1
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
2
|
Wray S, Arrowsmith S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu Rev Physiol 2020; 83:331-357. [PMID: 33158376 DOI: 10.1146/annurev-physiol-032420-035509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| | - Sarah Arrowsmith
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| |
Collapse
|
3
|
Ohya S, Ito K, Hatano N, Ohno A, Muraki K, Imaizumi Y. Castration Induces Down-Regulation of A-Type K + Channel in Rat Vas Deferens Smooth Muscle. Int J Mol Sci 2019; 20:ijms20174073. [PMID: 31438481 PMCID: PMC6747096 DOI: 10.3390/ijms20174073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 01/20/2023] Open
Abstract
A-type K+ channels contribute to regulating the propagation and frequency of action potentials in smooth muscle cells (SMCs). The present study (i) identified the molecular components of A-type K+ channels in rat vas deferens SMs (VDSMs) and (ii) showed the long-term, genomic effects of testosterone on their expression in VDSMs. Transcripts of the A-type K+ channel α subunit, Kv4.3L and its regulatory β subunits, KChIP3, NCS1, and DPP6-S were predominantly expressed in rat VDSMs over the other related subtypes (Kv4.2, KChIP1, KChIP2, KChIP4, and DPP10). A-type K+ current (IA) density in VDSM cells (VDSMCs) was decreased by castration without changes in IA kinetics, and decreased IA density was compensated for by an oral treatment with 17α-methyltestosterone (MET). Correspondingly, in the VDSMs of castrated rats, Kv4.3L and KChIP3 were down-regulated at both the transcript and protein expression levels. Changes in Kv4.3L and KChIP3 expression levels were compensated for by the treatment with MET. These results suggest that testosterone level changes in testosterone disorders and growth processes control the functional expression of A-type K+ channels in VDSMCs.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Katsunori Ito
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmacological Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Akitoshi Ohno
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmacological Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmacological Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
4
|
Unravelling the complexities of vascular smooth muscle ion channels: Fine tuning of activity by ancillary subunits. Pharmacol Ther 2017; 178:57-66. [PMID: 28336473 DOI: 10.1016/j.pharmthera.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Which ion channel is the most important for regulating vascular tone? Which one is responsible for controlling the resting membrane potential or repolarization? Which channels are recruited by different intracellular signalling pathways or change in certain vascular diseases? Many different ion channels have been identified in the vasculature over the years and claimed as future therapeutic targets. Unfortunately, several of these ion channels are not just found in the vasculature, with many of them also found to have prominent functional roles in different organs of the body, which then leads to off-target effects. As cardiovascular diseases are expected to increase worldwide to epidemic proportions, ion channel research and the hunt for the next major therapeutic target to treat different vascular diseases has never been more important. However, I believe that the question we should now be asking is: which ancillary subunits are involved in regulating specific ion channels in the vasculature and do they have the potential to be new therapeutic targets?
Collapse
|
5
|
Shi JH, Jin L, Leng JH, Lang JH. Expression of Potassium Channels in Uterine Smooth Muscle Cells from Patients with Adenomyosis. Chin Med J (Engl) 2017; 129:200-5. [PMID: 26830992 PMCID: PMC4799548 DOI: 10.4103/0366-6999.173491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Adenomyosis (AM) has impaired contraction. This study aimed to explore the expression of potassium channels related to contraction in myometrial smooth muscle cells (MSMCs) of AM. METHODS Uterine tissue samples from 22 patients (cases) with histologically confirmed AM and 12 (controls) with cervical intraepithelial neoplasia were collected for both immunohistochemistry and real-time polymerase chain reaction to detect the expression of large conductance calcium- and voltage-sensitive K + channel (BKCa)-α/β subunits, voltage-gated potassium channel (Kv) 4.2, and Kv4.3. Student's t-test was used to compare the expression. RESULTS The BKCa-α/β subunits, Kv4.2, and Kv4.3 were located in smooth muscle cells, glandular epithelium, and stromal cells. However, BKCa-β subunit expression in endometrial glands of the controls was weak, and Kv4.3 was almost undetectable in the controls. The expression of BKCa-α messenger RNA (mRNA) (0.62 ± 0.19-fold decrease, P < 0.05) and Kv4.3 mRNA (0.67 ± 0.20-fold decrease, P < 0.05) decreased significantly in the MSMCs of the control group compared with the AM group. However, there were no significant differences in BKCa-β subunit mRNA or Kv4.2 mRNA. CONCLUSIONS The BKCa-α mRNA and the Kv4.3 mRNA are expressed significantly higher in AM than those in the control group, that might cause the abnormal uterus smooth muscle contractility, change the microcirculation of uterus to accumulate the inflammatory factors, impair the endometrium further, and aggravate the pain.
