1
|
Dearing C, Sanford E, Olmstead N, Morano R, Wulsin L, Myers B. Sex-specific cardiac remodeling in aged rats after adolescent chronic stress: associations with endocrine and metabolic factors. Biol Sex Differ 2024; 15:65. [PMID: 39180122 PMCID: PMC11342553 DOI: 10.1186/s13293-024-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Cardiovascular disease is a leading cause of death worldwide. Rates of cardiovascular disease vary both across the lifespan and between sexes. While multiple factors, including adverse life experiences, impact the development and progression of cardiovascular disease, the potential interactions of biological sex and stress history on the aged heart are unknown. To this end, we examined sex- and stress-specific impacts on left ventricular hypertrophy (VH) after aging. We hypothesized that early-life chronic stress exposure impacts behavioral and physiologic responses that predict cardiac remodeling in a sex-specific manner. METHODS Histological analysis was conducted on hearts of male and female rats previously exposed to chronic variable stress during the late adolescent period (postnatal days 43-62). These animals were challenged with a forced swim test and a glucose tolerance test before aging to 15 months and again being challenged. Predictive analyses were then used to isolate factors that relate to cardiac remodeling among these groups. RESULTS Early-life chronic stress impacted cardiac remodeling in a sex-specific manner. Among rats with a history of chronic stress, females had increased concentric VH. However, there were few associations within the female groups among individual behavioral and physiologic parameters and cardiac remodeling. While males as a group did not have VH after chronic stress, they exhibited multiple individual associations with cardiac susceptibility. Passive coping in young males and active coping in aged males related to VH in a stress history-dependent manner. Moreover, baseline corticosterone positively correlated with VH in unstressed males, while chronically-stressed males had positive correlations between VH and visceral adiposity. CONCLUSIONS These results indicate that females as a group are uniquely susceptible to the effects of early-life stress on cardiac remodeling later in life. Conversely, males have more individual differences in vulnerability, where susceptibility to cardiac remodeling relates to endocrine, metabolic, and behavioral measures depending on stress history. These results ultimately support a framework for assessing cardiovascular risk based on biological sex and prior adverse experiences.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ella Sanford
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Rachel Morano
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Kroon J, Gentenaar M, Moll TJA, Hunt H, Meijer OC. Glucocorticoid receptor modulator CORT125385 alleviates diet-induced hepatosteatosis in male and female mice. Eur J Pharmacol 2023; 957:176012. [PMID: 37634839 DOI: 10.1016/j.ejphar.2023.176012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common condition that can progress to the more severe conditions like non-alcoholic steatohepatitis (NASH) for which limited effective therapeutic options are available. In this study, we set out to evaluate the novel glucocorticoid receptor modulator CORT125385, an analogue of the previously studied miricorilant but without mineralocorticoid receptor binding activity. Male and female mice that received high-fat diet and fructose water were treated with either vehicle, CORT125385 or mifepristone. We found that CORT125385 significantly lowered hepatic triglyceride levels in male mice, and hepatic triglyceride and cholesterol levels in female mice. Mifepristone treatment had no effect in male mice, but significantly lowered hepatic triglyceride and cholesterol levels in female mice. In reporter assays in vitro, CORT125385 showed weak partial agonism on the progesterone receptor (PR) at high doses, as well as PR antagonism at a potency 1000-fold lower than mifepristone. In vivo, CORT125385 treatment did not influence PR-responsive gene expression in the oviduct, while mifepristone treatment strongly influenced these genes in the oviduct, thus excluding in vivo PR cross-reactivity of CORT125385 at a therapeutically active dose. We conclude that CORT125385 is a promising glucocorticoid receptor modulator that effectively reduces liver steatosis in male and female mice without affecting other steroid receptors at doses that lower hepatic lipid content.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Corcept Therapeutics, Menlo Park, CA, USA.
