1
|
He H, Su X, Yang H, Zhang Y, Duan C, Yang R, Xie F, Liu Y, Liu W. Effects of prolactin on the proliferation and hormone secretion of ovine granulosa cells in vitro. Anim Biosci 2024; 37:1712-1725. [PMID: 38665071 PMCID: PMC11366507 DOI: 10.5713/ab.23.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of prolactin (PRL) on the proliferation and apoptosis of ovine ovarian granulosa cells (GCs) and the secretion of estrogen (E2) and progesterone (P4), as well as to explore the effects of PRL on related genes and proteins. METHODS We isolated ovarian GCs from 1-year-old small-tail Han sheep and identified PRL receptor (PRLR) on ovaries and follicle stimulating hormone receptor (FSHR) on ovarian GCs, respectively, using immunohistochemistry. PRL (0, 0.05, 0.50, 5.00 μg/mL) were added to GCs in vitro along with FSH, cell proliferation was measured by cell counting Kit-8 (CCK-8) and apoptosis by flow cytometry. The measurement of E2 and P4 content by enzyme-linked immunosorbent assays after 48 h and 72 h. The expression of functional genes and proteins was identified by real-time quantitative polymerase chain reaction (RTqPCR) and Western-blot after 48 h. RESULTS PRLR was expressed in both follicular GCs and corpus luteum, whereas FSHR was expressed specifically. The proliferative activity was lower on day 1 while higher on day 4 and day 5. The apoptosis rate of GCs in the 0.05 μg/mL group was significantly higher than that in the control group after treatment with PRL for 24 h (p<0.05). Compared with the control group, the secretion of E2 in GCs was reduced significantly (p<0.05) in PRL treatment for 48 h and 72 h, while the secretion of P4 was significantly increased (p<0.05). The mRNA expression levels of PRLR, FSHR, LHR, CYP11A1, HSD3B7, and STAR were significantly higher than those in the control group (p<0.01), and the relative abundance of BCL2 in all PRL group were increased after PRL treatment. CONCLUSION PRL promoted the proliferation of GCs and supraphysiological concentrations inhibited apoptosis caused by down-regulation of BAX and up-regulation of BCL2. PRL inhibited E2 by down-regulating CYP19A1 and promoted P4 by up-regulating CYP11A1, STAR, and HSD3B7.
Collapse
Affiliation(s)
- Haiying He
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Xiaohui Su
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
| | - Huiguo Yang
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
- Animal Husbandry Institute, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830052,
China
| | - Yingjie Zhang
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Chunhui Duan
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Ruochen Yang
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Fengmei Xie
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
| | - Yueqin Liu
- Department of Animal Science and Biotechnology, Hebei Agricultural University, Baoding, Hebei 071000,
China
| | - Wujun Liu
- Department of Animal Science and Biotechnology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052,
China
- Moyu Bibang Sheep Industry Development Co. LTD, Hotan Prefecture, Xinjiang 848100,
China
| |
Collapse
|
2
|
Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020; 9:cells9071679. [PMID: 32668602 PMCID: PMC7407943 DOI: 10.3390/cells9071679] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cathepsins are the most abundant lysosomal proteases that are mainly found in acidic endo/lysosomal compartments where they play a vital role in intracellular protein degradation, energy metabolism, and immune responses among a host of other functions. The discovery that cathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigm shift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomal locations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorly upregulated in pathological states and are implicated in a wide range of diseases including cancer and cardiovascular diseases. Taking advantage of the differential expression of the cathepsins during pathological conditions, much research is focused on using cathepsins as diagnostic markers and therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors is constantly emerging to be safe and efficient. Moreover, recent development of proteomic-based approaches for the identification of novel physiological substrates offers a major opportunity to understand the mechanism of cathepsin action. In this review, we summarize the available evidence regarding the role of cathepsins in health and disease, discuss their potential as biomarkers of disease progression, and shed light on the potential of extracellular cathepsin inhibitors as safe therapeutic tools.