Collapse
Affiliation(s)
| | - Li Jin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | |
Collapse
|
6
|
Novakovi R, Radunovi N, Markovi -Lipkovski J, irovi S, Beleslin- oki B, Ili B, Ivkovi B, Heinle H, ivanovi V, Gojkovi -Bukarica L. Effects of the polyphenol resveratrol on contractility of human term pregnant myometrium. Mol Hum Reprod 2015; 21:545-51. [DOI: 10.1093/molehr/gav011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
|
7
|
Ramírez A, Hinojosa LM, Gonzales JDJ, Montante-Montes D, Martínez-Benítez B, Aguilar-Guadarrama R, Gamboa-Domínguez A, Morales F, Carrillo-García A, Lizano M, García-Becerra R, Díaz L, Vázquez-Sánchez AY, Camacho J. KCNH1 potassium channels are expressed in cervical cytologies from pregnant patients and are regulated by progesterone. Reproduction 2013; 146:615-23. [DOI: 10.1530/rep-13-0318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Potassium voltage-gated channel, subfamily H (eag-related), member 1 (KCNH1) potassium channels are potential tumour markers and cancer therapeutic targets and are up-regulated by oestrogens and human papilloma virus (HPV) oncogenes. However, the role of KCNH1 in normal tissues is poorly understood, and its expression in pregnancy is unknown. We wondered whether KCNH1 channels are expressed in cervical cells from pregnant patients and whether progesterone (P4) regulates KCNH1. The association with HPV was also investigated. KCNH1 protein expression was studied by immunocytochemistry in liquid-based cervical cytologies; 93 samples were obtained from pregnant patients at different trimesters, and 15 samples were obtained from non-pregnant women (controls). The presence ofHPVwas studied by PCR with direct sequencing and nested multiplex PCR. HeLa cervical cancer cells were transfected with human progesterone receptor-B (PR-B) and treated with P4.KCNH1mRNA expression in these cultures was studied by real-time PCR. KCNH1 protein was detected in 100% of the pregnancy samples and in 26% of the controls. We found 18 pregnant patients infected with HPV and detected 14 types ofHPV. There was no association between the percentage of cells expressing KCNH1 and either the presence or type of HPV. P4induced KCNH1 mRNA and protein expression in cells transfected with human PR-B. No regulation of KCNH1 by P4was observed in non-transfected cells. We show for the first time the expression of an ion channel during human pregnancy at different trimesters and KCNH1 regulation by P4in human cells. These data raise a new research field for KCNH1 channels in human tissues.
Collapse
|
8
|
Estrogen replacement modulates voltage-gated potassium channels in rat presympathetic paraventricular nucleus neurons. BMC Neurosci 2013; 14:134. [PMID: 24180323 PMCID: PMC3840734 DOI: 10.1186/1471-2202-14-134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 10/28/2013] [Indexed: 12/03/2022] Open
Abstract
Background The hypothalamic paraventricular nucleus (PVN) is an important site in the regulation of the autonomic nervous system. Specifically, PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) play a regulatory role in the determination of the sympathetic outflow in the cardiovascular system. In the PVN-RVLM neurons, the estrogen receptor β is expressed. However, to date, the effects of estrogen on PVN-RVLM neurons have not been reported. The present study investigated estrogen-mediated modulation of two voltage-gated potassium channel (Kv) subunits, Kv4.2 and Kv4.3, that are expressed predominantly in PVN neurons and the functional current of Kv4.2 and Kv4.3, the transient outward potassium current (IA). Results Single-cell real-time RT-PCR analysis showed that 17β-estradiol (E2) replacement (once daily for 4 days) selectively down-regulated Kv4.2 mRNA levels in the PVN-RVLM neurons of ovariectomized female rats. There was no change in Kv4.3 levels. Whole-cell patch-clamp recordings demonstrated that E2 also diminished IA densities. Interestingly, these effects were most apparent in the dorsal cap parvocellular subdivision of the PVN. E2 also shortened a delay in the excitation of the PVN-RVLM neurons. Conclusions These findings demonstrate that E2 exerts an inhibitory effect on the functions of IA, potentially by selectively down-regulating Kv4.2 but not Kv4.3 in PVN-RVLM neurons distributed in a specific parvocellular subdivision.
