1
|
Chen X, Müller A, Pishnamaz M, Hildebrand F, Bollheimer LC, Nourbakhsh M. Differential Fatty Acid Response of Resident Macrophages in Human Skeletal Muscle Fiber and Intermuscular Adipose Tissue. Int J Mol Sci 2024; 25:10722. [PMID: 39409051 PMCID: PMC11477279 DOI: 10.3390/ijms251910722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Human skeletal muscle contains different types of tissues with skeletal muscle fibers (SMFs) and intermuscular adipose tissues (IMATs) as the main components. We maintained human skeletal muscle tissues from 12 study participants under native conditions in vitro for 11 days to investigate the dynamics of macrophages that reside in adjacent IMATs and SMFs simultaneously. The samples were subjected to immunohistochemical analysis for macrophage phenotyping and mitochondrial mass assessment before and after maintenance in vitro. Multiplex protein analysis was used to determine cytokine/chemokine expression in tissue extracts. The results revealed significant correlations between donor age or body mass index (BMI) and distinct phenotypes of resident macrophages in SMFs and IMATs. The dynamics of SMF- and IMAT-resident macrophages differed significantly in vitro and exhibited inverse correlations with chemokine/cytokine expression levels and mitochondrial activity. Moreover, the responses of macrophages to saturated and unsaturated fatty acids (FAs) differed substantially between SMFs and IMATs. These findings showed the functional diversity of phenotypically identical macrophages in adjacent niches. Thus, the currently available macrophage markers cannot capture the functional diversity of human tissue-resident macrophages. The model used in the present study may help elucidate how macrophages affect muscle homeostasis and disease in humans.
Collapse
Affiliation(s)
- Xiaoying Chen
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| | - Aline Müller
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| | - Miguel Pishnamaz
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.P.); (F.H.)
| | - Frank Hildebrand
- Clinic for Orthopedics, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.P.); (F.H.)
| | - Leo Cornelius Bollheimer
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| | - Mahtab Nourbakhsh
- Clinic for Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany; (X.C.); (A.M.); (L.C.B.)
| |
Collapse
|
2
|
Wang H, Liu F, Zhao W, Guo Y, Mai P, Zhao S, Wen Z, Su J, Li X, Wang Y, Zhang Y. High glucose promotes atherosclerosis by regulating miRNA let7d-5p level. J Diabetes Investig 2024; 15:711-724. [PMID: 38483136 PMCID: PMC11143425 DOI: 10.1111/jdi.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND MiRNA let7d-5p has been recently reported to be abnormally expressed in diabetes-associated atherosclerosis (AS). However, it still remains unknown how let7d-5p contributes to the process of atherosclerosis. METHODS Twenty fresh tissues and a total of 28 wax block specimens from carotid endarterectomy procedures were obtained from the Luoyang Central Hospital affiliated to Zhengzhou University. The expression of let7d-5p was assessed using quantitative RT-PCR (qRT-PCR). A series of in vitro experiments was used to determine the roles of let7d-5p knockdown and overexpression in vascular smooth muscle cells (VSMCs). RESULTS We discovered that the carotid plaques from diabetic patients had lower expression levels of miR let7d-5p. In VSMCs, the expression of miRNA let7d-5p was significantly lower in high glucose conditions compared with low glucose situations. The proliferation and migration of VSMCs were also inhibited by the overexpression of let7d-5p, whereas the opposite was true when let7d-5p was inhibited, according to gain and loss of function studies. Mechanically, let7d-5p might activate the GSK3β/β-catenin signaling pathway via binding to the high mobility group AT-Hook 2 (HMGA2) mRNA in VSMCs. Additionally, GLP-1RA liraglutide may prevent the migration and proliferation of VSMCs by raising let7d-5p levels. CONCLUSIONS High glucose stimulated the proliferation and migration of VSMCs by regulating the let7d-5p/HMGA2/GSK3β/β-catenin pathway, and liraglutide may slow atherosclerosis by increasing the levels of miR let7d-5p.
Collapse
Affiliation(s)
- Hua Wang
- Department of Ultrasonography, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Fentao Liu
- ABclonal Technology Company, Wuhan, Hubei Province, China
| | - Wenyu Zhao
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Yiting Guo
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Peipei Mai
- Department of Ultrasonography, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Songfeng Zhao
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Zhiguo Wen
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Jie Su
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Xuan Li
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou City, Henan Province, China
- Zhongyuan Scholars Workstation of Henan, Luoyang City, Henan Province, China
| | - Yanfang Zhang
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
- Zhongyuan Scholars Workstation of Henan, Luoyang City, Henan Province, China
| |
Collapse
|
3
|
Kalantar GH, Saraswat S, SantaCruz-Calvo S, Gholamrezaeinejad F, Javidan A, Agrawal M, Liu R, Kern PA, Zhang XD, Nikolajczyk BS. Fasting and Glucose Metabolism Differentially Impact Peripheral Inflammation in Human Type 2 Diabetes. Nutrients 2024; 16:1404. [PMID: 38794641 PMCID: PMC11124302 DOI: 10.3390/nu16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokines produced by peripheral T-helper 1/17 cells disproportionately contribute to the inflammation (i.e., metaflammation) that fuels type 2 diabetes (T2D) pathogenesis. Shifts in the nutrient milieu could influence inflammation through changes in T-cell metabolism. We aimed to determine whether changes in glucose utilization alter cytokine profiles in T2D. Peripheral blood mononuclear cells (PBMCs), CD4+ T-cells, and CD4+CD25- T-effector (Teff) cells were isolated from age-matched humans classified by glycemic control and BMI. Cytokines secreted by CD3/CD28-stimulated PBMCs and Teff were measured in supernatants with multiplex cytokine assays and a FLEXMAP-3D. Metabolic activity of stimulated CD4+ T-cells was measured by a Seahorse XFe96 analyzer. In this study, we demonstrated that T-cell stimulated PBMCs from non-fasted people with T2D produced higher amounts of cytokines compared to fasting. Although dysglycemia characterizes T2D, cytokine production by PBMCs or CD4+ T-cells in T2D was unaltered by hyperglycemic media. Moreover, pharmacological suppression of mitochondrial glucose oxidation did not change T-cell metabolism in T2D, yet enhanced cytokine competency. In conclusion, fasting and glucose metabolism differentially impact peripheral inflammation in human T2D, suggesting that glucose, along with fatty acid metabolites per our previous work, partner to regulate metaflammation. These data expose a major disconnect in the use of glycemic control drugs to target T2D-associated metaflammation.
Collapse
Affiliation(s)
- Gabriella H. Kalantar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
| | - Shubh Saraswat
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; (S.S.); (X.D.Z.)
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Fatemeh Gholamrezaeinejad
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Aida Javidan
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Madhur Agrawal
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaohua Douglas Zhang
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA; (S.S.); (X.D.Z.)
| | - Barbara S. Nikolajczyk
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA (F.G.); (A.J.)
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Garneau L, Mulvihill EE, Smith SR, Sparks LM, Aguer C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int J Mol Sci 2024; 25:4889. [PMID: 38732106 PMCID: PMC11084395 DOI: 10.3390/ijms25094889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1β, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.
Collapse
Affiliation(s)
- Léa Garneau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Erin E. Mulvihill
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Lauren M. Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Céline Aguer
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
- Faculty of Medicine and Health Sciences, Department of Physiology, McGill University–Campus Outaouais, Gatineau, QC J8V 3T4, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Malin SK, Erdbrügger U. Extracellular Vesicles in Metabolic and Vascular Insulin Resistance. J Vasc Res 2024; 61:129-141. [PMID: 38615667 PMCID: PMC11149383 DOI: 10.1159/000538197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Insulin resistance is a major etiological factor in obesity, type 2 diabetes, and cardiovascular disease (CVD). Endothelial dysfunction may precede impairments in insulin-stimulated glucose uptake, thereby making it a key feature in development of CVD. However, the mechanism by which vascular tissue becomes dysfunctional is not clear. SUMMARY Extracellular vesicles (EVs) have emerged as potential mediators of insulin resistance and vascular dysfunction. EVs are membrane-bound particles released by tissues following cellular stress or activation. They carry "cargo" (e.g., insulin signaling proteins, eNOS-nitric oxide, and miRNA) that are believed to promote inter-cellular and interorgan communications. Herein, we review the underlying physiology of EVs in relation to type 2 diabetes and CVD risk. Specifically, we discuss how EVs may modulate metabolic (e.g., skeletal muscle, liver, and adipose) insulin sensitivity, and propose that EVs may modulate vascular insulin action to influence both endothelial function and arterial stiffness. We lastly identify how EVs may play a unique role following exercise to promote metabolic and vascular insulin sensitivity changes. KEY MESSAGE Gaining insight toward insulin-mediated EV mechanism has potential to identify novel pathways regulating cardiometabolic health and provide foundation for examining EVs as unique biomarkers and targets to prevent and/or treat chronic diseases.
