1
|
Beaumont NJ, Holmes HL, Gregory AV, Edwards ME, Rojas JD, Gessner RC, Dayton PA, Kline TL, Romero MF, Czernuszewicz TJ. Assessing Polycystic Kidney Disease in Rodents: Comparison of Robotic 3D Ultrasound and Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2020; 1:1126-1136. [PMID: 33521650 DOI: 10.34067/kid.0003912020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polycystic kidney disease (PKD) is an inherited disorder characterized by renal cyst formation and enlargement of the kidney. PKD severity can be staged noninvasively by measuring total kidney volume (TKV), a promising biomarker that has recently received regulatory qualification. In preclinical mouse models, where the disease is studied and potential therapeutics are evaluated, the most popular noninvasive method of measuring TKV is magnetic resonance imaging (MRI). Although MRI provides excellent 3D resolution and contrast, these systems are expensive to operate, have long acquisition times, and, consequently, are not heavily used in preclinical PKD research. In this study, a new imaging instrument, based on robotic ultrasound (US), was evaluated as a complementary approach for assessing PKD in rodent models. The objective was to determine the extent to which TKV measurements on the robotic US scanner correlated with both in vivo and ex vivo reference standards (MRI and Vernier calipers, respectively). A cross-sectional study design was implemented that included both PKD-affected mice and healthy wild types, spanning sex and age for a wide range of kidney volumes. It was found that US-derived TKV measurements and kidney lengths were strongly associated with both in vivo MRI and ex vivo Vernier caliper measurements (R 2=0.94 and 0.90, respectively). In addition to measuring TKV, renal vascular density was assessed using acoustic angiography (AA), a novel contrast-enhanced US methodology. AA image intensity, indicative of volumetric vascularity, was seen to have a strong negative correlation with TKV (R 2=0.82), suggesting impaired renal vascular function in mice with larger kidneys. These studies demonstrate that robotic US can provide a rapid and accurate approach for noninvasively evaluating PKD in rodent models.
Collapse
Affiliation(s)
| | - Heather L Holmes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Timothy L Kline
- Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Radiology, Mayo Clinic, Rochester, Minnesota
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tomasz J Czernuszewicz
- SonoVol, Inc., Durham, North Carolina.,Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
2
|
García-Eguren G, Sala-Vila A, Giró O, Vega-Beyhart A, Hanzu FA. Long-term hypercortisolism induces lipogenesis promoting palmitic acid accumulation and inflammation in visceral adipose tissue compared with HFD-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E995-E1003. [PMID: 32315213 DOI: 10.1152/ajpendo.00516.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) play critical roles in adipose tissue metabolism. Here, we compare in a mouse model the effects of chronic glucocorticoid excess and diet-induced obesity on white adipose tissue mass and distribution, by focusing on visceral adipose tissue (VAT) fatty acid composition changes, the role of de novo lipogenesis (DNL) and the inflammatory state. We used a noninvasive mouse model of hypercortisolism to compare GC-induced effects on adipose tissue with diet-induced obesity [high-fat diet (HFD) 45%] and control mice after 10 wk of treatment. Subcutaneous adipose tissue (SAT) and VAT mass and distribution were measured by nuclear magnetic resonance imaging (NMRI). Fatty acid composition in VAT was analyzed by NMR spectroscopy and gas chromatography. Gene expression of key enzymes involved in DNL was analyzed in liver and VAT. Macrophage infiltration markers and proinflammatory cytokines were measured by gene expression in VAT. HFD or GC treatment induced similar fat mass expansion with comparable distribution between SAT and VAT depots. However, in VAT, GCs induce DNL, higher palmitic acid (PA), macrophage infiltration, and proinflammatory cytokine levels, accompanied by systemic nonesterified fatty acid (NEFA) elevation, hyperinsulinemia, and higher homeostatic model assessment for insulin resistance (HOMA-IR) levels compared with diet-induced obesity. Thus, chronic hypercortisolism induces DNL and fatty acid composition changes toward increased SFA and reduced polyunsaturated fatty acid (PUFA) levels in VAT, promoting macrophage recruitment and proinflammatory cytokines, suggesting a worse cardiometabolic profile even compared with HFD mice.