Collapse
|
3
|
Xie W, Liu H, Liu Q, Gao Q, Gao F, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of prolactin, prolactin receptor and STAT5 in the scented glands of the male muskrats (Ondatra zibethicus). Eur J Histochem 2019; 63. [PMID: 30652434 PMCID: PMC6340307 DOI: 10.4081/ejh.2019.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 01/31/2023] Open
Abstract
Prolactin (PRL) production in mammals has been demonstrated in extrapituitary gland, which can activate autocrine/ paracrine signaling pathways to regulate physiological activity. In the current study, we characterized the gene expression profiles of PRL, prolactin receptor (PRLR) and signal transducers and activators of transcription 5 (STAT5) in the scented glandular tissues of the muskrats, to further elucidate the relationship between PRL and the scented glandular functions of the muskrats. The weight and volume of the scented glands in the breeding season were significantly higher than those of the non-breeding season. Immunohistochemical data showed that PRL, PRLR and STAT5/phospho-STAT5 (pSTAT5) were found in the glandular and epithelial cells of the scented glands in both seasons. Furthermore, we found that PRL, PRLR and STAT5 had higher immunoreactivities in the scented glands during the breeding season when compared to those of the non-breeding season. In parallel, the gene expressions of PRL, PRLR and STAT5 were significantly higher in the scented glands during the breeding season than those of the non-breeding season. The concentrations of PRL in scented glandular tissues and sera were measured by enzymelinked immunosorbent assay (ELISA), and their levels were both notably higher in the breeding season than those of the nonbreeding season. These findings suggested that the scented glands of the muskrats were capable of extrapituitary synthesis of PRL, which might attribute PRL a specific function to an endocrine or autocrine/paracrine mediator.
Collapse
Affiliation(s)
- Wenqian Xie
- Beijing Forestry University, College of Biological Sciences and Technology, Laboratory of Animal Physiology.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Prostaglandin F2α-induced luteolysis involves activation of Signal transducer and activator of transcription 3 and inhibition of AKT signaling in cattle. Mol Reprod Dev 2017; 84:486-494. [DOI: 10.1002/mrd.22798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
|
5
|
Romereim SM, Summers AF, Pohlmeier WE, Zhang P, Hou X, Talbott HA, Cushman RA, Wood JR, Davis JS, Cupp AS. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol Cell Endocrinol 2017; 439:379-394. [PMID: 27693538 PMCID: PMC6711749 DOI: 10.1016/j.mce.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 01/24/2023]
Abstract
After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these four cell types. Analysis of the RNA present in each bovine cell type using Affymetrix microarrays yielded new cell-specific genetic markers, functional insight into the behavior of each cell type via Gene Ontology Annotations and Ingenuity Pathway Analysis, and evidence of small and large luteal cell lineages using Principle Component Analysis. Enriched expression of select genes for each cell type was validated by qPCR. This expression analysis offers insight into cell-specific behaviors and the differentiation process that transforms somatic follicular cells into luteal cells.
Collapse
Affiliation(s)
- Sarah M Romereim
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - Adam F Summers
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2).
| | - William E Pohlmeier
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - Pan Zhang
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Xiaoying Hou
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Heather A Talbott
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Nutrition and Environmental Management Research, Spur 18D, Clay Center, NE 68933, USA.
| | - Jennifer R Wood
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2)
| | - John S Davis
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Andrea S Cupp
- University of Nebraska-Lincoln, Animal Science, P.O. Box 830908, C203 ANSC, Lincoln, NE 68583-0908, USA(2).