Collapse
Affiliation(s)
- Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, New Brunswick, NJ
- The New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ
- Institute of Translational Medicine & Science, Rutgers University, New Brunswick, NJ
| | - Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, VA
| |
Collapse
|
6
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
7
|
Pi A, Villivalam SD, Kang S. The Molecular Mechanisms of Fuel Utilization during Exercise. BIOLOGY 2023; 12:1450. [PMID: 37998049 PMCID: PMC10669127 DOI: 10.3390/biology12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Exercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise. It is now understood that fuel selection during exercise is not solely determined by physical activity itself but is also influenced by the overall metabolic state of the body. The balance between lipid and carbohydrate utilization significantly affects exercise capacity, including endurance, fatigue, and overall performance. Therefore, comprehensively understanding the regulation of substrate utilization during exercise is of utmost importance. The aim of this review is to provide an extensive overview of the current knowledge regarding the pathways involved in the regulation of substrate utilization during exercise. By synthesizing existing research, we can gain a holistic perspective on the intricate relationship between exercise, metabolism, and fuel selection. This advanced understanding has the potential to drive advancements in the field of exercise science and contribute to the development of personalized exercise strategies for individuals looking to optimize their performance and overall health.
Collapse
Affiliation(s)
| | | | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Satyadev N, Rivera MI, Nikolov NK, Fakoya AOJ. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol 2023; 14:1241096. [PMID: 37745252 PMCID: PMC10515224 DOI: 10.3389/fphys.2023.1241096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic disorders worldwide. However, T2DM still remains underdiagnosed and undertreated resulting in poor quality of life and increased morbidity and mortality. Given this ongoing burden, researchers have attempted to locate new therapeutic targets as well as methodologies to identify the disease and its associated complications at an earlier stage. Several studies over the last few decades have identified exosomes, small extracellular vesicles that are released by cells, as pivotal contributors to the pathogenesis of T2DM and its complications. These discoveries suggest the possibility of novel detection and treatment methods. This review provides a comprehensive presentation of exosomes that hold potential as novel biomarkers and therapeutic targets. Additional focus is given to characterizing the role of exosomes in T2DM complications, including diabetic angiopathy, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and diabetic wound healing. This study reveals that the utilization of exosomes as diagnostic markers and therapies is a realistic possibility for both T2DM and its complications. However, the majority of the current research is limited to animal models, warranting further investigation of exosomes in clinical trials. This review represents the most extensive and up-to-date exploration of exosomes in relation to T2DM and its complications.
Collapse
Affiliation(s)
- Nihal Satyadev
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Milagros I. Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | | | | |
Collapse
|
9
|
Filippi M, Yasa O, Giachino J, Graf R, Balciunaite A, Stefani L, Katzschmann RK. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue. Adv Healthc Mater 2023; 12:e2300151. [PMID: 36911914 PMCID: PMC11468554 DOI: 10.1002/adhm.202300151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Oncay Yasa
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Jan Giachino
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Reto Graf
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Aiste Balciunaite
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Lisa Stefani
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | | |
Collapse
|
10
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Scherbakov VI, Skosyreva GA, Ryabichenko TI, Obukhova OO. Cytokines and regulation of glucose and lipid metabolism in the obesity. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The article presents data of the influence of cytokines of different directions of glucose and lipid metabolism in obesity. A change of the basic paradigm regarding adipose tissue has contributed to a number of recent discoveries. This concerns such basic concepts as healthy and diseased adipocytes, and, as a consequence, changes of their metabolism under the influence of cytokins. Distinguishing the concept of organokines demonstrates that despite the common features of cytokine regulation, each organ has its own specifics features of cytokine regulation, each organ has its own specific an important section of this concept is the idea of the heterogeneity of adipose tissue. Knowledge of the function of adipose tissue localized in different compartments of the body is expanding. There are date about the possibility of transition of one type of adipose tissue to another. A possible mechanism linking adipose tissue inflammation and the formation of insulin resistance (IR) is presented in this paper. The mechanism of IR development is closely connected with to proinflammatory cytokins disordering the insulin signal, accompanied by a decrease of the work of glucose transporters. A decrease of the income of glucose into cells leads to a change of glycolysis level to an increase of the fatty acids oxidation. Cytokins are able to participate in the process of the collaboration of some cells with others, that occurs both during physiological and pathological process.
Collapse
Affiliation(s)
- V. I. Scherbakov
- Federal Research Center of Fundamental and Translational Medicine
| | - G. A. Skosyreva
- Federal Research Center of Fundamental and Translational Medicine
| | | | - O. O. Obukhova
- Federal Research Center of Fundamental and Translational Medicine
| |
Collapse
|
12
|
Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak L, Wojcik M. Transcriptomic Dysregulation of Inflammation-Related Genes in Leukocytes of Patients with Gestational Diabetes Mellitus (GDM) during and after Pregnancy: Identifying Potential Biomarkers Relevant to Glycemic Abnormality. Int J Mol Sci 2022; 23:ijms232314677. [PMID: 36499008 PMCID: PMC9737950 DOI: 10.3390/ijms232314677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Although the immune system has been implicated in the pathophysiology of gestational diabetes mellitus (GDM) and postpartum abnormal glucose tolerance (AGT), little is known about the transcriptional response of inflammation-related genes linked to metabolic phenotypes of GDM women during and after pregnancy, which may be potential diagnostic classifiers for GDM and biomarkers for predicting AGT. To address these questions, gene expression of IL6, IL8, IL10, IL13, IL18, TNFA, and the nuclear factor κB (NFκB)/RELA transcription factor were quantified in leukocytes of 28 diabetic women at GDM diagnosis (GDM group) and 1-year postpartum (pGDM group: 10 women with AGT and 18 normoglycemic women), using a nested RT-PCR method. Control pregnancies with normal glucose tolerance (NGT group; n = 31) were closely matched for maternal age, gestational age, pre-pregnancy BMI, pregnancy weight, and gestational weight gain. Compared with the NGT group, IL8 was downregulated in the GDM group, and IL13 and RELA were upregulated in the pGDM group, whereas IL6, IL10, and IL18 were upregulated in the GDM and pGDM groups. The TNFA level did not change from pregnancy to postpartum. Associations of some cytokines with glycemic measures were detected in pregnancy (IL6 and RELA) and postpartum (IL10) (p < 0.05). Receiver operating characteristic (ROC) curves showed that IL6, IL8, and IL18, if employed alone, can discriminate GDM patients from NGT individuals at GDM diagnosis, with the area under the ROC curves (AUCs) of 0.844, (95% CI 0.736−0.953), 0.771 (95% CI 0.651−0.890), and 0.714 (95% CI 0.582−0.846), respectively. By the logistic regression method, we also identified a three-gene panel (IL8, IL13, and TNFA) for postpartum AGT prediction. This study demonstrates a different transcriptional response of the studied genes in clinically well-characterized women with GDM at GDM diagnosis and 1-year postpartum, and provides novel transcriptomic biomarkers for future efforts aimed at diagnosing GDM and identifying the high risk of postpartum AGT groups.
Collapse
Affiliation(s)
- Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
- Correspondence: ; Tel.: +48-426-393-238
| |
Collapse
|
13
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
14
|
Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, MacLean P, Gerszten RE, Libby A, Solt C, Schoen J, Bergman BC. Exploring Visceral and Subcutaneous Adipose Tissue Secretomes in Human Obesity: Implications for Metabolic Disease. Endocrinology 2022; 163:6678177. [PMID: 36036084 PMCID: PMC9761573 DOI: 10.1210/endocr/bqac140] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Adipose tissue secretions are depot-specific and vary based on anatomical location. Considerable attention has been focused on visceral (VAT) and subcutaneous (SAT) adipose tissue with regard to metabolic disease, yet our knowledge of the secretome from these depots is incomplete. We conducted a comprehensive analysis of VAT and SAT secretomes in the context of metabolic function. Conditioned media generated using SAT and VAT explants from individuals with obesity were analyzed using proteomics, mass spectrometry, and multiplex assays. Conditioned media were administered in vitro to rat hepatocytes and myotubes to assess the functional impact of adipose tissue signaling on insulin responsiveness. VAT secreted more cytokines (IL-12p70, IL-13, TNF-α, IL-6, and IL-8), adipokines (matrix metalloproteinase-1, PAI-1), and prostanoids (TBX2, PGE2) compared with SAT. Secretome proteomics revealed differences in immune/inflammatory response and extracellular matrix components. In vitro, VAT-conditioned media decreased hepatocyte and myotube insulin sensitivity, hepatocyte glucose handling, and increased basal activation of inflammatory signaling in myotubes compared with SAT. Depot-specific differences in adipose tissue secretome composition alter paracrine and endocrine signaling. The unique secretome of VAT has distinct and negative impact on hepatocyte and muscle insulin action.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert E Gerszten
- The Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claudia Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Schoen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bryan C Bergman
- Correspondence: Bryan Bergman, PhD, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
15
|
Mishra S, Bahinipati J, Sarangi R, Mohapatra SR, Das S, Mishra A. A comprehensive overview on Micro RNA signature in type 2 diabetes Mellitus and its complications. Indian J Clin Biochem 2022; 38:151-158. [PMID: 36090301 PMCID: PMC9441834 DOI: 10.1007/s12291-022-01069-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous, non-coding RNA molecules that can modulate the expression of their target genes. Since its discovery, an enormous breakthrough has been established regarding its biogenesis and pathophysiological action, which has revolutionized the field of molecular biology. In addition, recent studies have identified the existence of stable extracellular/circulating miRNAs tissues and in biological fluids like blood where they are safeguarded from endogenous ribonuclease activity. Type 2 diabetes mellitus (T2DM) has emerged as a prime health issue worldwide. Incidence has increased considerably over the past decade. There are various tests that have been employed to diagnose T2DM. But for early detection and development, the establishment of biomarkers are of paramount importance. Contemporary evidence also validates the signature of a set of this epigenetic factor miRNA in the development of various diseases, including T2DM. This article reviews the contemporary corroboration associating miRNAs and T2DM and emphasizes the potential role of miRNA as a circulatory biomarker that could alert the growing prevalence of T2DM. Also, it acknowledges the valuable compendium of information regarding biogenesis and functional role of circulating miRNA in insulin resistance which is intimately linked to T2DM.