Collapse
|
9
|
Sambol J, Deitch EA, Takimoto K, Dosi G, Yatani A. Cellular basis of burn-induced cardiac dysfunction and prevention by mesenteric lymph duct ligation. J Surg Res 2013; 183:678-85. [PMID: 23465433 DOI: 10.1016/j.jss.2013.01.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/09/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Myocardial contractile depression develops 4 to 24 h after major burn injury. We have reported previously that in a rat burn injury model (≈40% of total body surface area burn), mesenteric lymph duct ligation (LDL) prior to burn prevented myocardial dysfunction. However, the underlying cellular and molecular mechanisms are not well understood. MATERIALS AND METHODS Left ventricular myocytes were isolated from sham burn (control), sham burn with LDL (sham + LDL), burn, and burn with LDL (burn + LDL) rats at 4 and 24 h after burn or sham burn. Electrophysiological techniques were used to study myocyte size, contractility and L-type Ca2+ channel current (ICa). Further studies examined changes in the messenger RNA expression levels of pore-forming subunit of the L-type Ca(2+) channel, α1C, and its auxiliary subunits, β1, β2, β3, and α2δ1, which modulate the abundance of the ICa in post-burn hearts. RESULTS Depressed myocyte contractility (≈20%) developed during 4 to 24 h post-burn compared with control, sham + LDL, or burn + LDL groups, a pattern of changes consistent with whole heart studies. There was no significant alteration in myocyte size. The ICa density was significantly decreased (≈30%) at 24 h post-burn, whereas the messenger RNA expression levels of Ca(2+) channel gene were not significantly altered at 4 and 24 h after burn injury. CONCLUSIONS These results suggest that the post-burn contractile phenotype in vivo was also present in isolated myocytes in vitro, but cellular remodeling was not a major factor. The results also suggest that changes in ICa regulation, but not from Ca(2+) channel gene modification, may be a key element involved in post-burn contractile depression and the beneficial effects of LDL.
Collapse
Affiliation(s)
- Justin Sambol
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
10
|
Lee SK, Lee S, Shin SY, Ryu PD, Lee SY. Single cell analysis of voltage-gated potassium channels that determines neuronal types of rat hypothalamic paraventricular nucleus neurons. Neuroscience 2012; 205:49-62. [PMID: 22245500 DOI: 10.1016/j.neuroscience.2011.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/16/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN), a site for the integration of both the neuroendocrine and autonomic systems, has heterogeneous cell composition. These neurons are classified into type I and type II neurons based on their electrophysiological properties. In the present study, we investigated the molecular identification of voltage-gated K+ (Kv) channels, which determines a distinctive characteristic of type I PVN neurons, by means of single-cell reverse transcription-polymerase chain reaction (RT-PCR) along with slice patch clamp recordings. In order to determine the mRNA expression profiles, firstly, the PVN neurons of male rats were classified into type I and type II neurons, and then, single-cell RT-PCR and single-cell real-time RT-PCR analysis were performed using the identical cell. The single-cell RT-PCR analysis revealed that Kv1.2, Kv1.3, Kv1.4, Kv4.1, Kv4.2, and Kv4.3 were expressed both in type I and in type II neurons, and several Kv channels were co-expressed in a single PVN neuron. However, we found that the expression densities of Kv4.2 and Kv4.3 were significantly higher in type I neurons than in type II neurons. Taken together, several Kv channels encoding A-type K+ currents are present both in type I and in type II neurons, and among those, Kv4.2 and Kv4.3 are the major Kv subunits responsible for determining the distinct electrophysiological properties. Thus these 2 Kv subunits may play important roles in determining PVN cell types and regulating PVN neuronal excitability. This study further provides key molecular mechanisms for differentiating type I and type II PVN neurons.