| |
Collapse
|
6
|
Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics. Neurochem Int 2016; 101:132-143. [PMID: 27840125 DOI: 10.1016/j.neuint.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, Second University of Naples, Naples, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| |
Collapse
|
7
|
Morais RDVS, Thomé RG, Santos HB, Bazzoli N, Rizzo E. Relationship between bcl-2, bax, beclin-1, and cathepsin-D proteins during postovulatory follicular regression in fish ovary. Theriogenology 2015; 85:1118-31. [PMID: 26719039 DOI: 10.1016/j.theriogenology.2015.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
In fish ovaries, postovulatory follicles (POFs) are key biomarkers of breeding and provide an interesting model for studying the relationship between autophagy and apoptosis. In this study, we investigated the immunohistochemical expression of autophagic and apoptotic proteins to improve the knowledge on the mechanisms regulating ovarian remodeling after spawning. Females from three neotropical fish species kept in captivity were submitted to hormonal induction. After ova stripping, ovarian sections were sampled daily until 5 days postspawning (dps). Similar events of POF regression were detected by histology, terminal transferase-mediated dUTP nick-end labeling (TUNEL), and electron microscopy in the three species: follicular cells hypertrophy, progressive disintegration of the basement membrane, gradual closing of the follicular lumen, theca thickening, and formation of large autophagic vacuoles preceding apoptosis of the follicular cells. Autophagic and apoptotic proteins were assessed by immunohistochemistry. Morphometric analysis of the immunolabeling revealed a more intense reaction for bcl-2 and beclin-1 (BECN1) in POFs at 0 to 1 dps and for bax at 2 to 3 dps (P < 0.001), the later period being the peak of apoptosis of the follicular cells. The immunostaining for cathepsin-D was more elevated until 2 to 3 dps and decreased significantly at 4 to 5 dps, when the POFs were in late stage of regression. Double labeling for BECN1 and caspase-3 indicated a shift in the relationship between autophagy and apoptosis at 2 to 3 dps, a critical period in determining the fate of follicular cells in POFs. Together, these results indicate that the bcl-2 family, BECN1, and cathepsin-D can be involved in the regulation of ovarian remodeling in teleost fish.
Collapse
Affiliation(s)
- Roberto D V S Morais
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Ralph G Thomé
- Laboratório de Processamento de Tecidos e Biologia Experimental, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brasil
| | - Hélio B Santos
- Laboratório de Processamento de Tecidos e Biologia Experimental, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brasil
| | - Nilo Bazzoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brasil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
8
|
Harvey S, Martínez-Moreno CG, Luna M, Arámburo C. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: An overview. Gen Comp Endocrinol 2015; 220:103-11. [PMID: 25448258 DOI: 10.1016/j.ygcen.2014.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/03/2014] [Indexed: 02/07/2023]
Abstract
Growth hormone (GH) and prolactin (PRL) are both endocrines that are synthesized and released from the pituitary gland into systemic circulation. Both are therefore hormones and both have numerous physiological roles mediated through a myriad of target sites and both have pathophysiological consequences when present in excess or deficiency. GH or PRL gene expression is not, however, confined to the anterior pituitary gland and it occurs widely in many of their central and peripheral sites of action. This may reflect "leaky gene" phenomena and the fact that all cells have the potential to express every gene that is present in their genome. However, the presence of GH or PRL receptors in these extrapituitary sites of GH and PRL production suggests that they are autocrine or paracrine sites of GH and PRL action. These local actions often occur prior to the ontogeny of pituitary somatotrophs and lactotrophs and they may complement or differ from the roles of their pituitary counterparts. Many of these local actions are also of physiological significance, since they are impaired by a blockade of local GH or PRL production or by an antagonism of local GH or PRL action. These local actions may also be of pathophysiological significance, since autocrine or paracrine actions of GH and PRL are thought to be causally involved in a number of disease states, particularly in cancer. Autocrine GH for instance, is thought to be more oncogenic than pituitary GH and selective targeting of the autocrine moiety may provide a therapeutic approach to prevent tumor progression. In summary, GH and PRL are not just endocrine hormones, as they have autocrine and/or paracrine roles in health and disease.
Collapse
Affiliation(s)
- Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada.