Collapse
Affiliation(s)
- Sanjukta Mishra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Campus 5, 751024 Bhubaneswar, Odisha India
| | - Jyotirmayee Bahinipati
- Department of Biochemistry, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Campus 5, 751024 Bhubaneswar, Odisha India
| | - RajLaxmi Sarangi
- Department of Biochemistry, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Campus 5, 751024 Bhubaneswar, Odisha India
| | - Soumya Ranjan Mohapatra
- Department of Research & Development, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Campus 5, 751024 Bhubaneswar, Odisha India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Swarnalata Das
- Department of Paediatrics, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | - Amaresh Mishra
- Department of Surgery, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha India
| |
Collapse
|
16
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
17
|
Tokarz VL, Delgado-Olguín P, Klip A. Deprogram and reprogram to solve the riddle of insulin resistance. J Clin Invest 2021; 131:154699. [PMID: 34720091 DOI: 10.1172/jci154699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle preeminently determines whole-body glycemia. However, the molecular basis and inheritable influence that drive the progression of insulin resistance to type 2 diabetes remain debated. In this issue of the JCI, Haider and Lebastchi report on their use of induced pluripotent stem cell-derived (iPSC-derived) myoblasts (iMyos) to uncover multiple phosphoproteomic changes that carried over from the human to the cell-culture system. In this system devoid of in vivo influences, the researchers annotated changes between the sexes and between the most and least insulin-sensitive quintiles of a healthy population (defined by steady-state blood glucose levels). Many phosphoproteomic differences were detected in the absence of insulin, revealing that changes in the basal landscape of cells determine the efficiency of insulin action. Basal and insulin-dependent deficiencies of iPSCs and iMyos likely involve genetic and epigenetic determinants that modulate insulin sensitivity.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Paul Delgado-Olguín
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Heart & Stroke Richard Lewar Center of Excellence, Toronto, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Department of Biochemistry and.,Department of Paediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Improvement in glucose metabolism in adult male offspring of maternal mice fed diets supplemented with inulin via regulation of the hepatic long noncoding RNA profile. FASEB J 2021; 35:e22003. [PMID: 34706105 DOI: 10.1096/fj.202100355rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Maternal overnutrition during pregnancy and lactation is an important risk factor for the later development of metabolic disease, especially diabetes, among mothers and their offspring. As a fructan-type plant polysaccharide, inulin has prebiotic functions and is widely used as a natural antidiabetic supplement. However, to date, the mechanism of maternal inulin treatment in the livers of offspring has not been addressed, especially with respect to long noncoding RNAs (lncRNAs). In this study, female C57BL6/J mice were fed either a high-fat diet (HFD) with or without inulin supplementation or a standard rodent diet (SD) during gestation and lactation. After the offspring were weaned, they were fed a SD for 5 weeks. At 8 weeks of age, the glucose metabolism indexes of the offspring were assessed, and their livers were collected to assay lncRNA and mRNA profiles to investigate the effects of early maternal inulin intervention on offspring. Our results indicate that male offspring from HFD-fed dams displayed glucose intolerance and an insulin resistance phenotype at 8 weeks of age. Early maternal inulin intervention improved glucose metabolism in male offspring of mothers fed a HFD during gestation and lactation. The lncRNA and mRNA profile data revealed that compared with the offspring from HFD dams, offspring from the early inulin intervention dams had 99 differentially expressed hepatic lncRNAs and 529 differentially expressed mRNAs. The differentially expressed lncRNA-mRNA coexpression analysis demonstrated that early maternal inulin intervention may change hepatic lncRNA expression in offspring; there lncRNAs are involved in metabolic pathways and the AMP-activated protein kinase signaling pathway. Importantly, the early maternal inulin intervention alleviated glucose metabolism by inhibiting the lncRNA Serpina4-ps1/let-7b-5p/Ppargc1a as a competing endogenous RNA in male offspring.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Beckerman M, Harel C, Michael I, Klip A, Bilan PJ, Gallagher EJ, LeRoith D, Lewis EC, Karnieli E, Levenberg S. GLUT4-overexpressing engineered muscle constructs as a therapeutic platform to normalize glycemia in diabetic mice. SCIENCE ADVANCES 2021; 7:eabg3947. [PMID: 34644106 PMCID: PMC8514095 DOI: 10.1126/sciadv.abg3947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/23/2021] [Indexed: 05/29/2023]
Abstract
Skeletal muscle insulin resistance is a main defect in type 2 diabetes (T2D), which is associated with impaired function and content of glucose transporter type 4 (GLUT4). GLUT4 overexpression in skeletal muscle tissue can improve glucose homeostasis. Therefore, we created an engineered muscle construct (EMC) composed of GLUT4-overexpressing (OEG4) cells. The ability of the engineered implants to reduce fasting glucose levels was tested in diet-induced obesity mice. Decrease and stabilization of basal glucose levels were apparent up to 4 months after implantation. Analysis of the retrieved constructs showed elevated expression of myokines and proteins related to metabolic processes. In addition, we validated the efficiency of OEG4-EMCs in insulin-resistant mice. Following high glucose load administration, mice showed improved glucose tolerance. Our data indicate that OEG4-EMC implant is an efficient mode for restoring insulin sensitivity and improving glucose homeostasis in diabetic mice. Such procedure is a potential innovative modality for T2D therapy.
Collapse
Affiliation(s)
- Margarita Beckerman
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Rina and Avner Schneur Center of Diabetes Research, Technion—Israel Institute of Technology, Haifa, Israel
| | - Chava Harel
- Rina and Avner Schneur Center of Diabetes Research, Technion—Israel Institute of Technology, Haifa, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Inbal Michael
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philip J. Bilan
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Ichan School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Ichan School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eli C. Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eddy Karnieli
- Rina and Avner Schneur Center of Diabetes Research, Technion—Israel Institute of Technology, Haifa, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Rina and Avner Schneur Center of Diabetes Research, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
20
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Zhao S, Wang H, Xu H, Tan Y, Zhang C, Zeng Q, Liu L, Qu S. Targeting the microRNAs in exosome: A potential therapeutic strategy for alleviation of diabetes-related cardiovascular complication. Pharmacol Res 2021; 173:105868. [PMID: 34481974 DOI: 10.1016/j.phrs.2021.105868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Diabetes-related cardiovascular disease (CVD) is a global health issue that causes thousands of people's death around the world annually. Diabetes-related CVD is still prevailing despite the progression being made in its diagnosis and treatment. Therefore it is urgent to find therapeutic strategies.to prevent it. MicroRNA (miRNA) is a single-stranded non-coding RNA involved in the process of post-transcriptional control of gene expression in eukaryotes. A large number of literatures reveal that miRNAs are implicated in diabetes-related CVD. The increase of miRNAs in exosomes may promote the occurrence and development of diabetes-related cardiovascular complication. However, some other studies identify that miRNAs in exosomes are supposed to be involved in cardiac regeneration and confer cardiac protection effect. Therefore, targeting the miRNA in exosome is regarded as a potent therapeutic measure to alleviate diabetes-related CVD. In this article, we review current knowledge about the role of exosomal miRNAs in diabetes-related cardiovascular complication, such as coronary heart disease, Peripheral artery disease, stroke, diabetic cardiomyopathy, diabetic nephropathy and diabetic retinopathy. Exosomal miRNAs are considered to be central regulators of diabetes-Related CVD and provide a therapeutic tool for diagnosis and treatment of diabetes-related cardiovascular complication.
Collapse
Affiliation(s)
- Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Hengquan Wang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Haiqiang Xu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Lingyun Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China; Clinic Department, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
22
|
D'Esposito V, Ambrosio MR, Liguoro D, Perruolo G, Lecce M, Cabaro S, Aprile M, Marino A, Pilone V, Forestieri P, Miele C, Bruzzese D, Terracciano D, Beguinot F, Formisano P. In severe obesity, subcutaneous adipose tissue cell-derived cytokines are early markers of impaired glucose tolerance and are modulated by quercetin. Int J Obes (Lond) 2021; 45:1811-1820. [PMID: 33993191 DOI: 10.1038/s41366-021-00850-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Excessive adiposity provides an inflammatory environment. However, in people with severe obesity, how systemic and local adipose tissue (AT)-derived cytokines contribute to worsening glucose tolerance is not clear. METHODS Ninty-two severely obese (SO) individuals undergoing bariatric surgery were enrolled and subjected to detailed clinical phenotyping. Following an oral glucose tolerance test, participants were included in three groups, based on the presence of normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes (T2D). Serum and subcutaneous AT (SAT) biopsies were obtained and mesenchymal stem cells (MSCs) were isolated, characterized, and differentiated in adipocytes in vitro. TNFA and PPARG mRNA levels were determined by qRT-PCR. Circulating, adipocyte- and MSC-released cytokines, chemokines, and growth factors were assessed by multiplex ELISA. RESULTS Serum levels of IL-9, IL-13, and MIP-1β were increased in SO individuals with T2D, as compared with those with either IGT or NGT. At variance, SAT samples obtained from SO individuals with IGT displayed levels of TNFA which were threefold higher compared to those with NGT, but not different from those with T2D. Elevated levels of TNFα were also found in differentiated adipocytes, isolated from the SAT specimens of individuals with IGT and T2D, compared to those with NGT. Consistent with the pro-inflammatory milieu, IL-1β and IP-10 secretion was significantly higher in adipocytes from individuals with IGT and T2D. Moreover, increased levels of TNFα, both mRNA and secreted protein were detected in MSCs obtained from IGT and T2D, compared to NGT SO individuals. Exposure of T2D and IGT-derived MSCs to the anti-inflammatory flavonoid quercetin reduced TNFα levels and was paralleled by a significant decrease of the secretion of inflammatory cytokines. CONCLUSION In severe obesity, enhanced SAT-derived inflammatory phenotype is an early step in the progression toward T2D and maybe, at least in part, attenuated by quercetin.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Domenico Liguoro
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Giuseppe Perruolo
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Marianna Aprile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," CNR, Naples, Italy
| | - Ada Marino
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Vincenzo Pilone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Pietro Forestieri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy.,Department of Clinical Medicine and Surgery, "Federico II" University of Naples, Naples, Italy
| | - Claudia Miele
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, "Federico II" University of Naples, Naples, Italy
| | - Daniela Terracciano
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pietro Formisano
- URT "Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy. .,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy.