Collapse
Affiliation(s)
- S K Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
11
|
McCallum LA, Pierce SL, England SK, Greenwood IA, Tribe RM. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility. J Cell Mol Med 2011; 15:577-86. [PMID: 20132415 PMCID: PMC3922379 DOI: 10.1111/j.1582-4934.2010.01021.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Premature birth accounts for approximately 75% of neonatal mortality and morbidity in the developed world. Despite this, methods for identifying and treating women at risk of preterm labour are limited and many women still present in preterm labour requiring tocolytic therapy to suppress uterine contractility. The aim of this study was to assess the utility of Kv7 channel activators as potential uterine smooth muscle (myometrium) relaxants in tissues from pregnant mice and women. Myometrium was obtained from early and late pregnant mice and from lipopolysaccharide (LPS)-injected mice (day 15 of gestation; model of infection in pregnancy). Human myometrium was obtained at the time of Caesarean section from women at term (38–41 weeks). RT-PCR/qRT-PCR detected KCNQ and KCNE expression in mouse and human myometrium. In mice, there was a global suppression of all KCNQ isoforms, except KCNQ3, in early pregnancy (n= 6, P < 0.001 versus late pregnant); expression subsequently increased in late pregnancy (n= 6). KCNE isoforms were also gestationally regulated (P < 0.05). KCNQ and KCNE isoform expression was slightly down-regulated in myometrium from LPS-treated-mice versus controls (P < 0.05, n= 3–4). XE991 (10 μM, Kv7 inhibitor) significantly increased spontaneous myometrial contractions in vitro in both human and mouse myometrial tissues (P < 0.05) and retigabine/flupirtine (20 μM, Kv7 channel activators) caused profound myometrial relaxation (P < 0.05). In summary, Kv7 activators suppressed myometrial contraction and KCNQ gene expression was sustained throughout gestation, particularly at term. Consequently, activation of the encoded channels represents a novel mechanism for treatment of preterm labour.
Collapse
Affiliation(s)
- Laura A McCallum
- Maternal and Fetal Research Unit, Division of Reproduction and Endocrinology, King's College London, St Thomas' Hospital Campus, London, UK
| | | | | | | | | |
Collapse
|
12
|
Weiner CP, Mason CW, Dong Y, Buhimschi IA, Swaan PW, Buhimschi CS. Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol 2010; 202:474.e1-20. [PMID: 20452493 DOI: 10.1016/j.ajog.2010.02.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/10/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Distinct processes govern transition from quiescence to activation during term (TL) and preterm labor (PTL). We sought gene sets that are responsible for TL and PTL, along with the effector genes that are necessary for labor independent of gestation and underlying trigger. STUDY DESIGN Expression was analyzed in term and preterm with or without labor (n=6 subjects/group). Gene sets were generated with logic operations. RESULTS Thirty-four genes were expressed similarly in PTL/TL but were absent from nonlabor samples (effector set); 49 genes were specific to PTL (preterm initiator set), and 174 genes were specific to TL (term initiator set). The gene ontogeny processes that comprise term initiator and effector sets were diverse, although inflammation was represented in 4 of the top 10; inflammation dominated the preterm initiator set. CONCLUSION TL and PTL differ dramatically in initiator profiles. Although inflammation is part of the term initiator and the effector sets, it is an overwhelming part of PTL that is associated with intraamniotic inflammation.