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Tijmen J A Moll
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Dearing C, Morano R, Ptaskiewicz E, Mahbod P, Scheimann JR, Franco-Villanueva A, Wulsin L, Myers B. Glucoregulation and coping behavior after chronic stress in rats: Sex differences across the lifespan. Horm Behav 2021; 136:105060. [PMID: 34537487 PMCID: PMC8629951 DOI: 10.1016/j.yhbeh.2021.105060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
The purpose of the current study was to determine how biological sex shapes behavioral coping and metabolic health across the lifespan after chronic stress. We hypothesized that examining chronic stress-induced behavioral and endocrine outcomes would reveal sex differences in the biological basis of susceptibility. During late adolescence, male and female Sprague-Dawley rats experienced chronic variable stress (CVS). Following completion of CVS, all rats experienced a forced swim test (FST) followed 3 days later by a fasted glucose tolerance test (GTT). The FST was used to determine coping in response to a stressor. Endocrine metabolic function was evaluated in the GTT by measuring glucose and corticosterone, the primary rodent glucocorticoid. Rats then aged to 15 months when the FST and GTT were repeated. In young rats, chronically stressed females exhibited more passive coping and corticosterone release in the FST. Additionally, chronically stressed females had elevated corticosterone and impaired glucose clearance in the GTT. Aging affected all measurements as behavioral and endocrine outcomes were sex specific. Furthermore, regression analysis between hormonal and behavioral responses identified associations depending on sex and stress. Collectively, these data indicate increased female susceptibility to the effects of chronic stress during adolescence. Further, translational investigation of coping style and glucose homeostasis may identify biomarkers for stress-related disorders.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Elaine Ptaskiewicz
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Parinaz Mahbod
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jessie R Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ana Franco-Villanueva
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States of America
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America.
| |
Collapse
|
4
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
|
5
|
Kroon J, Viho EMG, Gentenaar M, Koorneef LL, van Kooten C, Rensen PCN, Kooijman S, Hunt H, Meijer OC. The development of novel glucocorticoid receptor antagonists: From rational chemical design to therapeutic efficacy in metabolic disease models. Pharmacol Res 2021; 168:105588. [PMID: 33798733 DOI: 10.1016/j.phrs.2021.105588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Glucocorticoids regulate numerous processes in human physiology, but deregulated or excessive glucocorticoid receptor (GR) signaling contributes to the development of various pathologies including metabolic syndrome. For this reason, GR antagonists have considerable therapeutic value. Yet, the only GR antagonist that is clinically approved to date - mifepristone - exhibits cross-reactivity with other nuclear steroid receptors like the progesterone receptor. In this study, we set out to identify novel selective GR antagonists by combining rational chemical design with an unbiased in vitro and in vivo screening approach. Using this pipeline, we were able to identify CORT125329 as the compound with the best overall profile from our octahydro series of novel GR antagonists, and demonstrated that CORT125329 does not exhibit cross-reactivity with the progesterone receptor. Further in vivo testing showed beneficial activities of CORT125329 in models for excessive corticosterone exposure and short- and long-term high-fat diet-induced metabolic complications. Upon CORT125329 treatment, most metabolic parameters that deteriorated upon high-fat diet feeding were similarly improved in male and female mice, confirming activity in both sexes. However, some sexually dimorphic effects were observed including male-specific antagonism of GR activity in brown adipose tissue and female-specific lipid lowering activities after short-term CORT125329 treatment. Remarkably, CORT125329 exhibits beneficial metabolic effects despite its lack of GR antagonism in white adipose tissue. Rather, we propose that CORT125329 treatment restores metabolic activity in brown adipose tissue by stimulating lipolysis, mitochondrial activity and thermogenic capacity. In summary, we have identified CORT125329 as a selective GR antagonist with strong beneficial activities in metabolic disease models, paving the way for further clinical investigation.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Eva M G Viho
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Lin Y, Zhang Z, Wang S, Cai J, Guo J. Hypothalamus-pituitary-adrenal Axis in Glucolipid metabolic disorders. Rev Endocr Metab Disord 2020; 21:421-429. [PMID: 32889666 DOI: 10.1007/s11154-020-09586-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
With the change of life style, glucolipid metabolic disorders (GLMD) has become one of the major chronic disorders causing public health and clinical problems worldwide. Previous studies on GLMD pay more attention to peripheral tissues. In fact, the central nervous system (CNS) plays an important role in controlling the overall metabolic balance. With the development of technology and the in-depth understanding of the CNS, the relationship between neuro-endocrine-immunoregulatory (NEI) network and metabolism had been gradually illustrated. As the hub of NEI network, hypothalamus-pituitary-adrenal (HPA) axis is important for maintaining the balance of internal environment in the body. The relationship between HPA axis and GLMD needs to be further studied. This review focuses on the role of HPA axis in GLMD and reviews the research progress on drugs for GLMD, with the hope to provide the direction for exploring new drugs to treat GLMD by taking the HPA axis as the target and improve the level of prevention and control of GLMD.
Collapse
Affiliation(s)
- Yanduan Lin
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Ziwei Zhang
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Siyu Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jinyan Cai
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|