| |
Collapse
|
23
|
Pérez-López A, Gonzalo-Encabo P, Pérez-Köhler B, García-Honduvilla N, Valadés D. Circulating myokines IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Eur J Sport Sci 2021; 22:1426-1435. [PMID: 34086518 DOI: 10.1080/17461391.2021.1939430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To examine the effects of a time-matched endurance vs. concurrent training on circulating IL-6, IL-13, IL-15, IL-15Ra, FGF21 levels in postmenopausal women with obesity, and to determine these myokines response to endurance training pre- and postmenopause. Thirty-five sedentary postmenopausal women with obesity were randomly divided into endurance training (EN1, N = 10), concurrent training (CON, N = 13) or no training group (CT, N = 12). Additionally, twelve sedentary premenopausal women with obesity were added to an endurance training group (EN2, N = 12). Participants took part in a 12-week supervised intervention, performing 3 sessions/week of 60 min/session. Before and after the interventions, body composition and fitness were assessed, and blood samples obtained to measure serum myokines levels. Total fat mass decreased in all exercised groups (CON,-5.2%; EN1,-5.3%; EN2,-5.6%). In postmenopausal women, serum IL-6, IL-15 and IL-15Ra decreased after training (P<0.01), finding a pronounced reduction in IL-6 (-42% vs. -16%) and IL-15 (-50% vs. -31%) when comparing EN1 to CON (P<0.05). Serum FGF21 was only reduced in the EN1 (-27%; P=0.012). While EN1 and EN2 comparison, reported differences for IL-15Rα concentration (-28% vs. -40%; P=0.023). Finally, in EN2, the delta change of fat mass and IL-6, IL-15 and IL-15Rα were associated (r = 0.605; r = 0.546; r = 0.515; P<0.05). IL-13 showed undetected concentrations. Circulating IL-6, IL-15 and FGF21 response to training is altered by exercise type but not by menopause in women with obesity. Endurance training promotes a higher reduction of these myokines, potentially activating their intricate immune and fat mass regulation roles in postmenopausal women with obesity.
Collapse
Affiliation(s)
- Alberto Pérez-López
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Madrid, España
| | - Paola Gonzalo-Encabo
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Madrid, España.,Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Medicina y Especialidades Médicas, Madrid, España
| | - Bárbara Pérez-Köhler
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Medicina y Especialidades Médicas, Madrid, España.,Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Natalio García-Honduvilla
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Medicina y Especialidades Médicas, Madrid, España.,Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,University Center of Defense of Madrid (CUD-ACD), Madrid, Spain
| | - David Valadés
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Madrid, España
| |
Collapse
|
24
|
Wróblewski A, Strycharz J, Świderska E, Balcerczyk A, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Transient Hyperglycemia Induces Changes in the Expression Patterns of IL6 and ADIPOQ Genes and Their Associated Epigenetic Modifications in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22136964. [PMID: 34203452 PMCID: PMC8268546 DOI: 10.3390/ijms22136964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Adipokines secreted by hypertrophic visceral adipose tissue (VAT) instigate low-grade inflammation, followed by hyperglycemia (HG)-related metabolic disorders. The latter may develop with the participation of epigenetic modifications. Our aim was to assess how HG influences selected epigenetic modifications and the expression of interleukin 6 (IL-6) and adiponectin (APN; gene symbol ADIPOQ) during the adipogenesis of human visceral preadipocytes (HPA-v). Adipocytes (Ads) were chronically or transiently HG-treated during three stages of adipogenesis (proliferation, differentiation, maturation). We measured adipokine mRNA, protein, proven or predicted microRNA expression (RT-qPCR and ELISA), and enrichment of H3K9/14ac, H3K4me3, and H3K9me3 at gene promoter regions (chromatin immunoprecipitation). In chronic HG, we detected different expression patterns of the studied adipokines at the mRNA and protein levels. Chronic and transient HG-induced changes in miRNA (miR-26a-5p, miR-26b-5p, let-7d-5p, let-7e-5p, miR-365a-3p, miR-146a-5p) were mostly convergent to altered IL-6 transcription. Alterations in histone marks at the IL6 promoter were also in agreement with IL-6 mRNA. The open chromatin marks at the ADIPOQ promoter mostly reflected the APN transcription during NG adipogenesis, while, in the differentiation stage, HG-induced changes in all studied marks were in line with APN mRNA levels. In summary, HG dysregulated adipokine expression, promoting inflammation. Epigenetic changes coexisted with altered expression of adipokines, especially for IL-6; therefore, epigenetic marks induced by transient HG may act as epi-memory in Ads. Such changes in the epigenome and expression of adipokines could be instrumental in the development of inflammation and metabolic deregulation of VAT.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
- Correspondence: (A.W.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (A.Ś.)
| |
Collapse
|
25
|
Simoes E, Correia-Lima J, Sardas L, Storti F, Otani TZDS, Vasques DAC, Otani VHO, Bertolazzi P, Kochi C, Seelaender M, Uchida RR. Sex dimorphism in inflammatory response to obesity in childhood. Int J Obes (Lond) 2021; 45:879-887. [PMID: 33526854 PMCID: PMC8005372 DOI: 10.1038/s41366-021-00753-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/23/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Childhood overweight and obesity are a global concern, with prevalence rising dramatically over the last decades. The condition is caused by an increase in energy intake and reduction of physical activity, leading to excessive fat accumulation, followed by systemic chronic inflammation and altered function of immune cell responses. This study aimed at providing new insights regarding sex-specificity on the inflammatory response to obesity in the young patient. DESIGN Forty-three Brazilian obese adolescents (Female = 22 and Male=21, BMI (body mass index) Z-score average = 2.78 ± 0.51) and forty-nine eutrophic adolescents (Female = 24 and Male = 25, BMI Z-score average = -0.35 ± 0.88) were enrolled in the study. Anthropometrical analyses and blood cell counts were carried out. Using Luminex®xMAP™ technology, circulating serum cytokines, chemokines, and inflammatory biomarkers were analyzed. Two-way ANOVA test, Tukey's test, and Spearman's correlation coefficient were employed, with a significance threshold set at p < 0.05. RESULTS We identified increased levels of serum amyloid A (SAA), platelets, and leukocytes solely in male obese patients. We found a noteworthy sex-dependent pattern in regard to inflammatory response: obese boys showed higher TNFβ, IL15, and IL2 and lower IL10 and IL13, while obese girls showed increased TNFα, CCL3, CCL4, and IP10 content in the circulation. BMI Z-score was significantly linearly correlated with neutrophils, leukocytes, platelets, SAA, TNFα, CCL3, CCL4, IP10, and IL13 levels within the entire cohort (non-sex-dependent). CONCLUSIONS Our data support a complex relationship between adiposity, blood cell count, and circulating inflammatory cytokine content. High SAA levels suggest that this factor may play a critical role in local and systemic inflammation. In the eutrophic group, females presented a lower status of inflammation, as compared to males. Both obese boys and girls showed an increased inflammatory response in relation to eutrophic counterparts. Taken together, results point out to clear sex dimorphism in the inflammatory profile of obese adolescents.
Collapse
Affiliation(s)
- Estefania Simoes
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil.
| | - Joanna Correia-Lima
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
| | - Leonardo Sardas
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Felipe Storti
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | | | | | | | - Pamela Bertolazzi
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Cristiane Kochi
- Physiology Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- LIM 26, Hospital das Clínicas of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Riyoiti Uchida
- Mental Health Department, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
26
|
Daza KR, Velez-Irizarry D, Casiró S, Steibel JP, Raney NE, Bates RO, Ernst CW. Integrated Genome-Wide Analysis of MicroRNA Expression Quantitative Trait Loci in Pig Longissimus Dorsi Muscle. Front Genet 2021; 12:644091. [PMID: 33859669 PMCID: PMC8042294 DOI: 10.3389/fgene.2021.644091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 01/19/2023] Open
Abstract
Determining mechanisms regulating complex traits in pigs is essential to improve the production efficiency of this globally important protein source. MicroRNAs (miRNAs) are a class of non-coding RNAs known to post-transcriptionally regulate gene expression affecting numerous phenotypes, including those important to the pig industry. To facilitate a more comprehensive understanding of the regulatory mechanisms controlling growth, carcass composition, and meat quality phenotypes in pigs, we integrated miRNA and gene expression data from longissimus dorsi muscle samples with genotypic and phenotypic data from the same animals. We identified 23 miRNA expression Quantitative Trait Loci (miR-eQTL) at the genome-wide level and examined their potential effects on these important production phenotypes through miRNA target prediction, correlation, and colocalization analyses. One miR-eQTL miRNA, miR-874, has target genes that colocalize with phenotypic QTL for 12 production traits across the genome including backfat thickness, dressing percentage, muscle pH at 24 h post-mortem, and cook yield. The results of our study reveal genomic regions underlying variation in miRNA expression and identify miRNAs and genes for future validation of their regulatory effects on traits of economic importance to the global pig industry.