Collapse
|
13
|
Larger transient outward K(+) current and shorter action potential duration in Galpha(11) mutant mice. Pflugers Arch 2009; 459:607-18. [PMID: 19953263 DOI: 10.1007/s00424-009-0762-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/05/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
The alpha(1)-adrenoceptor as well as the AT(1)- and the ET(A)-receptor couple to G-proteins of the Galpha(q/11) family and contribute to the regulation of the transient outward K(+) current (I(to,f)) under pathological conditions such as cardiac hypertrophy or failure. This suggests an important role of Galpha(q/11)-signalling in the physiological regulation of I(to,f). Here, we investigate mice deficient of the Galpha(11) protein (gna11(-/-)) to clarify the physiological role of Galpha(11) signalling in cardiac ion channel regulation. Myocytes from endocardial and epicardial layers were isolated from the left ventricular free wall and investigated using the ruptured-patch whole-cell patch-clamp technique. At +40 mV, epicardial myocytes from gna11(-/-) mice displayed a 23% larger I(to,f) than controls (52.6 + or - 4.1 pApF(-1), n = 20 vs 42.7 + or - 2.8 pApF(-1), n = 26, p < 0.05). Endocardial I(to,f) was similar in gna11(-/-) mice and controls. With the except of minor changes in endocardial myocytes, I(to,f) kinetics were similar in both groups. In the epicardial layer, western blot analysis revealed a 19% higher expression of the K(+)-channel alpha-subunit Kv4.2 in gna11(-/-) mice than in wild type (wt; p < 0.05). The beta-subunit KChIP2b was upregulated by 102% in epicardial myocytes of gna11(-/-) mice (p < 0.01, n = 4). Consistent with the difference in I(to,f), action potential duration was shorter in epicardial cells of gna11(-/-) mice than in wt (p < 0.05), while no difference was found in endocardial myocytes. These results suggest that Galpha(11)-coupled signalling is a central pathway in the regulation of I(to,f). It physiologically exerts a tonic inhibitory influence on the expression of I(to,f) and thereby contributes to the regulation of cardiac repolarisation.
Collapse
|
14
|
He W, Jia Y, Takimoto K. Interaction between transcription factors Iroquois proteins 4 and 5 controls cardiac potassium channel Kv4.2 gene transcription. Cardiovasc Res 2008; 81:64-71. [PMID: 18815185 DOI: 10.1093/cvr/cvn259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The homeobox transcription factor, Iroquois protein 5 (Irx5), plays an essential role in the generation of region-selective expression of Kv4.2 gene across the left ventricular wall of rodent hearts. Here, we analyse molecular mechanisms underlying the Irx5-induced regulation of the rat Kv4.2 promoter. METHODS AND RESULTS The mRNA levels for Irx members in various heart regions were assessed by RT-PCR. A luciferase reporter gene with the rat Kv4.2 promoter was used to test the effects of Irx members on channel promoter activity. Irx3 and Irx5 mRNAs were differentially distributed across the left ventricular wall, whereas Irx4 message was equally abundant in various ventricular regions. Irx5, but not Irx3 or Irx4, increased Kv4.2 promoter activity in 10T1/2 fibroblasts, whereas the transcription factor decreased promoter activity in neonatal ventricular myocytes. These effects were mediated by the C-terminal portion of Irx5. Irx4 appeared to inhibit the Irx5-induced increase in channel promoter activity in 10T1/2 cells. The N-terminal region of Irx4 was necessary and sufficient for this inhibition. Furthermore, when endogenous Irx4 expression was suppressed with siRNA, Irx5 increased channel promoter activity in neonatal myocytes. CONCLUSION These results indicate that Irx5 possesses the ability to activate the Kv4.2 promoter. The abundant Irx4 expression throughout the rat ventricle may play a role in the inverse relationship between Irx5 and Kv4.2 levels across the left ventricular wall.