| | | | - Maricela Luna
- Departamento de Neurobiología, Celular y Molecular Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología, Celular y Molecular Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| |
Collapse
|
9
|
Triebel J, Bertsch T, Bollheimer C, Rios-Barrera D, Pearce CF, Hüfner M, Martínez de la Escalera G, Clapp C. Principles of the prolactin/vasoinhibin axis. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1193-203. [PMID: 26310939 PMCID: PMC4666935 DOI: 10.1152/ajpregu.00256.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022]
Abstract
The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany;
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Cornelius Bollheimer
- Institute for Biomedicine of Aging, Friedrich-Alexander Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Daniel Rios-Barrera
- European Molecular Biology Laboratory, Developmental Biology Unit, Directors' Research, Heidelberg, Germany
| | - Christy F Pearce
- Southern Colorado Maternal Fetal Medicine, St. Francis Medical Campus, Centura Health, Colorado Springs, Colorado
| | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|
10
|
Pratt SL, Calcatera SM, Stowe HM, Dimmick MA, Schrick FN, Duckett SK, Andrae JG. Identification of bovine prolactin in seminal fluid, and expression and localization of the prolactin receptor and prolactin-inducible protein in the testis and epididymis of bulls exposed to ergot alkaloids. Theriogenology 2014; 83:662-9. [PMID: 25533929 DOI: 10.1016/j.theriogenology.2014.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/05/2022]
Abstract
The objectives of this study were to determine (1) the presence and expression levels of bovine prolactin receptor (PRLR) and prolactin-inducible protein (PIP) in bovine testis and epididymis, and (2) the presence and concentrations of prolactin (PRL) present in seminiferous fluid in bulls consuming diets with (E+) or without (E-) ergot alkaloids. Bulls (n = 8) were sacrificed after 126 days (group A) of E+ or E- treatment or 60 days after all bulls (n = 6) were switched to the E- ration (group B). End point and real-time quantitative reverse transcription-polymerase chain reaction and immunohistochemistry were conducted on testis and epididymis samples to establish the presence and relative expression of PRLR and PIP. Seminal fluid samples obtained from bulls consuming E- and E+ diets were subjected to RIA for PRL. Both PIP and PRLR were present in testis and epididymis as determined by reverse transcription-polymerase chain reaction and immunohistochemistry. Prolactin-inducible protein mRNA abundance was affected by time of slaughter in testis and epididymis head, respectively (P < 0.05). Prolactin receptor mRNA expression was affected by time of slaughter in the epididymis (P < 0.05) and differed in testis samples because of treatment (P < 0.05). Radioimmunoassay establishes the presence of PRL in seminal fluid; however, differences in the concentration of PRL over two separate studies were inconsistent, possibly because of differences in diet. The presence and localization of the PRLR are consistent with expression data reported for other species, and the presence of PIP and PRL in seminal fluid is consistent with data generated in humans.
Collapse
Affiliation(s)
- S L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA.
| | - S M Calcatera
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| | - H M Stowe
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| | - M A Dimmick
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| | - F N Schrick
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee, USA
| | - S K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| | - J G Andrae
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
11
|
Marano RJ, Ben-Jonathan N. Minireview: Extrapituitary prolactin: an update on the distribution, regulation, and functions. Mol Endocrinol 2014; 28:622-33. [PMID: 24694306 DOI: 10.1210/me.2013-1349] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prolactin (PRL) is an important hormone with many diverse functions. Although it is predominantly produced by lactrotrophs of the pituitary there are a number of other organs, cells, and tissues in which PRL is expressed and secreted. The impact of this extrapituitary PRL (ePRL) on localized metabolism and cellular functions is gaining widespread attention. In 1996, a comprehensive review on ePRL was published. However, since this time, there have been a number of advancements in ePRL research. This includes a greater understanding of the components of the control elements located within the superdistal promoter of the ePRL gene. Furthermore, several new sites of ePRL have been discovered, each under unique control by a range of transcription factors and elements. The functional role of ePRL at each of the expression sites also varies widely leading to gender and site bias. This review aims to provide an update to the research conducted on ePRL since the 1996 review. The focus is on new data concerning the sites of ePRL expression, its regulation, and its function within the organs in which it is expressed.