Collapse
Affiliation(s)
- Kaitlyn R Daza
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Deborah Velez-Irizarry
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Sebastian Casiró
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Juan P Steibel
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Nancy E Raney
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Ronald O Bates
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
27
|
Visceral Adipose Tissue of Prediabetic and Diabetic Females Shares a Set of Similarly Upregulated microRNAs Functionally Annotated to Inflammation, Oxidative Stress and Insulin Signaling. Antioxidants (Basel) 2021; 10:antiox10010101. [PMID: 33445738 PMCID: PMC7828194 DOI: 10.3390/antiox10010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic and hypoxic visceral adipose tissue (VAT) secretes proinflammatory cytokines promoting insulin resistance (IR), prediabetes and type 2 diabetes (T2DM) microRNAs (miRNAs) are markers of metabolic disorders regulating genes critical for e.g., inflammation, glucose metabolism, and antioxidant defense, with raising diagnostic value. The aim of the current study was to evaluate whether hyperglycemia is able to affect the expression of selected miRNAs in VAT of prediabetic (IFG) and diabetic (T2DM) patients vs. normoglycemic (NG) subjects using qPCR. Statistical analyses suggested that miRNAs expression could be sex-dependent. Thus, we determined 15 miRNAs as differentially expressed (DE) among NG, T2DM, IFG females (miR-10a-5p, let-7d-5p, miR-532-5p, miR-127-3p, miR-125b-5p, let-7a-5p, let-7e-5p, miR-199a-3p, miR-365a-3p, miR-99a-5p, miR-100-5p, miR-342-3p, miR-146b-5p, miR-204-5p, miR-409-3p). Majority of significantly changed miRNAs was similarly upregulated in VAT of female T2DM and IFG patients in comparison to NG subjects, positively correlated with FPG and HbA1c, yet, uncorrelated with WHR/BMI. Enrichment analyses indicated involvement of 11 top DE miRNAs in oxidative stress, inflammation and insulin signaling. Those miRNAs expression changes could be possibly associated with low-grade chronic inflammation and oxidative stress in VAT of hyperglycemic subjects.
Collapse
|
28
|
Chi T, Lin J, Wang M, Zhao Y, Liao Z, Wei P. Non-Coding RNA as Biomarkers for Type 2 Diabetes Development and Clinical Management. Front Endocrinol (Lausanne) 2021; 12:630032. [PMID: 34603195 PMCID: PMC8484715 DOI: 10.3389/fendo.2021.630032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes, a metabolic disease characterized by high blood glucose and other complications, has undefined causes and multiple risk factors, including inappropriate diet, unhealthy lifestyles, and genetic predisposition. The two most distinguished types of diabetes are type 1 and type 2 diabetes, resulting from the autoimmune impairment of insulin-generating pancreatic β cells and insulin insensitivity, respectively. Non-coding RNAs (ncRNAs), a cohort of RNAs with little transcriptional value, have been found to exert substantial importance in epigenetic and posttranscriptional modulation of gene expression such as messenger RNA (mRNA) silencing. This review mainly focuses on the pathology of type 2 diabetes (T2D) and ncRNAs as potential biomarkers in T2D development and clinical management. We consolidate the pathogenesis, diagnosis, and current treatments of T2D, and present the existing evidence on changes in multiple types of ncRNAs in response to various pathological changes and dysfunctions in different stages of T2D.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaran Lin
- Department of Nephrology and Endocrinology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yihan Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Peng Wei, ; Zehuan Liao,
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei, ; Zehuan Liao,
| |
Collapse
|
29
|
Diabetes, microRNA, and Nutrition in Geriatrics. CURRENT GERIATRICS REPORTS 2020. [DOI: 10.1007/s13670-020-00336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Nemec M, Vernerová L, Laiferová N, Balážová M, Vokurková M, Kurdiová T, Oreská S, Kubínová K, Klein M, Špiritović M, Tomčík M, Vencovský J, Ukropec J, Ukropcová B. Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training. J Physiol 2020; 599:207-229. [PMID: 33063873 DOI: 10.1113/jp280468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- M Nemec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - L Vernerová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - N Laiferová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - M Balážová
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Vokurková
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Kurdiová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - S Oreská
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Kubínová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klein
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Špiritović
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - M Tomčík
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Vencovský
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Ukropec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - B Ukropcová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
31
|
Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R, Simpson AHRW. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res 2020; 9:798-807. [PMID: 33174473 PMCID: PMC7672326 DOI: 10.1302/2046-3758.911.bjr-2020-0178.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article: Bone Joint Res 2020;9(11):798-807.
Collapse
Affiliation(s)
- Joanna Brzeszczyńska
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | | | - David F Hamilton
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Robin McGregor
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, South Korea
| | | |
Collapse
|
32
|
Liang YZ, Li JJH, Xiao HB, He Y, Zhang L, Yan YX. Identification of stress-related microRNA biomarkers in type 2 diabetes mellitus: A systematic review and meta-analysis. J Diabetes 2020; 12:633-644. [PMID: 29341487 DOI: 10.1111/1753-0407.12643] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many studies have investigated microRNAs (miRNAs) in the detection of type 2 diabetes mellitus (T2DM). Herein, the dysregulated direction of stress-related miRNAs used as biomarkers of T2DM are summarized and analyzed. METHODS PubMed, EMBASE, ISI Web of Science, and three Chinese databases were searched for case-control miRNA profiling studies about T2DM. A meta-analysis under a random effect was performed. Subgroup analysis was conducted based on different tissues and species. Sensitivity analysis was conducted to confirm the robustness among studies. The effect size was pooled using ln odds ratios (ORs), 95% confidence intervals (95% CIs), and P-values. RESULTS The present meta-analysis included 39 case-control studies with a total of 494 miRNAs. Only 33 miRNAs were reported in three or more studies and, of these, 18 were inconsistent in their direction of dysregulation. Two significantly dysregulated miRNAs (let-7 g and miR-155) were identified in the meta-analysis. Four miRNAs (miR-142-3p, miR-155, miR-21, and miR-34c-5p) were dysregulated in patients with T2DM, whereas five miRNAs (miR-146a, miR-199a-3p, miR-200b, miR-29b and miR-30e) were dysregulated in animal models of diabetes. In addition, two dysregulated miRNAs (miR-146a and miR-21) were highly cornea specific and heart specific. In sensitivity analysis, only miR-155 was still significantly dysregulated after removing studies with small sample sizes. CONCLUSIONS The present meta-analysis revealed that 16 stress-related miRNAs were significantly dysregulated in T2DM. MiR-148b, miR-223, miR-130a, miR-19a, miR-26b and miR-27b were selected as potential circulating biomarkers of T2DM. In addition, miR-146a and miR-21 were identified as potential tissue biomarkers of T2DM.