Collapse
Affiliation(s)
- Wenjie He
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 100 Technology Drive, Bridgeside Point, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
15
|
Brainard AM, Korovkina VP, England SK. Potassium channels and uterine function. Semin Cell Dev Biol 2007; 18:332-9. [PMID: 17596977 PMCID: PMC2012947 DOI: 10.1016/j.semcdb.2007.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/03/2007] [Indexed: 01/14/2023]
Abstract
Ion channels are effector proteins that mediate uterine excitability throughout gestation. This review will focus primarily on the role of potassium channels in regulating myometrial tone in pregnancy and labor contractions. During gestation, potassium channels maintain the uterus in a state of quiescence by contributing to the resting membrane potential and counteracting contractile stimuli. This review summarizes the current knowledge about the significance of the potassium channels in maintaining a normal gestational period and initiating labor contractions at term.
Collapse
Affiliation(s)
- Adam M Brainard
- University of Iowa Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
16
|
Jacobson DA, Cho J, Landa LR, Tamarina NA, Roe MW, Buxbaum JD, Philipson LH. Downstream regulatory element antagonistic modulator regulates islet prodynorphin expression. Am J Physiol Endocrinol Metab 2006; 291:E587-95. [PMID: 16621893 DOI: 10.1152/ajpendo.00612.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium-binding proteins regulate transcription and secretion of pancreatic islet hormones. Here, we demonstrate neuroendocrine expression of the calcium-binding downstream regulatory element antagonistic modulator (DREAM) and its role in glucose-dependent regulation of prodynorphin (PDN) expression. DREAM is distributed throughout beta- and alpha-cells in both the nucleus and cytoplasm. As DREAM regulates neuronal dynorphin expression, we determined whether this pathway is affected in DREAM(-/-) islets. Under low glucose conditions, with intracellular calcium concentrations of <100 nM, DREAM(-/-) islets had an 80% increase in PDN message compared with controls. Accordingly, DREAM interacts with the PDN promoter downstream regulatory element (DRE) under low calcium (<100 nM) conditions, inhibiting PDN transcription in beta-cells. Furthermore, beta-cells treated with high glucose (20 mM) show increased cytoplasmic calcium (approximately 200 nM), which eliminates DREAM's interaction with the DRE, causing increased PDN promoter activity. As PDN is cleaved into dynorphin peptides, which stimulate kappa-opioid receptors expressed predominantly in alpha-cells of the islet, we determined the role of dynorphin A-(1-17) in glucagon secretion from the alpha-cell. Stimulation with dynorphin A-(1-17) caused alpha-cell calcium fluctuations and a significant increase in glucagon release. DREAM(-/-) islets also show elevated glucagon secretion in low glucose compared with controls. These results demonstrate that PDN transcription is regulated by DREAM in a calcium-dependent manner and suggest a role for dynorphin regulation of alpha-cell glucagon secretion. The data provide a molecular basis for opiate stimulation of glucagon secretion first observed over 25 years ago.
Collapse
|
17
|
Beckett EAH, McCloskey C, O'Kane N, Sanders KM, Koh SD. Effects of female steroid hormones on A-type K+ currents in murine colon. J Physiol 2006; 573:453-68. [PMID: 16581861 PMCID: PMC1779718 DOI: 10.1113/jphysiol.2006.107375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Idiopathic constipation is higher in women of reproductive age than postmenopausal women or men, suggesting that female steroid hormones influence gastrointestinal motility. How female hormones affect motility is unclear. Colonic motility is regulated by ion channels in colonic myocytes. Voltage-dependent K(+) channels serve to set the excitability of colonic muscles. We investigated regulation of Kv 4.3 channel expression in response to acute or chronic changes in female hormones. Patch clamp experiments and quantitative PCR were used to compare outward currents and transcript expression in colonic myocytes from male, non-pregnant, pregnant and ovariectomized mice. Groups of ovariectomized mice received injections of oestrogen or progesterone to investigate the effects of hormone replacement. The capacitance of colonic myocytes from non-pregnant females was larger than in males. Net outward current density in male and ovariectomized mice was higher than in non-pregnant females and oestrogen-treated ovariectomized mice. Current densities in late pregnancy were lower than in female controls. Progesterone had no effect on outward currents. A-type currents were decreased in non-pregnant females compared with ovariectomized mice, and were further decreased by pregnancy or oestrogen replacement. Kv 4.3 transcripts did not differ significantly between groups; however, expression of the potassium channel interacting protein KChIP1 was elevated in ovariectomized mice compared with female controls and oestrogen-treated ovariectomized mice. Delayed rectifier currents were not affected by oestrogen. In the mouse colon, oestrogen suppresses A-type currents, which are important for regulating excitability. These observations suggest a possible link between female hormones and altered colonic motility associated with menses, pregnancy and menopause.