Collapse
Affiliation(s)
- Robert J Marano
- Ear Science Institute Australia (R.J.M.), Subiaco, Western Australia, 6008, Australia; Ear Sciences Centre, School of Surgery (R.J.M.), The University of Western Australia, Nedlands, Western Australia, 6009, Australia; and Department of Cancer Biology (N.B-J.), University of Cincinnati Medical School, Cincinnati, Ohio 45267
| | | |
Collapse
|
12
|
Basini G, Baioni L, Bussolati S, Grolli S, Grasselli F. Prolactin is a potential physiological modulator of swine ovarian follicle function. ACTA ACUST UNITED AC 2014; 189:22-30. [DOI: 10.1016/j.regpep.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
13
|
Abstract
CD (cathepsin D) is a ubiquitous lysosomal hydrolase involved in a variety of pathophysiological functions, including protein turnover, activation of pro-hormones, cell death and embryo development. CD-mediated proteolysis plays a pivotal role in tissue and organ homoeostasis. Altered expression and compartmentalization of CD have been observed in diseased muscle fibres. Whether CD is actively involved in muscle development, homoeostasis and dystrophy remains to be demonstrated. Zebrafish (Danio rerio) is emerging as a valuable ‘in vivo’ vertebrate model for muscular degeneration and congenital myopathies. In this work, we report on the perturbance of the somitic musculature development in zebrafish larvae caused by MPO (morpholino)-mediated silencing of CD in oocytes at the time of fertilization. Restoring CD expression, using an MPO-non-matching mutated mRNA, partially rescued the normal phenotype, confirming the indispensable role of CD in the correct development and integrity of the somitic musculature. This is the first report showing a congenital myopathy caused by CD deficiency in a vertebrate experimental animal model.
Collapse
|
14
|
Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thüsen JH, Twickler MTB, Spek CA, Goffin V, Griffioen AW, Borensztajn KS. Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 2013; 16:2035-48. [PMID: 22128761 PMCID: PMC3822974 DOI: 10.1111/j.1582-4934.2011.01499.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prolactin is best known as the polypeptide anterior pituitary hormone, which regulates the development of the mammary gland. However, it became clear over the last decade that prolactin contributes to a broad range of pathologies, including breast cancer. Prolactin is also involved in angiogenesis via the release of pro-angiogenic factors by leukocytes and epithelial cells. However, whether prolactin also influences endothelial cells, and whether there are functional consequences of prolactin-induced signalling in the perspective of angiogenesis, remains so far elusive. In the present study, we show that prolactin induces phosphorylation of ERK1/2 and STAT5 and induces tube formation of endothelial cells on Matrigel. These effects are blocked by a specific prolactin receptor antagonist, del1-9-G129R-hPRL. Moreover, in an in vivo model of the chorioallantoic membrane of the chicken embryo, prolactin enhances vessel density and the tortuosity of the vasculature and pillar formation, which are hallmarks of intussusceptive angiogenesis. Interestingly, while prolactin has only little effect on endothelial cell proliferation, it markedly stimulates endothelial cell migration. Again, migration was reverted by del1-9-G129R-hPRL, indicating a direct effect of prolactin on its receptor. Immunohistochemistry and spectral imaging revealed that the prolactin receptor is present in the microvasculature of human breast carcinoma tissue. Altogether, these results suggest that prolactin may directly stimulate angiogenesis, which could be one of the mechanisms by which prolactin contributes to breast cancer progression, thereby providing a potential tool for intervention.
Collapse
Affiliation(s)
- Anne Q Reuwer
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ginther O, Santos V, Mir R, Beg M. Role of LH in the progesterone increase during the bromocriptine-induced prolactin decrease in heifers. Theriogenology 2012; 78:1969-76. [DOI: 10.1016/j.theriogenology.2012.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/21/2012] [Accepted: 08/01/2012] [Indexed: 11/26/2022]
|
16
|
Pinaffi F, Pugliesi G, Hannan M, Silva L, Beg M, Ginther O. Direct effect of PGF2α pulses on PRL pulses, based on inhibition of PRL or PGF2α secretion in heifers. Theriogenology 2012; 78:678-87. [DOI: 10.1016/j.theriogenology.2012.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/23/2012] [Accepted: 03/03/2012] [Indexed: 02/04/2023]
|
17
|
Stimulation of a pulse of LH and reduction in PRL concentration by a physiologic dose of GnRH before, during, and after luteolysis in heifers. Anim Reprod Sci 2012; 133:52-62. [DOI: 10.1016/j.anireprosci.2012.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/02/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
|
18
|
Clapp C, Martínez de la Escalera L, Martínez de la Escalera G. Prolactin and blood vessels: a comparative endocrinology perspective. Gen Comp Endocrinol 2012; 176:336-40. [PMID: 22245261 DOI: 10.1016/j.ygcen.2011.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/25/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023]
Abstract