Collapse
Affiliation(s)
- Ying-Zhi Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jia-Jiang-Hui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Huan-Bo Xiao
- Department of Preventive Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
33
|
Smit-McBride Z, Nguyen AT, Yu AK, Modjtahedi SP, Hunter AA, Rashid S, Moisseiev E, Morse LS. Unique molecular signatures of microRNAs in ocular fluids and plasma in diabetic retinopathy. PLoS One 2020; 15:e0235541. [PMID: 32692745 PMCID: PMC7373301 DOI: 10.1371/journal.pone.0235541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The main objective of this pilot study was to identify circulatory microRNAs in aqueous or plasma that were reflecting changes in vitreous of diabetic retinopathy patients. Aqueous, vitreous and plasma samples were collected from a total of 27 patients undergoing vitreoretinal surgery: 11 controls (macular pucker or macular hole patients) and 16 with diabetes mellitus(DM): DM-Type I with proliferative diabetic retinopathy(PDR) (DMI-PDR), DM Type II with PDR(DMII-PDR) and DM Type II with nonproliferative DR(DMII-NPDR). MicroRNAs were isolated using Qiagen microRNeasy kit, quantified on BioAnalyzer, and profiled on Affymetrix GeneChip miRNA 3.0 microarrays. Data were analyzed using Expression Console, Transcriptome Analysis Console, and Ingenuity Pathway Analysis. The comparison analysis of circulatory microRNAs showed that out of a total of 847 human microRNA probes on the microarrays, common microRNAs present both in aqueous and vitreous were identified, and a large number of unique microRNA, dependent on the DM type and severity of retinopathy. Most of the dysregulated microRNAs in aqueous and vitreous of DM patients were upregulated, while in plasma, they were downregulated. Dysregulation of miRNAs in aqueous did not appear to be a good representative of the miRNA abundance in vitreous, or plasma, although a few potential candidates for common biomarkers stood out: let-7b, miR-320b, miR-762 and miR-4488. Additionally, each of the DR subtypes showed miRNAs that were uniquely dysregulated in each fluid (i.e. aqueous: for DMII-NPDR was miR-455-3p; for DMII-PDR was miR-296, and for DMI-PDR it was miR-3202). Pathway analysis identified TGF-beta and VEGF pathways affected. The comparative profiling of circulatory miRNAs showed that a small number of them displayed differential presence in diabetic retinopathy vs. controls. A pattern is emerging of unique molecular microRNA signatures in bodily fluids of DR subtypes, offering promise for the use of ocular fluids and plasma for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Anthony T. Nguyen
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Alfred K. Yu
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Sara P. Modjtahedi
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Allan A. Hunter
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Saadia Rashid
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Lawrence S. Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
34
|
Sun Q, Zeng J, Liu Y, Chen J, Zeng QC, Chen YQ, Tu LL, Chen P, Yang F, Zhang M. microRNA-9 and -29a regulate the progression of diabetic peripheral neuropathy via ISL1-mediated sonic hedgehog signaling pathway. Aging (Albany NY) 2020; 12:11446-11465. [PMID: 32544883 PMCID: PMC7343507 DOI: 10.18632/aging.103230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
In this study, we tested the hypothesis that overexpression of miR-9 and miR-29a may contribute to DPN development and progression. We performed a meta-analysis of miR expression profile studies in human diabetes mellitus (DM) and the data suggested that miR-9 and miR-29a were highly expressed in patients with DM, which was further verified in serum samples collected from 30 patients diagnosed as DM. Besides, ISL1 was confirmed to be a target gene of miR-9 and miR-29a. Lentivirus-mediated forced expression of insulin gene enhancer binding protein-1 (ISL1) activated the sonic hedgehog (SHH) signaling pathway, increased motor nerve conduction velocity and threshold of nociception, and modulated expression of neurotrophic factors in sciatic nerves in rats with DM developed by intraperitoneal injection of 0.45% streptozotocin, suggesting that ISL1 could delay DM progression and promote neural regeneration and repair after sciatic nerve damage. However, lentivirus-mediated forced expression of miR-9 or miR-29a exacerbated DM and antagonized the beneficial effect of ISL1 on DPN. Collectively, this study revealed potential roles of miR-9 and miR-29a as contributors to DPN development through the SHH signaling pathway by binding to ISL1. Additionally, the results provided an experimental basis for the targeted intervention treatment of miR-9 and miR-29a.
Collapse
Affiliation(s)
- Qin Sun
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Jun Zeng
- Chengdu Medical College, Chengdu 610500, P. R. China
| | - Yang Liu
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - JingYan Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Qing-Cui Zeng
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Yan-Qiu Chen
- Department of Neurology, People's Hospital of Chongqing Yubei, Chongqing 401120, P. R. China
| | - Li-Li Tu
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Ping Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Fan Yang
- Department of General Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| | - Min Zhang
- Department of Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P. R. China
| |
Collapse
|
35
|
Avgeris M, Kokkinopoulou I, Maratou E, Mitrou P, Boutati E, Scorilas A, Fragoulis EG, Christodoulou MI. Blood-based analysis of 84 microRNAs identifies molecules deregulated in individuals with type-2 diabetes, risk factors for the disease or metabolic syndrome. Diabetes Res Clin Pract 2020; 164:108187. [PMID: 32360711 DOI: 10.1016/j.diabres.2020.108187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 01/26/2023]
Abstract
AIM Micro-RNAs (miRNAs) are implicated in insulin-signaling and the development of type-2 diabetes (T2D). Their deregulated expression is mostly described in the pancreas, liver, skeletal muscle, or adipose tissue of diabetic animals. Relevant studies in humans are limited due to difficulties in accessing tissue-biopsies. Though, circulating miRNAs are indicators of organ-specific pathophysiological events and could potentially serve as disease biomarkers. We explored the profile of 84 T2D-related miRNAs in peripheral blood of subjects with or without the disease. METHODS An RT-qPCR array screening 84 T2D-related miRNAs was applied in samples of T2D (n = 6) versus non-T2D (n = 6) subjects. The deregulated miRNAs were thereafter analyzed in peripheral blood samples of a validation cohort of 40 T2D and 37 non-T2D individuals [16 controls and 21 subjects with metabolic syndrome (Met-S) and/or T2D risk factors (T2D-RF)], using specific RT-qPCR assays. Correlations with clinicopathological parameters and risk factors were evaluated. RESULTS Subjects with the disease displayed decreased levels of miR-214-3p, miR-24-3p and let-7f-5p, compared to those without. MiRNA levels correlated with serum insulin and HbA1c levels in individuals with T2D or Met-S/T2D-RF, and with higher BMI, dyslipidemia and family history in controls. CONCLUSIONS Blood levels of miR-214-3p, miR-24-3p and let-7f-5p are down-regulated in T2D- and Met-S/T2D-RF subjects. Future studies are needed to evaluate their potential as disease biomarkers and elucidate the associated tissue-specific pathogenetic mechanisms.
Collapse
Affiliation(s)
- Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Kokkinopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine, School of Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eleni Boutati
- Second Department of Internal Medicine, School of Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel G Fragoulis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Ioanna Christodoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
36
|
Garneau L, Parsons SA, Smith SR, Mulvihill EE, Sparks LM, Aguer C. Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Front Physiol 2020; 11:18. [PMID: 32132925 PMCID: PMC7040180 DOI: 10.3389/fphys.2020.00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Exercise and physical activity levels influence myokine release from skeletal muscle and contribute to circulating concentrations. Indeed, many myokines, including interleukin (IL)-6, IL-15, secreted protein acidic rich in cysteine (SPARC), and fibroblast growth factor (FGF) 21 are higher in the circulation after an exercise bout. Since these peptides modulate muscle metabolism and can also be targeted toward other tissues to induce adaptations to energy demand, they are of great interest regarding metabolic diseases. Therefore, we set out to compare, in six women with obesity (BMI ≥30 kg/m2) and five healthy women (BMI 22–29.9 kg/m2), the effect of an acute bout of moderate-intensity, continuous cycling exercise (60 min, 60% VO2peak) on the release of myokines (IL-6, IL-8, IL-10, IL-13, IL-15, SPARC, and FGF21) in plasma for a 24-h time course. We found that plasma IL-8 and SPARC levels were reduced in the group of women with obesity, whereas plasma IL-13 concentrations were elevated in comparison to non-obese women both before and after the exercise bout. We also found that plasma FGF21 concentration during the 24 h following the bout of exercise was regulated differently in the non-obese in comparison to obese women. Plasma concentrations of FGF21, IL-6, IL-8, IL-15, and IL-18 were regulated by acute exercise. Our results confirm the results of others concerning exercise regulation of circulating myokines while providing insight into the time course of myokine release in circulation after an acute exercise bout and the differences in circulating myokines after exercise in women with or without obesity.
Collapse
Affiliation(s)
- Léa Garneau
- Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie A Parsons
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Céline Aguer
- Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Bi C, Fu Y, Li B. Brain-derived neurotrophic factor alleviates diabetes mellitus-accelerated atherosclerosis by promoting M2 polarization of macrophages through repressing the STAT3 pathway. Cell Signal 2020; 70:109569. [PMID: 32061924 DOI: 10.1016/j.cellsig.2020.109569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
Diabetes mellitus-accelerated atherosclerosis (DMAS) is one of the vascular complications of diabetes. Brain-derived neurotrophic factor (BDNF) plays a critical role in diabetes mellitus. However, the mechanism by which BDNF is involved in DMAS remains unknown. This study investigates the effect of BDNF on the progression of DMAS as well as the underlying mechanism of action. The levels of BDNF in serum and peripheral blood mononuclear cells (PBMCs) from patients with DMAS and health controls were measured as well as the expression of inflammatory cytokines (IL-1β, TNF-α, IL-10, TGF-β and IL-13). The effects of BDNF restoration on cytokine release, macrophage differentiation and the formation of atherosclerotic plaques were evaluated both in vitro and in vivo using the DMAS mouse model. Downregulation of BDNF was identified in the serum and PBMCs of patients with DMAS. Elevation of BDNF contributed to a reduction in the AS lesion area in low-density lipoprotein receptor-/- mice, inactivated the STAT3 pathway, decreased pro-inflammatory cytokines IL-1β and TNF-α, and increased IL-10, TGF-β and IL-13. BDNF overexpression also increased the proportion of M2 macrophages and alleviated atherosclerotic lesions. Our findings demonstrate that BDNF overexpression promotes M2 macrophage polarization, which represses the development of DMAS by inactivating the STAT3 pathway.
Collapse
Affiliation(s)
- Changlong Bi
- Department of Endocrinology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, PR China
| | - Yili Fu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150081, PR China
| | - Bo Li
- Department of Endocrinology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
38
|
Abstract
Type 2 diabetes is the fastest growing metabolic disease in the world. Recently, muscle is considered an endocrine organ which secretes various peptides that play an important role in insulin resistance and metabolic syndrome. We assessed 4 different myokines, irisin, interleukin-13 (IL-13), follistatin-related protein-1 (FSTL-1), and fractalkine, in normal, prediabetes, and diabetes patients.A total of 126 participants who visited Gangnam Severance Hospital were enrolled and divided into normal, prediabetes, and diabetes groups based on oral glucose tolerance test and hemoglobin a1c. A cross-sectional study was conducted to measure and compare serum levels of irisin, IL-13, FSTL-1, and fractalkine among the groups.Irisin level showed a tendency to increase in prediabetes group compared to normal group (P < .1) but showed a significant decrease when comparing diabetes from prediabetes group (P < .001). IL-13 decreased in diabetes group compared to prediabetes and normal group (P < .001, P < .05, respectively). FSTL-1 of diabetes group was lower than that of prediabetes group (P < .05), and fractalkine was higher in diabetes group compared to that of prediabetes and normal group (P < .01, P < .01, respectively).Irisin, IL-13, and FSTL-1 levels were reduced in diabetes group compared to normal or prediabetes group while fractalkine showed a progressive increase from normal to diabetes group. Further studies are warranted to study the roles of various myokine in diabetes through a larger prospective study.