Collapse
Affiliation(s)
- Elizabeth A H Beckett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, MS 352, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
18
|
Bett GCL, Morales MJ, Strauss HC, Rasmusson RL. KChIP2b modulates the affinity and use-dependent block of Kv4.3 by nifedipine. Biochem Biophys Res Commun 2006; 340:1167-77. [PMID: 16414350 DOI: 10.1016/j.bbrc.2005.12.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Rapidly activating Kv4 voltage-gated ion channels are found in heart, brain, and diverse other tissues including colon and uterus. Kv4.3 can co-assemble with KChIP ancillary subunits, which modify kinetic behavior. We examined the affinity and use dependence of nifedipine block on Kv4.3 and its modulation by KChIP2b. Nifedipine (150 microM) reduced peak Kv4.3 current approximately 50%, but Kv4.3/KChIP2b current only approximately 27%. Nifedipine produced a very rapid component of open channel block in both Kv4.3 and Kv4.3/KChIP2b. However, recovery from the blocked/inactivated state was strongly sensitive to KChIP2b. Kv4.3 Thalf,recovery was slowed significantly by nifedipine (120.0+/-12.4 ms vs. 213.1+/-18.2 ms), whereas KChIP2b eliminated nifedipine's effect on recovery: Kv4.3/KChIP2b Thalf,recovery was 45.3+/-7.2 ms (control) and 47.8+/-8.2 ms (nifedipine). Consequently, Kv4.3 exhibited use-dependent nifedipine block in response to a series of depolarizing pulses which was abolished by KChIP2b. KChIPs alter drug affinity and use dependence of Kv4.3.
Collapse
Affiliation(s)
- Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, Department of Gynecology and Obstetrics, School of Medicine and Biomedical Sciences, 124 Sherman Hall, State University of New York at Buffalo, Buffalo, NY 14214-300, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Hypertrophied myocardium is associated with reductions in the transient outward K(+) current (Ito) and expression of pore-forming Kv4.2/4.3 and auxiliary KChIP2 subunits. Here we show that KChIP2 mRNA and protein levels are dramatically decreased to 10% to 30% of control levels in the left ventricle of aorta-constricted rats in vivo and phenylephrine (PE)-treated myocytes in vitro. PE also markedly decreases Ito density. Inhibition of protein kinase Cs (PKCs) does not affect the PE-induced reduction in KChIP2 mRNA level, whereas activation of PKC with phorbol ester (phorbol myristate [PMA]) causes a marked reduction in KChIP2 mRNA level. Pharmacological inhibition of MEKs or overexpression of a dominant-negative MEK1 increases the basal KChIP2 mRNA expression and blocks the PMA-induced decrease in auxiliary subunit mRNA level. In addition, a constitutively active MEK1 decreases the basal KChIP2 mRNA level, and PMA causes no further reduction in auxiliary subunit mRNA level in active MEK1-expressing cells. Furthermore, pharmacological inhibition of JNKs or overexpression of a dominant-negative JNK1 prevents the PE-induced, but not PMA-induced, reduction in KChIP2 mRNA expression. These results suggest that downregulation of KChIP2 expression significantly contributes to the hypertrophy-associated reduction in Ito density. They also indicate that the expression of KChIP2 mRNA is controlled by the 2 branches of mitogen-activated protein kinase pathways: JNKs play a predominant role in mediating the PE-induced reduction, whereas the MEK-ERK pathway influences the basal expression and mediates the PKC-mediated downregulation.
Collapse
Affiliation(s)
| | - Koichi Takimoto
- Correspondence to Koichi Takimoto, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, 3343 Forbes Ave, Pittsburgh, PA 15260. E-mail
| |
Collapse
|