Chaudry IH. L-arginine attenuates trauma-hemorrhage-induced liver injury. Crit Care Med 2000; 28:3242-8. [PMID: 11008988 DOI: 10.1097/00003246-200009000-00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Liver injury is common after trauma-hemorrhage for which the underlying mechanism is not clear. Although administration of the essential amino acid L-arginine has been reported to restore the depressed cardiovascular functions and cell-mediated immune responses after trauma-hemorrhage, it remains unknown whether L-arginine protects against liver injury under those conditions. DESIGN A prospective, controlled animal study. SETTING A university research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Rats underwent sham operation or laparotomy and were bled to and maintained at a mean arterial blood pressure of 40 mm Hg until 40% of the maximum shed blood volume was returned in the form of lactated Ringer's solution. Hemorrhaged rats were then resuscitated with lactated Ringer's solution, four times the maximum shed blood volume over 1 hr. During resuscitation, animals received either 300 mg/kg of L-arginine or saline (vehicle) intravenously. At 3 and 5 hrs after resuscitation, rats were killed, blood was obtained, and the liver was fixed for histology (hematoxylin & eosin staining). Plasma glutathione S-transferase (a marker of liver damage), L-arginine, citrulline, and ornithine concentrations were assessed. MEASUREMENTS AND MAIN RESULTS The increased concentrations of plasma glutathione S-transferase observed in vehicle-treated hemorrhage animals were normalized with L-arginine treatment at 5 hrs after resuscitation. Moreover, the histology indicated that L-arginine prevented liver edema and neutrophil infiltration after trauma-hemorrhage. Plasma L-arginine and citrulline were increased in L-arginine-treated rats. CONCLUSIONS Because citrulline is a by-product of nitric oxide generation by nitric oxide synthase from L-arginine, this amino acid may be a useful adjunct for preventing hepatic injury after trauma-hemorrhage via endothelial derived nitric oxide production.
Collapse
Affiliation(s)
- M K Angele
- Center for Surgical Research and Department of Surgery, Brown University School of Medicine and Rhode Island Hospital, Providence, USA
| | | | | | | | | | | | | | | |
Collapse
|