Collapse
Affiliation(s)
| | - Chul Woo Ahn
- Department of Internal Medicine
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Suk Park
- Department of Internal Medicine
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - YuSik Kim
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Sun Nam
- Department of Internal Medicine
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Mahlangu TJ, Dludla PV, Mxinwa V, Mkandla Z, Tiano L, Louw J, Mutize T, Nyambuya TM, Nkambule BB. Elevated T-helper 2 cytokine levels in high fat diet-fed C57BL/6 mice are attenuated by short-term 6-week treatment with a combination of low-dose aspirin and metformin. Cytokine 2020; 128:154999. [PMID: 32014718 DOI: 10.1016/j.cyto.2020.154999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate T-helper cytokine responses in a short-term high fat diet (HFD) induced impaired glucose metabolism. To further evaluate the modulation of T-helper 1 (Th1) and T-helper 2 (Th2) cytokines using short-term low-dose aspirin in combination with metformin. DESIGN Two experiments were carried out in this study in order to evaluate the T-helper cytokine profiles in a state of impaired glucose metabolism. A total of 28 six-week-old male C57BL/6 mice were used in this study. In the first experiment, mice were fed either a high fat diet or low fat diet for a duration of 10 weeks. We then determined the Th1, Th2 and T-helper 17 (Th17) cytokine profiles. In the second experiment, we evaluated whether the short term 6-week treatment with low-dose aspirin in combination with metformin modulates T-helper cytokine profiles of the HFD-fed mice. MEASUREMENTS In the first experiment, we measured the body weights, blood glucose levels, insulin levels, lipid profiles and haematological parameters. We further performed oral glucose tolerance testing following an 8-hour fast and serum Th1, Th2 and Th17 cytokine levels were also determined following short-term 8-week diet-feeding and 6-week low-dose aspirin and combined metformin with low-dose aspirin treatment. RESULTS High fat diet-feeding caused a marked increase in circulating peripheral blood lymphocytes, which was attenuated by short-term low-dose aspirin treatment. Moreover, the HFD feeding resulted in 2-fold increase in total cholesterol and a 4-fold increase in low-density lipoprotein cholesterol when compared to the low-fat diet-fed group (p < 0.05). In the high fat diet group, impaired glucose metabolism was associated with skewed Th2 responses without alterations in the Th1 and Th17 cytokine profiles. Interestingly the short-term treatment with low-dose aspirin showed no effect on the selected T-helper 1 cytokine IFN-Ƴ (P > 0.05). While the combination of low-dose aspirin with metformin considerably reduced the levels of serum IFN-Ƴ (P < 0.05). Furthermore low-dose aspirin treatment showed the modest attenuation of the selected Th2 cytokines, IL-10 and IL-13 when compared to low-dose aspirin with metformin (P < 0.01). CONCLUSION The early immunological and metabolic changes that occur in a state impaired glucose tolerance are accompanied by the increased production of Th2 cell cytokines. The short-term treatment using low-dose aspirin combined with metformin may provide therapeutic benefits in preventing complications associated with dysregulated Th2 cell responses.
Collapse
Affiliation(s)
- Thabsile J Mahlangu
- University of KwaZulu-Natal (UKZN), University Road, Westville, Private Bag X54001, Durban 4000, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Vuyolwethu Mxinwa
- University of KwaZulu-Natal (UKZN), University Road, Westville, Private Bag X54001, Durban 4000, South Africa.
| | - Zibusiso Mkandla
- University of KwaZulu-Natal (UKZN), University Road, Westville, Private Bag X54001, Durban 4000, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Tinashe Mutize
- University of KwaZulu-Natal (UKZN), University Road, Westville, Private Bag X54001, Durban 4000, South Africa.
| | - Tawanda M Nyambuya
- University of KwaZulu-Natal (UKZN), University Road, Westville, Private Bag X54001, Durban 4000, South Africa; Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B Nkambule
- University of KwaZulu-Natal (UKZN), University Road, Westville, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
40
|
Woeller CF, Thatcher TH, Thakar J, Cornwell A, Smith MR, Jones DP, Hopke PK, Sime PJ, Krahl P, Mallon TM, Phipps RP, Utell MJ. Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S82-S89. [PMID: 31800454 PMCID: PMC8058852 DOI: 10.1097/jom.0000000000001691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were elevated in serum from personnel deployed to sites with open burn pits. Here, we investigated the ability of BghiP and HpCDD to regulate microRNA (miRNA) expression through the aryl hydrocarbon receptor (AHR). METHODS Human lung fibroblasts (HLFs) were exposed to BghiP and HpCDD. AHR activity was measured by reporter assay and gene expression. Deployment related miRNA were measured by quantitative polymerase chain reaction. AHR expression was depleted using siRNA. RESULTS BghiP displayed weak AHR agonist activity. HpCDD induced AHR activity in a dose-dependent manner. Let-7d-5p, miR-103-3p, miR-107, and miR-144-3p levels were significantly altered by HpCDD. AHR knockdown attenuated these effects. CONCLUSIONS These studies reveal that miRNAs previously identified in sera from personnel deployed to sites with open burn pits are altered by HpCDD exposure in HLFs.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine (Dr Woeller, Dr Hopke, Dr Phipps, Dr Utell); Department of Medicine (Dr Thatcher, Dr Sime, Dr Utell); Microbiology and Immunology (Dr Thakar, Mr Cornwell, Dr Phipps), University of Rochester Medical Center, Rochester; Center for Air Resources Engineering and Science, Clarkson University, Potsdam (Dr Hopke), New York; Emory University, Atlanta, Georgia (Dr Smith, Dr Jones); Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland (Dr Krahl, Dr Mallon)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
42
|
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10:703. [PMID: 31736870 PMCID: PMC6833922 DOI: 10.3389/fendo.2019.00703] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells 2019; 8:cells8080853. [PMID: 31398847 PMCID: PMC6721737 DOI: 10.3390/cells8080853] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes belongs to a group of metabolic disorders characterized by long term high blood glucose levels due to either inadequate production of insulin (Type 1 diabetes, T1DM) or poor response of the recipient cell to insulin (Type 2 diabetes, T2DM). Organ dysfunctions are the main causes of morbidity and mortality due to high glucose levels. Understanding the mechanisms of organ crosstalk may help us improve our basic knowledge and find novel strategies to better treat the disease. Exosomes are part of a newly emerged research area and have attracted a great deal of attention for their capacity to regulate communications between cells. In conditions of diabetes, exosomes play important roles in the pathological processes in both T1DM and T2DM, such as connecting the immune cell response to pancreatic tissue injury, as well as adipocyte stimulation to insulin resistance of skeletal muscle or liver. Furthermore, in recent years, nucleic acids containing exosomes—especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)—have been shown to mainly regulate communications between organs in pathological processes of diabetes, including influencing metabolic signals and insulin signals in target tissues, affecting cell viability, and modulating inflammatory pancreatic cells. Moreover, exosome miRNAs show promise in their use as biomarkers or in treatments for diabetes and diabetic complications. Thus, this paper summarizes the recent work on exosomes related to diabetes as well as the roles of exosomal miRNAs and lncRNAs in diabetic pathology and diagnosis in order to help us better understand the exact roles of exosomes in diabetes development.
Collapse
|
44
|
Li Y, Li C, Yang M, Shi L, Tao W, Shen K, Li X, Wang X, Yang Y, Yao Y. Association of single nucleotide polymorphisms of miRNAs involved in the GLUT4 pathway in T2DM in a Chinese population. Mol Genet Genomic Med 2019; 7:e907. [PMID: 31389668 PMCID: PMC6732275 DOI: 10.1002/mgg3.907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background The insulin/insulin receptor substrate (IRS)/phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (Akt)/GLUT4 pathway plays a crucial role in insulin resistance and is closely associated with T2DM. Accumulating evidence indicates that miRNAs (such as miR‐135a, let‐7d, miR‐107, miR‐96, miR‐29a, miR‐23a, miR‐126, miR‐133a, and miR‐106b) influence the GLUT4 pathway. Methods A total of 784 subjects with T2DM and 846 nondiabetic subjects were enrolled and 12 single nucleotide polymorphisms (SNPs) in miRNAs (rs10459194 in miR‐135a‐2, rs10993081 and rs7045890 in let‐7d, rs2296616 in miR‐107, rs2402959 and rs6965643 in miR‐96, rs24168 in miR‐29a, rs3745453 in miR‐23a, rs4636297 in miR‐126, rs8089787 and rs9948906 in miR‐133a‐1 and rs999885 in miR‐106b) involved in the GLUT4 pathway were genotyped using the MassArray method in a Chinese population. Results Our data showed that the A allele of rs2402959 in miR‐96 may increase the risk of developing T2DM (p = .002, OR = 1.266; 95% CI: 1.089–1.471). The genotypes of rs3745453 in miR‐23a showed the difference between T2DM and control groups (p < .001). Moreover, for rs2402959, compared with the A/A genotype, the (G/A–G/G) genotype shows a protective effect in T2DM (p = .001, OR = 0.71; 95% CI: 0.58–0.87). For rs3745453, compared with the (A/A–A/G) genotype, the G/G genotype increases the risk of T2DM (p < .001, OR = 1.95; 95% CI: 1.38–2.77). In addition, we also found that rs4636297G/G genotype was associated with lower TC in T2DM group. Conclusion Our results revealed that genetic variations in the miRNAs involved in the GLUT4 pathway were associated with T2DM susceptibility in a Chinese population, and these results emphasize the need to study the functional effects of these variations in the miRNAs involved in the GLUT4 pathway on the risk of developing T2DM.