Collapse
Affiliation(s)
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
| | | | - Felicia A Hanzu
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
- Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Soares AF, Duarte JMN, Gruetter R. Increased hepatic fatty acid polyunsaturation precedes ectopic lipid deposition in the liver in adaptation to high-fat diets in mice. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:341-354. [PMID: 29027041 DOI: 10.1007/s10334-017-0654-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We monitored hepatic lipid content (HLC) and fatty acid (FA) composition in the context of enhanced lipid handling induced by a metabolic high-fat diet (HFD) challenge and fasting. MATERIALS AND METHODS Mice received a control diet (10% of kilocalories from fat, N = 14) or an HFD (45% or 60% of kilocalories from fat, N = 10 and N = 16, respectively) for 26 weeks. A subset of five mice receiving an HFD (60% of kilocalories from fat) were switched to the control diet for the final 7 weeks. At nine time points, magnetic resonance spectroscopy was performed in vivo at 14.1 T, interleaved with glucose tolerance tests. RESULTS Glucose intolerance promptly developed with the HFD, followed by a progressive increase of fasting insulin level, simultaneously with that of HLC. These metabolic defects were normalized by dietary reversal. HFD feeding immediately increased polyunsaturation of hepatic FA, before lipid accumulation. Fasting-induced changes in hepatic lipids (increased HLC and FA polyunsaturation, decreased FA monounsaturation) in control-diet-fed mice were not completely reproduced in HFD-fed mice, not even after dietary reversal. CONCLUSION A similar adaptation of hepatic lipids to both fasting and an HFD suggests common mechanisms of lipid trafficking from adipose tissue to the liver. Altered hepatic lipid handling with fasting indicates imperfect metabolic recovery from HFD exposure.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland.
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Marzola P, Boschi F, Moneta F, Sbarbati A, Zancanaro C. Preclinical In vivo Imaging for Fat Tissue Identification, Quantification, and Functional Characterization. Front Pharmacol 2016; 7:336. [PMID: 27725802 PMCID: PMC5035738 DOI: 10.3389/fphar.2016.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022] Open
Abstract
Localization, differentiation, and quantitative assessment of fat tissues have always collected the interest of researchers. Nowadays, these topics are even more relevant as obesity (the excess of fat tissue) is considered a real pathology requiring in some cases pharmacological and surgical approaches. Several weight loss medications, acting either on the metabolism or on the central nervous system, are currently under preclinical or clinical investigation. Animal models of obesity have been developed and are widely used in pharmaceutical research. The assessment of candidate drugs in animal models requires non-invasive methods for longitudinal assessment of efficacy, the main outcome being the amount of body fat. Fat tissues can be either quantified in the entire animal or localized and measured in selected organs/regions of the body. Fat tissues are characterized by peculiar contrast in several imaging modalities as for example Magnetic Resonance Imaging (MRI) that can distinguish between fat and water protons thank to their different magnetic resonance properties. Since fat tissues have higher carbon/hydrogen content than other soft tissues and bones, they can be easily assessed by Computed Tomography (CT) as well. Interestingly, MRI also discriminates between white and brown adipose tissue (BAT); the latter has long been regarded as a potential target for anti-obesity drugs because of its ability to enhance energy consumption through increased thermogenesis. Positron Emission Tomography (PET) performed with 18F-FDG as glucose analog radiotracer reflects well the metabolic rate in body tissues and consequently is the technique of choice for studies of BAT metabolism. This review will focus on the main, non-invasive imaging techniques (MRI, CT, and PET) that are fundamental for the assessment, quantification and functional characterization of fat deposits in small laboratory animals. The contribution of optical techniques, which are currently regarded with increasing interest, will be also briefly described. For each technique the physical principles of signal detection will be overviewed and some relevant studies will be summarized. Far from being exhaustive, this review has the purpose to highlight some strategies that can be adopted for the in vivo identification, quantification, and functional characterization of adipose tissues mainly from the point of view of biophysics and physiology.