The hormone prolactin (PRL), fundamental for lactation in mammals, is known to exert a wide diversity of actions in the various vertebrate groups. Blood vessels are surfacing as important PRL targets, contributing to these hormonal functions. PRL promotes the growth of new blood vessels (angiogenesis) and is proteolytically cleaved to vasoinhibins, a family of peptides (including 16-kDa PRL) with potent antiangiogenic and blood vessel regression effects. These opposing actions point to the regulation of the proteases responsible for PRL cleavage as an efficient way to balance blood vessel growth and involution. This review briefly summarizes the effects of PRL and vasoinhibins on blood vessels in mammals and discusses whether similar vascular actions could contribute to the effects of PRL on the development, growth, and reproduction of lower vertebrates. A comparative study in diverse species may lead to a better understanding of blood vessels as a driving force for the biological actions of PRL.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| | | | | |
Collapse
|
19
|
Kinet V, Castermans K, Herkenne S, Maillard C, Blacher S, Lion M, Noël A, Martial JA, Struman I. The angiostatic protein 16K human prolactin significantly prevents tumor-induced lymphangiogenesis by affecting lymphatic endothelial cells. Endocrinology 2011; 152:4062-71. [PMID: 21862622 DOI: 10.1210/en.2011-1081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 16-kDa angiostatic N-terminal fragment of human prolactin (16K hPRL) has been reported to be a new potent anticancer compound. This protein has already proven its efficiency in several mouse tumor models in which it prevented tumor-induced angiogenesis and delayed tumor growth. In addition to angiogenesis, tumors also stimulate the formation of lymphatic vessels, which contribute to tumor cell dissemination and metastasis. However, the role of 16K hPRL in tumor-induced lymphangiogenesis has never been investigated. We establish in vitro that 16K hPRL induces apoptosis and inhibits proliferation, migration, and tube formation of human dermal lymphatic microvascular endothelial cells. In addition, in a B16F10 melanoma mouse model, we found a decreased number of lymphatic vessels in the primary tumor and in the sentinel lymph nodes after 16K hPRL treatment. This decrease is accompanied by a significant diminished expression of lymphangiogenic markers in primary tumors and sentinel lymph nodes as determined by quantitative RT-PCR. These results suggest, for the first time, that 16K hPRL is a lymphangiostatic as well as an angiostatic agent with antitumor properties.
Collapse
Affiliation(s)
- Virginie Kinet
- GIGA Research, Molecular Biology and Genetic Engineering Unit, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ferraris J, Radl DB, Zárate S, Jaita G, Eijo G, Zaldivar V, Clapp C, Seilicovich A, Pisera D. N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary. PLoS One 2011; 6:e21806. [PMID: 21760910 PMCID: PMC3131298 DOI: 10.1371/journal.pone.0021806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022] Open
Abstract
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.
Collapse
Affiliation(s)
- Jimena Ferraris
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Betiana Radl
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guadalupe Eijo
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Zaldivar
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, México
| | - Adriana Seilicovich
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C. Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 2011; 6:e21908. [PMID: 21747967 PMCID: PMC3128622 DOI: 10.1371/journal.pone.0021908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/14/2011] [Indexed: 02/04/2023] Open
Abstract
The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Matteo Ozzano
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Vera Mugoni
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roberta Castino
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Massimo Santoro
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
- * E-mail:
| |
Collapse
|
22
|
Spanel-Borowski K. Five different phenotypes of endothelial cell cultures from the bovine corpus luteum: present outcome and role of potential dendritic cells in luteolysis. Mol Cell Endocrinol 2011; 338:38-45. [PMID: 21371521 DOI: 10.1016/j.mce.2011.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 02/21/2011] [Indexed: 01/07/2023]
Abstract
Progress in understanding the background of structural luteolysis depends on insights into the physiological function of innate immunity (INIM), in particular the presence of dendritic cells (DCs) in the corpus luteum (CL). For this reason, the cultures of five endothelial cell-like phenotypes derived from the bovine CL and their long-lasting analysis (morphology, function, and origin) become important. Types 1 and 2 represent microvascular endothelial cells with cytokeratin (CK) expression, assumed to be danger-sensing cells. Types 3 and 4 express features of common endothelial cells. Type 5 indicates a steroidogenic cell type, which could be derived from steroidogenic CK(+) cells in the CL of development after loss of CK expression. Type 5 is a promising candidate to become a mature DC. It might act with the microvascular CK(+) cell/type 1 like a luteovascular unit, which connects INIM with adaptive/cell-mediated immunity (ADIM) in structural luteolysis.