Collapse
Affiliation(s)
- Yiping Li
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Man Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Wenyu Tao
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Keyu Shen
- Faculty of Medicine, Dentistry and Healthy Science, The University of Melbourne, Melbourne, Vic., Australia
| | - Xianli Li
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Wang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
45
|
Guo Y, Li G, Li H, Huang C, Liu Q, Dou Y, Yin X, Dong L, Yang N, Han Z. MicroRNA-15a Inhibits Glucose Transporter 4 Translocation and Impairs Glucose Metabolism in L6 Skeletal Muscle Via Targeting of Vesicle-Associated Membrane Protein-Associated Protein A. Can J Diabetes 2019; 44:261-266.e2. [PMID: 31594761 DOI: 10.1016/j.jcjd.2019.07.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES MicroRNAs have been reported to participate in various important cell biological processes, such as glucose metabolism. The aim of this study was to explore the roles of microRNA-15a (miR-15a) in regulating insulin sensitivity. METHODS In L6 rat skeletal muscle cells, we observed the effect of miR-15a on glucose metabolism and glucose transporter 4 (GLUT4) translocation by targeting vesicle-associated membrane protein-associated protein A (VAP-A) after insulin treatment. Luciferase reporter assays were performed to demonstrate a direct interaction between miR-15a and the 3'-untranslated region of VAP-A microRNA. RESULTS We identified miR-15a as an extremely important regulator of GLUT4 translocation via targeting of VAP-A. Additionally, knockdown of endogenous miR-15a or overexpression of VAP-A could increase extracellular glucose by inhibiting the translocation of GLUT4 to the cell membrane after insulin treatment. However, overexpression of miR-15a or knockdown of VAP-A had no significant effect on glucose metabolism. CONCLUSIONS These findings reveal the following: 1) VAP-A is a marker of skeletal muscle glucose disposal and 2) a novel mechanism for GLUT4 translocation by miR-15a.
Collapse
Affiliation(s)
- Ying Guo
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
| | - Gang Li
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Huiqing Li
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Chunlan Huang
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Qiao Liu
- Department of Psychology and Dentistry, Health School of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yifei Dou
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Xiurong Yin
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lixia Dong
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Na Yang
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zhonghou Han
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
46
|
McDaniel K, Wu N, Zhou T, Huang L, Sato K, Venter J, Ceci L, Chen D, Ramos-Lorenzo S, Invernizzi P, Bernuzzi F, Wu C, Francis H, Glaser S, Alpini G, Meng F. Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethal-7 microRNA. Hepatology 2019; 69:2562-2578. [PMID: 30723922 PMCID: PMC7015419 DOI: 10.1002/hep.30542] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
Cholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell-derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)-/- mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2-/- mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2-/- mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.
Collapse
Affiliation(s)
- Kelly McDaniel
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Tianhao Zhou
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Li Huang
- Department of Pancreatobiliary Surgery and Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Keisaku Sato
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Julie Venter
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Ludovica Ceci
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Demeng Chen
- Department of Pancreatobiliary Surgery and Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sugeily Ramos-Lorenzo
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Heather Francis
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Shannon Glaser
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Gianfranco Alpini
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, TX
| | - Fanyin Meng
- Research Department, Central Texas Veterans Health Care System, Temple, TX
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX
| |
Collapse
|
47
|
Karo-Atar D, Bitton A, Benhar I, Munitz A. Therapeutic Targeting of the Interleukin-4/Interleukin-13 Signaling Pathway: In Allergy and Beyond. BioDrugs 2019; 32:201-220. [PMID: 29736903 DOI: 10.1007/s40259-018-0280-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation triggered by interleukin-4 (IL-4)/IL-13 is mediated by IL-4 and IL-13 receptors that are present on multiple cell types, including epithelial cells, smooth muscle, fibroblasts endothelial cells and immune cells. IL-4 exerts its activities by interacting with two specific cell surface receptors: one designated the type 1 IL-4 receptor (IL-4R); the other designated the type 2 IL-4R, a receptor complex that is also the functional receptor for IL-13. "Traditionally," IL-4 and IL-13 have been studied in the context of T helper 2-associated immune responses (i.e., type 2 immunity). In these settings, IL-4, IL-13 and their cognate receptor chains display pivotal roles where IL-4 is considered an instigator of type 2 immune responses and IL-13 an effector molecule. Thus, therapeutic targeting of the IL-4/IL-13 pathway is under extensive research, mainly for the treatment of allergic diseases. Nonetheless, in addition to IL-4's and IL-13's roles in type 2 immune responses, recent data highlight key activities for IL-4 and IL-13 in additional settings including metabolism, bone resorption, and even cognitive learning. This review summarizes the established knowledge that has accumulated regarding the roles of IL-4, IL-13, and their receptors in allergic diseases, with an emphasis on asthma, atopic dermatitis and eosinophilic esophagitis. Further, we provide an overview of the pharmacological entities targeting these cytokines and/or their receptors, which have been developed and clinically examined over the years. Finally, we will briefly highlight emerging evidence of potential new roles for IL-4 and IL-13 in other pathologies.
Collapse
Affiliation(s)
- Danielle Karo-Atar
- Biotherapeutics Cluster, Augmanity Nano LTD, Rehovot, Israel. .,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| | - Almog Bitton
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
48
|
Jiang S. A Regulator of Metabolic Reprogramming: MicroRNA Let-7. Transl Oncol 2019; 12:1005-1013. [PMID: 31128429 PMCID: PMC6531867 DOI: 10.1016/j.tranon.2019.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Let-7, a gene firstly known to control the timing of Caenorhabditis elegans larval development does not code for a protein but instead produces small non-coding RNAs, microRNAs. Higher animals have multiple isoforms of mature let-7 microRNAs. Mature let-7 family members share the same “seed sequence” and distinct from each other slightly by ‘non-seed’ sequence region. Let-7 has emerged as a central regulator of systemic energy homeostasis and it displays remarkable plasticity in metabolic responses to nutrients availability and physiological activities. In this review, we discuss recent studies highlighting post-transcriptional mechanisms that govern metabolic reprogramming in distinct cells by let-7. We focus on the participation of the let-7 clusters in immune cells, and suggest that tissue-specific regulation of the let-7 clusters by engineered mouse models might impact metabolic homeostasis and will be required to elucidate their physiological and pathological roles in the in vivo disease models.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
49
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
50
|
Feasibility Analysis of Interleukin-13 as a Target for a Therapeutic Vaccine. Vaccines (Basel) 2019; 7:vaccines7010020. [PMID: 30759882 PMCID: PMC6466196 DOI: 10.3390/vaccines7010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of therapeutic vaccines requires thorough knowledge of potential hazards associated with long-term inactivation of self-proteins. Among potential targets, interleukin 13 (IL-13) merits consideration, as monoclonal antibodies disrupting IL-13 signaling are proving to be exceedingly effective in common conditions such as atopic dermatitis. OBJECTIVE Given the mass publication of scientific data, an appraisal of safety aspects is challenging. METHODS We here provide a three-fold approach to survey clinically relevant information on off-target effects, both adverse and beneficial, that may potentially be encountered in patients undergoing long-term IL-13 inactivation. First, we review non-clinical data in vivo and in vitro. Second, we summarize safety data accumulating from patients dosed with anti-IL-13 drugs. Third, we exploit human mutation data as well as emerging large-scale genetic datasets (global exome data from 60,000 patients) to obtain information on any association of IL-13-inactivating genetic variants with disease states. In addition, we: (1) dissect the precise efficacy signals obtained with various drugs targeting IL-13 and/or IL-4, and (2) summarize unintended, but potentially beneficial effects of prolonged IL-13 inactivation on several functional systems. RESULTS Prolonged repression of IL-13 in several thousand patients so far has not uncovered any non-redundant functions of IL-13 in immune defense. Furthermore, missense mutations in the key genes IL-13, IL-13Rα1, IL-13Rα2, IL-4, IL-4Rα are common, while no case reports have been published on any immune deficiency or increased risk of neoplastic disease associated with such mutations, suggesting that these genes do not harbor non-redundant roles in adult outbred humans. In terms of efficacy, data from clinically used drugs strongly suggest that targeting IL-13 only, as opposed to IL-13 and IL-4, may be effective in eczema while being more selective. Importantly, several lines of evidence suggest that inhibition of IL-13 may in fact harbor potentially beneficial effects on non-targeted systems, including glucose metabolism, hepatic fibrosis, and atherosclerosis, suggesting that respective outcomes should be systematically captured in patients dosed with IL-13 interfering drugs. Collectively, available evidence suggests that IL-13 may fulfill safety requirements required for the target of a therapeutic vaccine.
Collapse
|