Collapse
Affiliation(s)
- Pasquina Marzola
- Department of Computer Science, University of Verona, VeronaItaly
| | - Federico Boschi
- Department of Computer Science, University of Verona, VeronaItaly
| | - Francesco Moneta
- Preclinical Imaging Division – Bruker BioSpin, Bruker Italia s.r.l, MilanoItaly
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, VeronaItaly
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, VeronaItaly
| |
Collapse
|
5
|
Thompson N, Huber K, Bedürftig M, Hansen K, Miles-Chan J, Breier BH. Metabolic programming of adipose tissue structure and function in male rat offspring by prenatal undernutrition. Nutr Metab (Lond) 2014; 11:50. [PMID: 25352910 PMCID: PMC4210519 DOI: 10.1186/1743-7075-11-50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/08/2014] [Indexed: 12/25/2022] Open
Abstract
Background A number of different pathways to obesity with different metabolic outcomes are recognised. Prenatal undernutrition in rats leads to increased fat deposition in adulthood. However, the form of obesity is metabolically distinct from obesity induced through other pathways (e.g. diet-induced obesity). Previous rat studies have shown that maternal undernutrition during pregnancy led to insulin hyper-secretion and obesity in offspring, but not to systemic insulin resistance. Increased muscle and liver glycogen stores indicated that glucose is taken up efficiently, reflecting an active physiological function of these energy storage tissues. It is increasingly recognised that adipose tissue plays a central role in the regulation of metabolism and pathophysiology of obesity development. The present study investigated the cell size and endocrine responsiveness of subcutaneous and visceral adipose tissue from prenatally undernourished rats. We aimed to identify whether these adipose tissue depots contribute to the altered energy metabolism observed in these offspring. Methods Adipocyte size was measured in both subcutaneous (ScAT) and retroperitoneal adipose tissue (RpAT) in male prenatally ad libitum fed (AD) or prenatally undernourished (UN) rat offspring. Metabolic responses were investigated in adipose tissue explants stimulated by insulin and beta3 receptor agonists ex vivo. Expression of markers of insulin signalling was determined by Western blot analyses. Data were analysed by unpaired t-test or Two Way ANOVA followed by Fisher’s PLSD post-hoc test, where appropriate. Results Adipocytes in offspring of undernourished mothers were larger, even at a lower body weight, in both RpAT and ScAT. The insulin response of adipose tissue was reduced in ScAT, and statistically absent in RpAT of UN rats compared with control. This lack of RpAT insulin response was associated with reduced expression of insulin signalling pathway proteins. Adrenergic receptor-driven lipolysis was observed in both adipose depots; however insulin failed to express its anti-lipolytic effect in RpAT in both, AD and UN offspring. Conclusions Metabolic dysregulation in offspring of undernourished mothers is mediated by increased adipocyte size and reduced insulin responsiveness in both ScAT and especially in RpAT. These functional and morphological changes in adipocytes were accompanied by impaired activity of the insulin signalling cascade highlighting the important role of different adipose tissue depots in the pathogenesis of metabolic disorders.
Collapse
Affiliation(s)
- Nichola Thompson
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Korinna Huber
- Department of Physiology, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Mirijam Bedürftig
- Department of Physiology, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Kathrin Hansen
- Department of Physiology, University of Veterinary Medicine, 30173 Hannover, Germany
| | - Jennifer Miles-Chan
- Institute of Physiology, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bernhard H Breier
- Institute of Food, Nutrition and Human Health, College of Health, Massey University, Albany Campus, Auckland, 1142 New Zealand
| |
Collapse
|
6
|
High-fat feeding rapidly induces obesity and lipid derangements in C57BL/6N mice. Mamm Genome 2013; 24:240-51. [PMID: 23712496 PMCID: PMC3685703 DOI: 10.1007/s00335-013-9456-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/11/2013] [Indexed: 02/07/2023]
Abstract
C57BL/6N (B6N) is becoming the standard background for genetic manipulation of the mouse genome. The B6N, whose genome is very closely related to the reference C57BL/6J genome, is versatile in a wide range of phenotyping and experimental settings and large repositories of B6N ES cells have been developed. Here, we present a series of studies showing the baseline characteristics of B6N fed a high-fat diet (HFD) for up to 12 weeks. We show that HFD-fed B6N mice show increased weight gain, fat mass, and hypercholesterolemia compared to control diet-fed mice. In addition, HFD-fed B6N mice display a rapid onset of lipid accumulation in the liver with both macro- and microvacuolation, which became more severe with increasing duration of HFD. Our results suggest that the B6N mouse strain is a versatile background for studying diet-induced metabolic syndrome and may also represent a model for early nonalcoholic fatty liver disease.
Collapse
|