Collapse
|
23
|
Lkhider M, Seddiki T, Ollivier-Bousquet M. La prolactine et son fragment 16 kDa dans les tissus de mammifères. Med Sci (Paris) 2010; 26:1049-55. [DOI: 10.1051/medsci/201026121049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Cruz-Soto ME, Cosío G, Jeziorski MC, Vargas-Barroso V, Aguilar MB, Cárabez A, Berger P, Saftig P, Arnold E, Thebault S, Martínez de la Escalera G, Clapp C. Cathepsin D is the primary protease for the generation of adenohypophyseal vasoinhibins: cleavage occurs within the prolactin secretory granules. Endocrinology 2009; 150:5446-54. [PMID: 19819948 DOI: 10.1210/en.2009-0390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vasoinhibins are a family of N-terminal prolactin (PRL) fragments that inhibit blood vessel growth, dilation, permeability, and survival. The aspartyl endoprotease cathepsin D is active at acidic pH and can cleave rat PRL to generate vasoinhibins. We investigated whether and where vasoinhibins could be generated by cathepsin D in the adenohypophysis of rats and mice and whether their production could be gender dependent. Vasoinhibins were detected in primary cultures of rat adenohypophyseal cells by Western blot with antibodies directed against the N terminus of PRL but not the C terminus. Ovariectomized, estrogen-treated females show greater levels of adenohypophyseal vasoinhibins than males. Peptide sequencing analysis revealed that the cleaved form of PRL in rat adenohypophyseal extracts contains the PRL N terminus and a second N terminus starting at Ser(149), the reported cleavage site of cathepsin D in rat PRL. In addition, cathepsin D inhibition by pepstatin A reduced vasoinhibin levels in rat adenohypophyseal cell cultures. Confocal and electron microscopy showed the colocalization of cathepsin D and PRL within rat adenohypophyseal cells and secretory granules, and a subcellular fraction of rat adenohypophysis enriched in secretory granules contained cathepsin D activity able to generate vasoinhibins from PRL. Of note, vasoinhibins were absent in the adenohypophysis of mice lacking the cathepsin D gene but not in wild-type mice. These findings show that cathepsin D is the main protease responsible for the generation of adenohypophyseal vasoinhibins and that its action can take place within the secretory granules of lactotrophs.
Collapse
Affiliation(s)
- Martha E Cruz-Soto
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230 Querétaro, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
26
|
Erdmann S, Ricken A, Hummitzsch K, Merkwitz C, Schliebe N, Gaunitz F, Strotmann R, Spanel-Borowski K. Inflammatory cytokines increase extracellular procathepsin D in permanent and primary endothelial cell cultures. Eur J Cell Biol 2008; 87:311-23. [DOI: 10.1016/j.ejcb.2008.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 11/16/2022] Open
|
27
|
Clapp C, Thebault S, Martínez de la Escalera G. Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia 2008; 13:55-67. [PMID: 18204888 DOI: 10.1007/s10911-008-9067-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022] Open
Abstract
The formation of new blood vessels has become a major focus of mammary gland research stimulated by the therapeutic opportunities of controlling angiogenesis in breast cancer. Normal growth and involution of the mammary gland are profoundly affected by the expansion and regression of blood vessels, whereas dysregulation of angiogenesis is characteristic of breast cancer growth and metastasis. Prolactin stimulates the growth and differentiation of the mammary gland under normal conditions, but its role in breast cancer is controversial. Its action is complicated by the fact that prolactin itself is angiogenic, but proteases cleave prolactin to generate vasoinhibins, a family of peptides that act on endothelial cells to suppress angiogenesis and vasodilation and to promote apoptosis-mediated vascular regression. This review summarizes our current knowledge about the vascular effects of prolactin and the generation and action of vasoinhibins, and discusses their possible contribution to the regulation of blood vessels in the normal and malignant mammary gland.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro, México 76230.
| | | | | |
Collapse
|